edexcel \#\#

Mark Scheme (Results)

October 2016

Pearson Edexcel International GCE in Chemistry (WCH02) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2016
Publications Code WCH02_01_1610_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Mark
$\mathbf{1}$	C	$\mathbf{(1)}$
	Incorrect answers $\mathrm{A}-\mathrm{BF}_{3}$ is not pyramidal $\mathrm{B}-\mathrm{BF}_{3}$ is not pyramidal and PH_{3} is not trigonal planar $\mathrm{D}-\mathrm{PH}_{3}$ is not trigonal planar	

Question Number	Correct Answer	Mark
$\mathbf{2}$	B	(1)
	Incorrect answers A - graphite is not 109.5° C - diamond is not 120° and graphite is not 109.5° D - diamond is not 120°	

Question Number	Correct Answer	Mark
$\mathbf{3}$	D	(1)
	Incorrect answers A $-\mathrm{C}-\mathrm{Cl}$ is not non-polar and the molecule is not non-polar B $-\mathrm{C}-\mathrm{Cl}$ is not non-polar C - the molecule is not non-polar	

Question Number	Correct Answer	Mark
4	D	(1)
	Incorrect answers A - is linear and has the highest boiling temperature B - has 1 branch and has $2^{\text {nd }}$ highest boiling temperature C has 2 branches and has $3^{\text {rd }}$ highest boiling temperature	

Question Number	Correct Answer	Mark
$\mathbf{5}$	B	(1)
	Incorrect answers A - is not a redox reaction so cannot be disproportionation C - is a redox reaction but is not disproportionation D - is not a redox reaction so cannot be disproportionation	

Question Number	Correct Answer	Mark
$\mathbf{6}$	B	(1)
	Incorrect answers A - solubility of sulfates does not decrease C - solubility of hydroxides does not increase and solubility of hydroxides does not decrease D - solubility of hydroxides does not increase	

Question Number	Correct Answer	Mark
$\mathbf{7}$	A	(1)
	Incorrect answers B - peak is too far to the right and line touches x axis C - peak is too far to the right D - lines touches x axis	

Question Number	Correct Answer	Mark
$\mathbf{8}$	C	(1)
	Incorrect answers A - activation energy does not decrease B- activation energy does not decrease and particles do not collide with more energy D - particles do not collide with more energy	

Question Number	Correct Answer	Mark
$\mathbf{9}$	D	(1)
	Incorrect answers A - doubling the size of particles will decrease the rate and so will decreasing the temperature B - doubling the size of particles will decrease the rate C - decreasing the temperature will decrease the rate	

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	A	(1)
	Incorrect answers B - is not the activation energy C - is not the activation energy D - is not the activation energy	

Question Number	Correct Answer	Mark
$\mathbf{1 1}$	D	(1)
	Incorrect answers A - is incorrect as there will be a change B - incorrect colour C - incorrect colour	

Question Number	Correct Answer	Mark
$\mathbf{1 2}$	A	(1)
	Incorrect answers B - equilibrium position does not shift to the right with an increase in temperature C - equilibrium position does not shift to the right with a decrease in pressure D - equilibrium position does not shift to the right with a decrease in pressure and equilibrium position does not shift to the right with an increase in temperature	

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	B	(1)
	Incorrect answers	
	A - incorrect empirical formula	C incorrect empirical formula
D - incorrect empirical formula		

Question Number	Correct Answer	Mark
$\mathbf{1 4}$	C	(1)
	Incorrect answers A - P is not primary B - P and S are not primary D - Q is primary but R is also primary	

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	C	(1)
	Incorrect answers A - incorrect number of alkenes B - incorrect number of alkenes D - incorrect number of alkenes	

$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Correct Answer } & \text { Mark } \\ \hline \mathbf{1 6} & \text { A } & \text { (1) } \\ \hline & \text { Incorrect answers } \\ & \text { B - incorrect mass } \\ \text { C - incorrect mass } \\ \text { D - incorrect mass }\end{array}\right]$

Question Number	Correct Answer	Mark
$\mathbf{1 7}$	C	(1)
	Incorrect answers A - carbon monoxide has a polar bond B - carbon dioxide has 2 polar bonds D - water has 2 polar bonds	

Question Number	Correct Answer	Mark
$\mathbf{1 8}$	D	(1)
	Incorrect answers A - incorrect percentage B - incorrect percentage C - incorrect percentage	

Question Number	Correct Answer	Mark
$\mathbf{1 9}$	D	(1)
	Incorrect answers A - not the molecular ion B - not the molecular ion C - this is the molecular ion without a carbon-13 isotope	

