Downloaded from http://www.thepaperbank.co.uk

FOUNDATION CHEMISTRY

Mark Scheme 2811 June 2002 2811 Mark Scheme June 2002

1. (a) (Atoms of) the same element / with same protons.... with different masses/different numbers of neutrons [1]

(b)

isotope	percentage composition	number of	
		protons	neutrons
¹⁹¹ lr	38%	77	114
¹⁹³ \r	62%	77	116

Accept 37-39% for 191 Ir, 61-63% for 193 Ir but must add up to 100.

[3]

(c)(i) average atomic mass/weighted mean/average mass ✓ compared with carbon-12 ✓

1/12th of mass of carbon-12/on a scale where carbon-12 is 12
mass of 1 mole of element/mass of 1 mole of carbon-12 is equivalent to first two marks

[3]

(ii)
$$38 \times 191/100 + 62 \times 193/100 \checkmark = 192.2 \checkmark$$

Answers from other percentages above:

$$37 \times 191/100 + 63 \times 193/100 \checkmark = 192.3 \checkmark$$

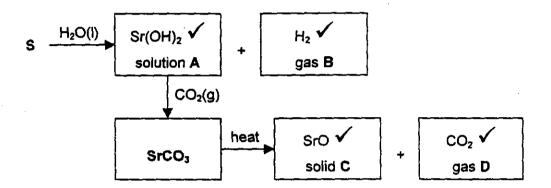
 $39 \times 191/100 + 61 \times 193/100 \checkmark = 192.2 \checkmark$

[2]

(ii) ratio Ir: F = 62.75/192 : 37.25/19 or 0.327 : 1.96
$$\checkmark$$

= 1 : 6 or formula = IrF₅ \checkmark

(or using answer for Ir from (c)(ii)) [2]


(iii) Ir +
$$3F_2 \longrightarrow IrF_6 \checkmark$$
 (consequential on response to (ii)) [1]

[Total: 13]

2. (a) trend in reactivity: more reactive down group ✓
explanation: electrons lost more easily / ionisation energies decrease
/ less attraction or pull ✓

some attempt to relate this increase in size of atom / more shells / energy levels
and increase in shielding
[4]

(b)

[4]

[Total: 8]

2811

Mark Scheme

June 2002

3. (a)(i) O⁺(g) → O²⁺(g) + e⁻ equation √; state symbols but an electron must be in the equation somewhere √ [2]

(ii) Large difference between 6th and 7th ionisation energies
marks a different shell (closer to nucleus)
[2]

(b)(i) $1s^22s^22p^63s^23p^1$

[1]

(ii)

Notice of the state of th

sharp rise between ionisation 3 and ionisation 4
sharp rise between ionisation 11 and ionisation 12

i.e. the two steepest rises

(for 2,8,3 pattern the wrong way around, award 1 mark)

[2]

(c)(i) 4Al(s) +3O₂(g) → 2Al₂O₃(s) equation ✓; state symbols ✓ [2] (ii) Al³⁺ ions / highly charged aluminium ions ✓ are small ✓;

O²⁻ions / anions / negative ions are large ✓;

O²⁻ions / anions / negative ions are polarised / distorted ✓

4 ---→ [3 max]

(d) $M(Al_2O_3) = 102 \text{ g mol}^{-1} \checkmark$ amount of $Al_2O_3 = 25/102 = 0.2451 / 0.245 / 0.25 \checkmark$ [2]

[Total: 14]

- (b) covalent bonds shown correctly ✓

 all molecule correct (i.e. chlorine's and oxygen's lone pairs) ✓

 [2]
- (c)(i) electron pairs repel ✓
 as far apart as possible ✓
 the number of electron pairs (surrounding central atom) decides the shape ✓
 lone pairs repel more (than bonded pairs) ✓

 4 → [3 max]

(ii)

[2]

(ii) brown / orange / yellow colour ✓

[1]

[1]

[1]

[2]

∴ amount of Cl_2 produced = 2 mol \checkmark (i.e. half 1st answer to (e)(i)) volume of Cl_2 produced = 24 x 2 = 48 dm³ \checkmark

[2]

(iii) 1 dm³ brine
$$\longrightarrow$$
 48 dm³ Cl₂(g)
2.5 x 10°/48 dm³ brine \longrightarrow 2.5 x 10° dm³ Cl₂(g)
 \therefore 5.2 x 10⁷ (dm³) \checkmark (but wrong unit is wrong!)

[1]

[Total: 17]

2811 Mark Scheme June 2002

5. (a) diagram of H bonding between water molecules (O of 1 molecule to H of another) ✓ dipoles shown ✓ with lone pair involved in bond ✓ (could be in words; could describe another molecule such as NH₃.)
 [3]

Two properties from:

property higher melting/boiling point than expected √

explanation strength of H bonds/H-bonds need to be broken

must imply that intermolecular bonds are broken

property ice is lighter than water/ max density at 4°C ✓

explanation H bonds hold H₂O molecules apart

/ open lattice in ice
/ H-bonds are longer ✓

property high surface tension/viscosity

explanation strength of H bonds/H-bonds need to be broken

 $\stackrel{3}{\longrightarrow}$ 4 max \longrightarrow [4]

Q - legible text with accurate spelling, punctuation and grammar V

[1]

[Total: 8]