

RECOGNISING ACHIEVEMENT

Subject: Chemistry Foundation Code: 2811

Session: January Year: 2001

Final Mark Scheme

14th Jan 2001

MAXIMUM MARK	90
--------------	----

Answer all questions

Lithium was discovered in 1817 by the Swedish chemist Arfvedson. Lithium exists naturally as 1. a mixture of isotopes.

(a) Explain the term *isotopes*.

Atoms of the same element with different masses/

Same atomic number, different number of neutrons/

Atoms of the same element with different numbers of neutrons \checkmark

Response must imply atoms

(b) Which isotope is used as the standard against which relative atomic masses are measured?

carbon-12 ✓

[1]

[1]

- (c) The mass spectrum below shows the isotopes present in a sample of lithium:
 - (i) Use this mass spectrum to help you complete the table below for each lithium isotope in the sample.

icotopo	porcontago composition	number of		
Isotope	percentage composition	protons	neutrons	
⁶ Li	9 to 6	3	3	by column or row
⁷ Li	91 to 94	3	4	
mark	must add up to 100 V	\checkmark	\checkmark	<u>ı</u>

mark must add up to 100 ✓

[3]

column or row

(ii) Calculate the relative atomic mass of this lithium sample. Your answer should be given to three significant figures.

$$8 \times 6/100 + 92 \times 7/100 \checkmark = 6.92 \checkmark (91/9 \rightarrow 6.91; 93/7 \rightarrow 6.93; 94/6 \rightarrow 6.94)$$
[2]

- (d) The species responsible for the peaks in this mass spectrum are lithium ions, produced and separated in a mass spectrometer.
 - (i) How are the electrons removed from lithium atoms to form lithium ions in a mass spectrometer?

(bombarded) with electrons \checkmark

[1]

[1]

(ii) How does a mass spectrometer separate the ions?

(deflected by) a magnet(ic field) ✓

- (e) The first ionisation energy of lithium is $+520 \text{ kJ mol}^{-1}$.
 - (i) Define the term *first ionisation energy*.

Energy change when each atom in **1 mole** \checkmark of gaseous atoms \checkmark

loses an electron \checkmark (to form 1 mole of gaseous 1+ ions).

[3]

(ii) The first ionisation energy of sodium is $+496 \text{ kJ mol}^{-1}$.

Explain why the first ionisation energy of sodium is less than that of lithium. Your answer should compare the atomic structures of each element.

electron is further from nucleus/ electron in a different shell \checkmark

electron experiences more shielding \checkmark

nuclear attraction decreases/distance or shielding outweighs nuclear attraction/ effective nuclear charge is less \checkmark

[3]

[Total: 15]

2. Electrons are arranged in energy levels. The diagram below is incomplete. It shows two electrons in the 1s level. (a) Complete the diagram for the 7 electrons in a nitrogen atom by (i) adding labels for the other sub-shell levels, [1] (ii) showing how the electrons are arranged. [2] 2p 2s 2s and 2p labels ✓ 7 electrons in correct levels ✓ energy **1**s arrows correctly shown ✓ [3] (b) Magnesium reacts with nitrogen forming magnesium nitride, which is an ionic compound. (i) Complete the electronic configuration for the 12 electrons in a magnesium atom. $1s^{2}2s^{2}2p^{6}3s^{2}$ [1] (ii) What is the charge on each ion in magnesium nitride? magnesium ion 2+ ✓ 3- ✓ nitride ion [2] (iii) Complete the electronic configuration of each ion in magnesium nitride. magnesium ion $1s^22s^22p^6$ \checkmark $1s^{2}2s^{2}2p^{6}$ *nitride* ion [2] (iv) Deduce the formula of magnesium nitride. Mg₃N₂ ✓ [1] (c) Magnesium reacts with carbon dioxide forming a mixture of magnesium oxide and carbon. (i) Write an equation, with state symbols, for this reaction. $2Mq(s) + CO_2(q) \longrightarrow 2MqO(s) + C(s)$ equation: \checkmark state symbols: \checkmark [2] (ii) When water is added to the mixture containing magnesium oxide, some of the magnesium oxide reacts to form a solution of magnesium hydroxide. $MgO(s) + H_2O(I) \longrightarrow Mg(OH)_2(aq)$ 8 - 12 🗸 Predict the pH of this solution. [1] [Total: 12] 3. Calcium carbonate is added to an excess of hydrochloric acid.