Question Number	Correct Answer	Mark
$\mathbf{2 0}$	A	(1)
	Incorrect answers B - has fewer oxygen atoms than A C - has fewer oxygen atoms than A D - has fewer oxygen atoms than A	

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (i)}$	Green (flame) Any other colour in combination with green eg blue-green	(1)	
green any shade of green eg pale green, apple			

Question Number	Acceptable Answers	Reject	Mark
21(a)(ii)	Read the whole answer before awarding marks. If no mention of electrons only M3 may be awarded First mark Electrons excited/ promoted to a higher energy level/ shell (by thermal energy / heat from (Bunsen) flame) IGNORE atom / ion Second mark (Promoted) electrons fall / drop / relax / return to a lower energy level / (sub)shell/ orbital OR Electrons return to ground state ALLOW Electrons drop back down / de-excited IGNORE atom / ion Third mark Emitting (energy in the form of) radiation/ light / photons (in the visible region) ALLOW release / give out for emit IGNORE colour / wavelength / frequency	J ust ‘electrons excited / promoted' J ust 'energy lost' J ust 'energy emitted'	(3)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i) ~}$	$2 \mathrm{NaNO}_{3} \rightarrow 2 \mathrm{NaNO}_{2}+\mathrm{O}_{2}$		(1)
	OR		
$\mathrm{NaNO}_{3} \rightarrow \mathrm{NaNO}_{2}+1 / 2 \mathrm{O}_{2}$			
OR multiples			
IGNORE state symbols, even if incorrect			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i i) ~}$	$2 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{MgO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$		(1)
	OR $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{MgO}+2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$		
	IGR multiples State symbols, even if incorrect Water of crystallisation	NOTE If no marks awarded for (b)(i) or (b)(ii), allow 1 mark for all correct products in unbalanced equations in (b)(i) and (b)(ii)	

Question Number	Acceptable Answers	Reject	Mark
21(c)	First mark - charge Magnesium ion has a greater charge than sodium ion OR Magnesium is Mg^{2+} and sodium is Na^{+} ALLOW magnesium ion has a higher charge density ALLOW Mg have a charge of +2 and Na has a charge of +1 ALLOW mention of atoms Second mark - size Magnesium ion is smaller than sodium ion OR Sodium ion is larger than magnesium ion ALLOW magnesium is smaller than sodium, or reverse argument, if ion is stated for first mark IGNORE atomic radius Third mark - comparison of polarising power Magnesium / Mg^{2+} / cation / smaller ion causes more polarisation / distortion OR Sodium / Na^{+}/ cation / Iarger ion causes less polarisation / distortion Fourth mark - what is polarised C - O bonds / $\mathrm{C}=0$ bonds ALLOW (Electron cloud in) carbonate (ion) / $\mathrm{CO}_{3}{ }^{2-} /$ anion / negative ion (and therefore magnesium carbonate decomposes more readily) (than sodium carbonate)	$\mathrm{Mg} / \mathrm{Mg}^{2+}$ is distorted $\mathrm{N}-\mathrm{O}$ bonds / $\mathrm{N}=\mathrm{O}$ bonds / nitrate ion / $\mathrm{NO}_{3}{ }^{-}$ Bond between cation and anion is more easily broken	(4)

Question	Acceptable Answers	Reject	Mark
21(d)(i)	Correct answer with no working or an alternative method scores (3) marks mol $\begin{align*} \mathrm{HCl} \text { used } & =\frac{16.65 \times 0.105}{1000} \tag{1}\\ & =1.74825 \times 10^{-3} \end{align*}$ $\mathrm{mol} \mathrm{Na} \mathrm{CO}_{3}$ in $25 \mathrm{~cm}^{3}=\frac{1.74825 \times 10^{-3}}{2}$ $\begin{equation*} =8.74125 \times 10^{-4} \tag{1} \end{equation*}$ TE on mol HCl $\mathrm{mol} \mathrm{Na} 2 \mathrm{CO}_{3}$ in $250 \mathrm{~cm}^{3}$ $\begin{align*} & =8.74125 \times 10^{-4} \times 10 \\ & =8.74125 \times 10^{-3} \tag{1} \end{align*}$ TE on $\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$ in $25 \mathrm{~cm}^{3}$ IGNORE SF except 1 SF	Incorrect rounding or use of 1SF once only in (d)(i) and (d)(ii)	(3)

