

Examiners' Report June 2016

IAL Chemistry WCH05 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Giving you insight to inform next steps

ResultsPlus is Pearson's free online service giving instant and detailed analysis of your students' exam results.

- See students' scores for every exam question.
- Understand how your students' performance compares with class and national averages.
- Identify potential topics, skills and types of question where students may need to develop their learning further.

For more information on ResultsPlus, or to log in, visit <u>www.edexcel.com/resultsplus</u>. Your exams officer will be able to set up your ResultsPlus account in minutes via Edexcel Online.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk.

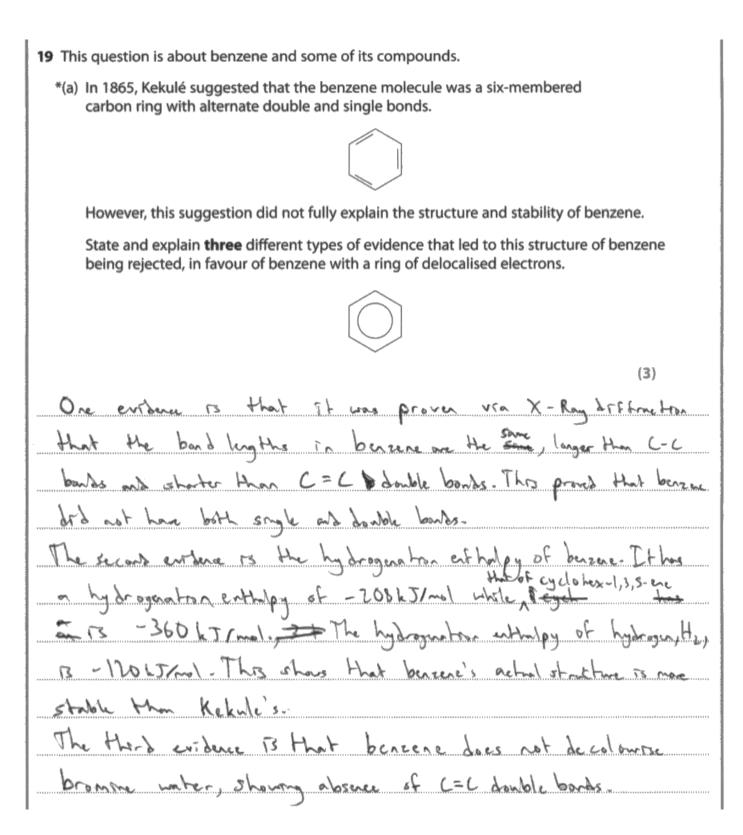
June 2016

Publications Code WCH05_01_1606_ER

All the material in this publication is copyright © Pearson Education Ltd 2016

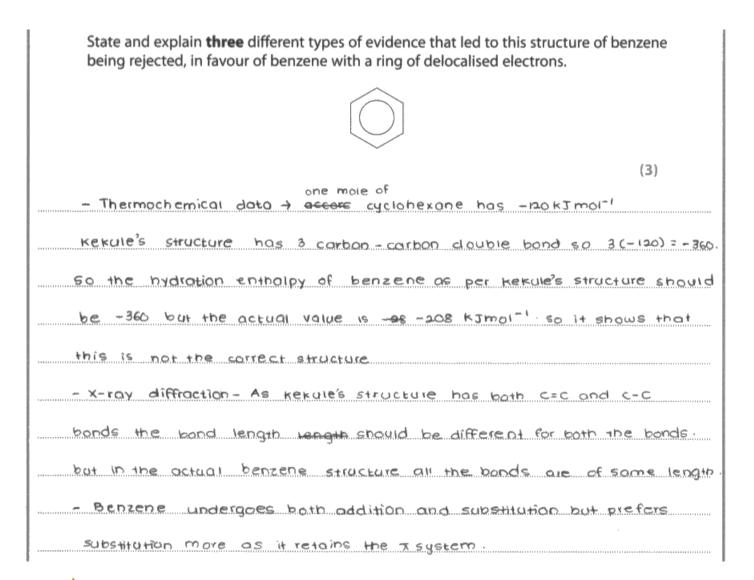
Introduction

This paper included questions that assessed candidates across the ability range and generated some excellent responses. There was little evidence that candidates ran out of time with most scripts having fully attempted answers.