 $CaCO_{3}(s) + 2HCI(aq) \longrightarrow CaCI_{2}(aq) + CO_{2}(g) + H_{2}O(I)$

(a) Deduce two observations that you would expect to see during this reaction.

observation 1

```
CaCO<sub>3</sub> dissolves/ CaCO<sub>3</sub> disappears/ a solution forms \checkmark
```

observation 2

fizzing/effervescence/gas evolved/CO₂ evolved ✓

- (b) In this experiment, 0.04 g CaCO₃ is added to 25 cm³ of 0.05 mol dm⁻³ HCl.
 - (i) Explain what is meant by 0.05 mol dm^{-3} HCl.

0.050 mol/1.825 g HCl (is dissolved) in 1 dm³ \checkmark

of solution \checkmark

- (ii) Calculate how many moles of CaCO₃ were used in this experiment.
 molar mass of CaCO₃ 100 g mol⁻¹ ✓
 moles of CaCO₃ = 0.040/100.1 = 0.00040 ✓ (calc value: 3.996; accept CaCO₃:100)
- (iii) Calculate how many moles of HCl are required to react with this amount of CaCO₃. moles of HCl that react = $2 \times 0.00040 = 0.00080$ \checkmark (*i.e. ans to (b)(ii) x 2*)
 - [1]

[2]

[2]

[2]

(iv) Hence show that the HCl is in excess.

moles of HCl used = $0.050 \times 25/1000 = 0.00125 \checkmark$ (accept: 16 cm³ HCl used)

[1]

(c) State one large-scale use of a named Group 2 compound that is being used to reduce acidity.

NAMED material + example of neutralising for mark. Can be common name:

e.g. Milk of magnesia/MgO for combating acid indigestion

limestone/CaCO3 (or lime/CaO/Ca(OH)2 for combating acidity in fieldsMaterial must be a Group 2 carbonate/oxide/hydroxide[1]

[Total: 9]

4. Water is the most abundant compound on Earth. Much of the chemistry of water is influenced by its polarity and ability to form hydrogen bonds. (a) Polarity can be explained in terms of electronegativity. (i) Explain the term *electronegativity*. attraction (of an atoms) for electrons \checkmark in a (covalent) bond ✓ [2] (ii) Why are water molecules polar? O and H have different electronegativities / O attracts electrons more than H/ O is very electronegative \checkmark [1] (b) The polarity of water molecules results in the formation of hydrogen bonds. (i) Draw a diagram to show hydrogen bonding between two molecules of water. Your diagram must include dipoles and lone pairs of electrons. non-linear H₂O molecule \checkmark dipoles in water shown \checkmark H-bond between H and an O in another H_2O molecule \checkmark Involvement of lone pair on oxygen Linear H----O_H ✓ (HO₂ can score dipole mark only) [4] (ii) State the bond angle in a water molecule bond angle = 104.5 ° ✓ (accept 104-105 °) [1] (c) State and explain two properties of ice that are a direct result of hydrogen bonding. high(er) melting/boiling point (than expected) property *explanation* strength of H bonds/H-bonds need to be broken/H-bonds strong ice is lighter than water/ max density at 4°C/ice floats \checkmark property explanation H bonds hold H_2O molecules apart/open lattice in ice/ H-bond is long \checkmark (Final mark must imply space within structure; do NOT accept 'air trapped') [4]

[Total: 12]

2811 January 2001

[1]

[1]

[1]

[1]

- 5. Well over 2 000 000 tonnes of sulphuric acid, H₂SO₄, are produced in the U.K. each year. This is used in the manufacture of many important materials such as paints, fertilizers, detergents, plastics, dyestuffs and fibres.
 - (a) 100 tonnes of sulphur dioxide were reacted with oxygen in stage 2.