Question Number	Acceptable Answers	Reject	Mark
21(d)(ii)	Molar mass M_{r} of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}=2.50$ $\begin{align*} & 8.74125 \\ = & 286(.0) \tag{1} \end{align*}$ Value of x $\begin{equation*} x=\frac{286-106}{18}=10 \tag{1} \end{equation*}$ Both marks TE on 21(d)(i) but do not award M2 if M_{r} of hydrate < 106 Alternative method Value of x Mass $\mathrm{Na}_{2} \mathrm{CO}_{3}=8.74125 \times 10^{-3} \times 106=0.92657(\mathrm{~g})$ Mass $\mathrm{H}_{2} \mathrm{O}=2.5-0.92657=1.57343(\mathrm{~g})$ Moles $\mathrm{H}_{2} \mathrm{O}=1.57343 / 18=0.087413$ Ratio $\mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{H}_{2} \mathrm{O}=1: 10$ (1) Molar mass M_{r} of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}=286$ TE on value of x		(2)

Question Number	Acceptable Answers	Reject	Mark
21(d)(iii)	Two matching pairs in either order. The effect on titration volumes is conditional on the error. Answers can be written on either set of lines Error 1 Not washing the weighing bottle (with distilled water) OR Not re-weighing the weighing bottle ALLOW Not adding washings to volumetric flask OR Any indication that any solid left in the bottle needs to be accounted for OR Some solid is spilled when it is tipped into the volumetric flask IGNORE some solid is undissolved / any reference to uncertainties Effect on titration volumes 1 The titration volume is less because lower / decreased concentration (of sodium carbonate) Error 2 Not shaking / inverting / mixing the solution in the volumetric flask Effect on titration volumes 2 Titres inconsistent / varied because nonhomogeneous solution		(4)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (a)}$	iodine IGNORE I $/$ I	Iodide / I	(1)

Question Number	Acceptable Answers	Reject	Mark
22(b)	Allow oxidation numbers written under species in equation or in the text below First mark - oxidation numbers of reactants $\mathrm{F}_{2} \quad \mathrm{~F}$ is 0 $\mathrm{OH}^{-} \mathrm{O}$ is -2 Second mark - oxidation numbers of products $\mathrm{OF}_{2} \mathrm{O}$ is +2 and F is -1 $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{O}$ is -2 $F^{-} \quad F$ is -1 Third mark - redox Fluorine / F_{2} is reduced as oxidation number decreases / changes from 0 to -1 and oxygen is oxidised as oxidation number increases / changes from -2 to +2 OR Fluorine / F_{2} is an oxidising agent as oxidation number decreases / changes from 0 to -1 and oxygen is a reducing agent as oxidation number increases / changes from -2 to +2 ALLOW O^{2-} for oxygen	Just 'ON F decreases and ON O increases' If O is -2 and F is +1 in OF_{2}, fluorine is oxidised from 0 to +1 and reduced from 0 to -1 (disproportionation)	(3)

Question Number	Acceptable Answers	Reject	Mark
22(c)	$\mathrm{S}_{2} \mathrm{O}_{3}^{2-}+5 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{SO}_{4}^{2-}+10 \mathrm{H}^{+}+8 \mathrm{Cl}^{-}$ ALLOW multiples ALLOW $\begin{aligned} & \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+5 \mathrm{H}_{2} \mathrm{O} \\ & \\ & \\ & 8 \mathrm{Cl}^{-} \\ & \\ & \text {IGNORE working } \end{aligned}$	uncancelled electrons reverse reaction	(1)

Question Number	Acceptable Answers	Reject	Mark
22(d)(i)	Instantaneous / temporary dipole OR temporary asymmetric electron distribution (on one molecule)	J ust 'induces a dipole'	(2)

Question Number	Acceptable Answers	Reject	Mark
22(d)(ii)	There are (18) more electrons in iodine (than bromine) OR There are more electrons in HI (than HBr) ALLOW There is a greater electron cloud in iodine (than bromine) ALLOW Iodide has more electrons (than bromide) ALLOW Iodine has a larger surface area (than bromine) IGNORE Iodine is larger / heavier / has larger instantaneous dipole / has a greater electron density / has more protons / has more neutrons (than bromine)	There are more electrons in $\mathrm{I}^{-} /$ iodide ions (than bromide ions / Br^{-})	(1)