Assuming that the reaction was complete, calculate

(i) how many moles of sulphur dioxide were reacted;

 $M_{\rm r}$: SO₂, 64.1. 1 tonne = 1 x 10⁶ g

moles
$$SO_2 = 100 \times 10^6/64.1 = 1.56 \times 10^6$$
 \checkmark

(ii) the mass of sulphur trioxide that formed.

*M*_r: SO₃, 80.1

mass SO₂ =
$$1.56 \times 10^6 \times 80.1 = 125 \times 10^6 \text{ g} / 125 \text{ tonne}$$

(b) Construct a balanced equation for the formation of sulphuric acid from oleum.

$$H_2S_2O_7 + H_2O \longrightarrow 2H_2SO_4 \checkmark$$

- (c) The concentration of the sulphuric acid can be checked by titration. A sample of the sulphuric acid was analysed as follows.
 - 10.0 cm³ of sulphuric acid was diluted with water to make 1.00 dm³ of solution.
 - The diluted sulphuric acid was then titrated with aqueous sodium hydroxide, NaOH.

 $H_2SO_4(aq) + 2NaOH(aq) \longrightarrow Na_2SO_4(aq) + 2H_2O(I)$

- In the titration, 25.0 cm³ of 0.100 mol dm⁻³ aqueous sodium hydroxide required 20.0 cm³ of **diluted** sulphuric acid for neutralisation.
- (i) Calculate how many moles of NaOH were used.

 $0.100 \ge 25/1000 = 2.5 \ge 10^{-3} \mod \checkmark$

(ii) Calculate the concentration, in mol dm^{-3} , of the **diluted** sulphuric acid, H₂SO₄.

moles $H_2SO_4 = 1.25 \times 10^{-3}$ V

concentration $H_2SO_4 = 1.25 \times 10^{-3} \times 1000/20 = 0.0625 \text{ mol dm}^{-3}$

(i.e. Ans to (c)(i) $\times \frac{1}{2}$) An answer of 0.125 mol dm⁻³ would score probably 2nd mark- error likely to be molar ratio in equation) [2]

(iii) Calculate the concentration, in mol dm⁻³, of the original sulphuric acid submitted for analysis.

 $100 \ge 0.0625 = 6.25 \text{ mol dm}^{-3}$

[1] [Total: 7] 6. The atomic radii of the elements Li to F and Na to Cl are shown in the table below.

element	Li	Be	В	С	Ν	0	F
atomic radius/nm	0.134	0.125	0.090	0.077	0.075	0.073	0.071
element	Na	Mg	AI	Si	Р	S	CI
atomic radius/nm	0.154	0.145	0.130	0.118	0.110	0.102	0.099

- (a) Using only the elements in this table, select
 - (i) an element with both metallic and non-metallic properties,

Si/C/B ✓

- (ii) the element with the largest first ionisation energy
 - F ✓ [1]
- (iii) an element with a giant covalent structure

Si/C/B ✓

(b) Explain what causes the general **decrease** in atomic radii across each period?

electrons added to same shell /same or similar shielding \checkmark

increasing nuclear charge/number of protons

electrons experience greater attraction \checkmark

[3]

[1]

[1]

(c) Predict and explain whether the size of a sodium **ion** is *larger* or *smaller* than the size of a sodium **atom**.

sodium ion is smaller \checkmark

shell has been lost ✓

same protons attracting fewer electrons/less electron shielding/

effective nuclear charge greater \checkmark

(If 'Na ion is larger' and all else is correct then penalise 1st mark only)

[3]

[Total: 9]

- 7. Chlorine and its compounds have many uses. Chlorine bleach is used to kill bacteria.
 - (a) Chlorine bleach is made by the reaction of chlorine with aqueous sodium hydroxide.

$$Cl_2(g)$$
 + NaOH(aq) \longrightarrow NaOCI(aq) + NaCI(aq) + H₂O(I)

(i) Determine the oxidation number of chlorine in

$$Cl_2$$
 0 \checkmark NaClO +1 \checkmark NaCl -1 \checkmark

[3]

[1]

(ii) The actual bleaching agent is the CIO⁻ ion. In the presence of sunlight, this ion decomposes to release oxygen gas.