Question Number	Acceptable Answers	Reject	Mark
22(d)(iii)	Identification of intermolecular forces HF (also) has hydrogen bonds IGNORE HCl only has London forces Comparison of strength Hydrogen bonds are stronger than London forces / other intermolecular forces	(2) Any reference to breaking H- Hal bond ALLOW Hydrogen bonding is stronger OR Hydrogen bonding is the strongest intermolecular force OR More energy is needed to break hydrogen bonds (than London forces) OR The intermolecular forces in HF are stronger (than those in HCI) (1)	London forces in HF are stronger (than those in HCl)
IGNORE Fluorine is more electronegative than chlorine / there is a greater electronegativity difference in HF than HCl			

Question Number	Acceptable Answers	Reject	Mark
22(e)	(Shape $\left[\mathrm{PCl}_{4}\right]^{+}$) tetrahedral (1) (Shape $\left[\mathrm{PCl}_{6}\right]^{-}$) octahedral (1) J ustification 4 electron / bond pairs in $\left[\mathrm{PCl}_{4}\right]^{+}$and 6 electron / bond pairs in $\left[\mathrm{PCl}_{6}\right]^{-}$ Electron/ bond pairs / regions of electron density arranged to minimise repulsion ALLOW Maximum separation of electron/bond pairs / regions of electron density IGNORE Lone pairs repel more than bond pairs / bond angles, even if incorrect	Penalise use of bonds for electron pairs once only J ust 'minimise repulsion / maximum separation'	(4)

(Total for Question 22 = 14 marks)

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 23(a)(i) | (3)
 Dipole on $\mathrm{C}-\mathrm{Br}$
 Second mark
 Curly arrow from lone pair on OH^{-}to C^{+}
 ALLOW the curly arrow at any angle but it must start
 close to lone pair
 Third mark
 Curly arrow from C- Br bond to Br
 ALLOW to just beyond Br
 IGNORE transition state, even if incorrect | (1) full charges | |

Question Number	Acceptable Answers	Reject	Mark
23(a)(ii)	Nucleophilic The oxygen (in the hydroxide ion) / hydroxide ion / negative ion donates a (lone) pair of / two electrons (to form a dative covalent bond) Substitution The hydroxide (ion) / OH / OH^{-}replaces/ takes the place of / displaces / substitutes the bromine / Br	(2)	
ALLOW The hydroxide(ion) / OH / OH- replaces/ takes the place of / displaces / substitutes the bromide(ion) / Br	ALLOW The C-Br bond breaks and C-O bond forms If no other mark is awarded, allow (1) for two generic definitions	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (b)}$	$\mathrm{CF}_{3} \mathrm{Cl} \rightarrow \mathrm{CF}_{3} \cdot+\mathrm{Cl} \cdot$	$\mathrm{CF}_{3} \mathrm{Cl} \rightarrow \mathrm{CF}_{2} \mathrm{Cl} \cdot+\mathrm{F} \cdot$	(1)
	IGNORE State symbols / uv / curly arrows, even if incorrect / additional steps even if incorrect electron of unpaired		

(Total for Question 23 = 6 marks)

Section C

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (a) (i)}$	$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$	$\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{OH}$	(1)
	ALLOW symbols in any order i.e. $\mathrm{C}_{10} \mathrm{OH}_{18} / \mathrm{H}_{18} \mathrm{C}_{10} \mathrm{O} / \mathrm{H}_{18} \mathrm{OC}_{10} / \mathrm{OC}_{10} \mathrm{H}_{18} / \mathrm{OH}_{18} \mathrm{C}_{10}$ IGNORE any other formulae as working		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (a) (i i) ~}$	$\mathrm{C}_{5} \mathrm{H}_{8}$		(1)
	ALLOW $\mathrm{H}_{8} \mathrm{C}_{5}$ IGNORE any other formulae as working		

Question Number	Acceptable Answers	Reject	Mark
24(a)(iii)	Linalool and geraniol Both needed for the mark They can be in either orderAny additional names: limonene, citronellol	(1)	

Question Number	Acceptable Answers	Reject	Mark
24(a)(iv)	Geraniol	Any additional names: limonene, linalool, citronellol	(1)

Question Number	Acceptable Answers	Reject	Mark
24(b)	Alkene:		(4)
	Bromine water / aqueous bromine / $\mathrm{Br}_{2}(\mathrm{aq})$		
	ALLOW		
	Bromine / $\mathrm{Br}_{2}((\mathrm{I})$) (1)		
	Decolorises / changes (from yellow / orange / brown / red) to colourless		
	ALLOW Acidified potassium manganate (VII)/ H^{+}and $\mathrm{MnO}_{4}{ }^{-}$		
	Purple to colourless (1)		
	Alcohol:		
	Phosphorus(V) chloride / PCl_{5} Steamy fumes	acidified potassium dichromate((VI)) / H^{+}and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$	
	ALLOW Misty / white fumes	white smoke	
	OR		
	Sodium / Na (1)		
	Effervescence / fizzing / bubbles (1)		
	IGNORE dissolves / white solid		
	OR		
	Ethanoic acid / carboxylic acid and any strong acid		
	Fruity smell		