Construct an equation for this reaction.

$$2CIO^{-} \longrightarrow 2CI^{-} + O_{2}$$
 or $2NaCIO \longrightarrow 2NaCI + O_{2}$

- (b) The sea contains a low concentration of bromide ions. Bromine can be extracted from sea water by first concentrating the sea water and then bubbling chlorine through this solution.
 - (i) The chlorine oxidises bromide ions to bromine.

Construct a balanced ionic equation for this reaction

 $Cl_2 + 2Br^- \longrightarrow Br_2 + 2Cl^- \checkmark$

[1]

(ii) Suggest how bromine could be removed from the seawater after the extraction with chlorine.

distill/blow air through/evaporate/use organic solvent 🗸

('Evaporate water' is wrong although 'evaporate' is correct: implies Br₂) 'Heat' is wrong

[1]

(c) Phosgene is a compound of chlorine, carbon and oxygen, used to make polyurethanes and dyes.

Phosgene has the percentage composition by mass: Cl, 71.7%; C, 12.1%; O, 16.2%.

(i) Show that the empirical formula of phosgene is Cl_2CO .

mole ratio:
$$\frac{71.7}{35.5}$$
 CI : $\frac{16.2}{16}$ O : $\frac{12.1}{12}$ C \checkmark *i.e. correct use of '35.5', '16' and 12.*
= 2 : 1 : 1 OR 2.02:1.01:2.02 \checkmark

[2]

(ii) The molecular formula of phosgene is the same as its empirical formula.

Draw a possible structure, including bond angles, for a molecule of phosgene.

$$O = C^{(1)}_{(120^{\circ})}$$

CI shape (C=O IS required) \checkmark ; bond angle (accept 115 - 125°) \checkmark

[2]

8. In this q	uestion, 2 marks are available for the quality of written communication
Sodium	reacts with chlorine forming sodium chloride.
(a) Des	cribe the bonding in Na, Cl ₂ and NaCl. [8]
Na, Cl_2 a	and NaCI: metallic, covalent and ionic bonding respectively \checkmark .
NaCI:	(ionic bonding): electrostatic attraction between ions \checkmark
	correct 'dot-and-cross' diagram 🗸
	correct charges shown 🗸
<i>Cl</i> ₂ :	(covalent bonding): attraction of shared electrons for 2 nuclei \checkmark
	'dot-and-cross' diagram correct 🗸
	shared pair of electrons 🗸
	('shared' electrons must be described but 'pair' can be within dot-and-cross diagram)
	'dot-and-cross' diagram correct 🗸
Na:	(metallic bonding): attraction between ions and electrons \checkmark
	delocalised electrons ✓
	(marks could be obtained by suitably annotated diagram)
	Clear, well-organised, using specialist terms
	More than half marks likely to score this mark but some writing is essential
	Show mark as: Q ¥
(b) Rel	[Sub-total. 10 \longrightarrow 6 max] ate the physical properties of Cl ₂ and NaCl to their structure and bonding
	[8]
For C	I_2 and for NaCl, mark best two properties only (treat as 3 x 2 'pairs').
Cl ₂ :	\int poor conductor of electricity \checkmark : no mobile electrons or ions \checkmark
choose	low m/bt pt: weak intermolecular \checkmark van der Waals' forces/simple molecular structure \checkmark
props.	soluble in non-polar solvents \checkmark : which interact with Cl ₂ \checkmark \longrightarrow 4 max
NaCl:	$\int \int \int \int \int \int \int \int \partial f dx$ (conducts only when aq or liquid \checkmark when ions are mobile/ ions fixed in lattice \checkmark
choose best two	high m/bt pt 🗸 : strong forces between ions/giant ionic lattice 🗸
props.	soluble in polar solvents \checkmark : dipoles interact with ions \checkmark — \rightarrow 4 max
	Q – legible text with accurate spelling, punctuation and grammar
	More than half marks likely to score this mark but do pay attention to SPG
	Show mark as: Q 🗸
	[Sub-total: $9 \longrightarrow 8 \text{ max}$]
	[Total: 16]