Question Number	Acceptable Answers	Reject	Mark
24(c)(i)	Limonene can be identified as there will be no peak / (1) absorbance for OH (bond/ group) IGNORE Citronellol can be identified as there will be fewer C=C peaks / a weaker peak/ absorbance for $\mathrm{C}=$ C (as it has one C=C and the other three compounds have two C=C) IGNORE stretching / wavelength / wavenumber The other three compounds / linalool, geraniol and citronellol will all have a peak/ absorbance for OH and C=C / same functional groups so cannot be distinguished OR Fingerprint region will be different for all of them	(2)	
ALLOW Linalool and geraniol will both have a peak/ absorbance for OH and two C=C/ same functional groups so cannot be distinguished IGNORE All 4 have a peak / absorbance for C=C			

Question Number	Acceptable Answers	Reject	Mark
24(c)(ii)	First mark - reagents Add potassium/ sodium dichromate((VI)) and dilute sulfuric acid to both (and warm / heat) ALLOW Acidified dichromate((VI)) ions (and warm / heat) OR Acidified potassium/ sodium dichromate((VI)) (and warm / heat) ALLOW correct formulae eg $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{H}^{+}$ Second mark - observations Geraniol - orange to green/ blue and Linalool - no change / stays orange NOTE M2 is conditional on mention of dichromate((VI)) in M1	Use of KMnO_{4}	(2)

Question Number	Acceptable Answers	Reject	Mark
24(d)(i)	(Raney) nickel / Ni / platinum / Pt palladium / Pd (catalyst)	Additional metals e.g. iron	(1)

Question Number	Acceptable Answers	Reject	Mark
24(d)(ii)	ALLOW mark for just correct formula of product as displayed, structural, skeletal or any combination of these $/ \mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O} / \mathrm{C}_{10} \mathrm{H}_{21} \mathrm{OH}$ IGNORE C-OH connectivity / conditions If more than one type of formula is given, all must be correct	(1)	

Question	Acceptable Answers	Reject	Mark
24(d)(iii)	Correct answer with no working scores (3) marks		(3)
	$\begin{align*} & \text { Mass linalool in lavender oil } \\ & =2.55 \times 70 / 100 \\ & =1.785 \mathrm{~g} \tag{1} \end{align*}$		
	Mol linalool $=1.785 / 154=0.01159$ TE from mass linalool		
	Alternative for first two marks $\begin{align*} \text { Mol linalool if pure } & =2.55 / 154 \\ & =0.016558 \tag{1} \end{align*}$		
	$\begin{align*} \text { Actual mol linalool } & =0.016558 \times 70 / 100 \\ & =0.01159 \tag{1} \end{align*}$		
	$\begin{aligned} \text { Volume hydrogen } & =2 \times 0.01159 \times 24.0 \\ & =0.5564 / 0.56 \mathrm{dm}^{3} \\ & \text { OR } 560 \mathrm{~cm}^{3} \end{aligned}$	Incorrect unit eg $\mathrm{dm}^{3} \mathrm{~mol}^{-1}$ or dm^{-3} / missing unit	
	ALLOW $\begin{align*} \text { Volume hydrogen } & =0.01159 \times 24.0 \\ & =0.27818 / 0.278 \mathrm{dm}^{3} \\ & \text { OR } 278 / 280 \mathrm{~cm}^{3} \tag{1} \end{align*}$		
	TE from mol linalool IGNORE SF except 1 SF		

Question Number	Acceptable Answers	Reject	Mark
24(e)	Dipole on HBr Both curly arrows on first structure, arrow from $\mathrm{C}=\mathrm{C}$ to H and arrow from $\mathrm{H}-\mathrm{Br}$ bond to Br ALLOW Second curly arrow to just beyond Br Correct carbocation Curly arrow from Br^{-} arrow can come from anywhere on Br , including the charge, lone pair not needed ALLOW 4 marks for correct mechanism leading to the minor product NOTE If incorrect alkene is used, M1, M2 and M4 can still score	Full charges Partial charge on C	(4)

(Total for Question 24 = 21 marks)