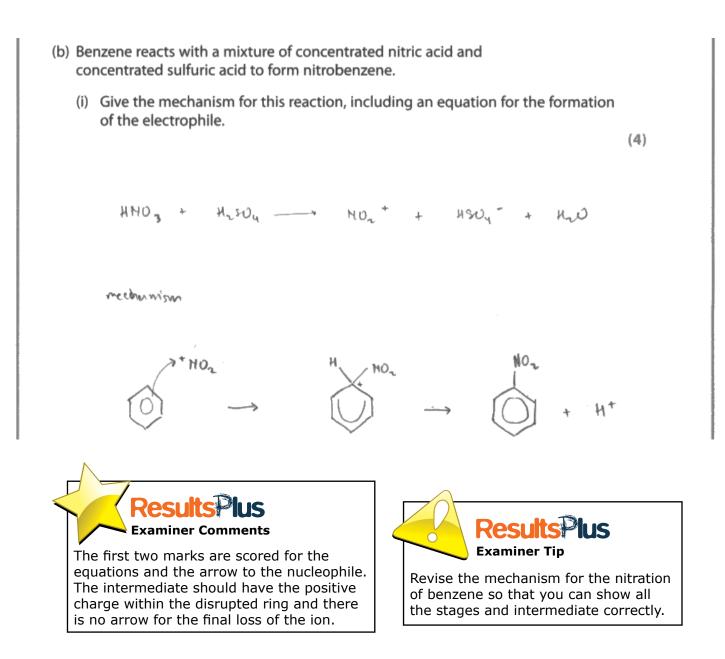

The mean score for the multiple-choice questions in Section A was 13.8. Questions 2, 7 and 12 were found to be the most straightforward, whilst questions 9 and 15 were found to be the most challenging.


Knowledge of organic reactions was good and the organic mechanism was very well known.

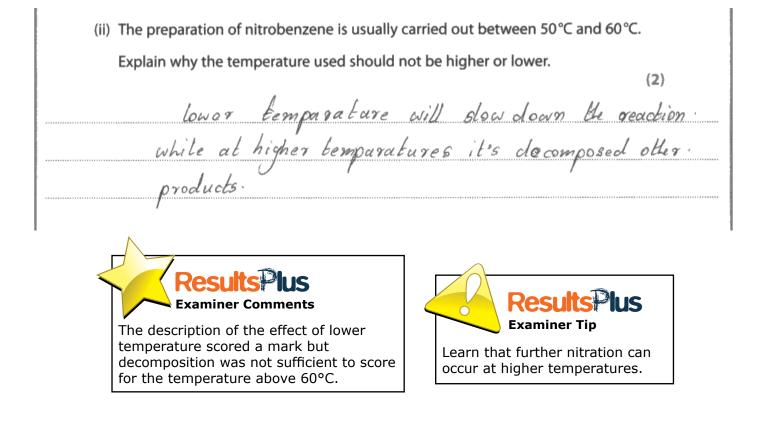
Some of the work shown in the numerical questions was excellent, but in some cases calculations were difficult to follow as candidates gave no written explanation of their numbers. This was particularly noticeable on the long calculation in question 20d where the large number of steps required careful consideration.


Question 19 (a)

There were many excellent answers to this question, with most candidates giving answers concerning the equal carbon-carbon bond lengths in benzene, the reaction by electrophilic substitution rather than electrophilic addition and explaining the structure using enthalpy of hydrogenation. Some candidates lost marks by inadequate explanations, for example using 'lower' when they should have said 'less exothermic'. There were quite a number of candidates who used the 'enthalpy of hydration' when they meant 'hydrogenation'.

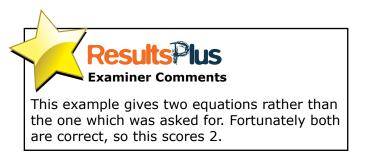


This is a typical example where the term 'enthalpy of hydration' was incorrectly used as the data is perfect for an answer concerning hydrogenation. The other two points were worthy of credit so this scored 2 marks. Check your work to make sure that you have used the correct enthalpy change.


Question 19 (b)(i)

The mechanism in this question is very well known and there were many excellent answers. Some marks were lost by missing signs in the equation and for poorly drawn intermediates with inaccurate horseshoes showing the disrupted ring of electrons.

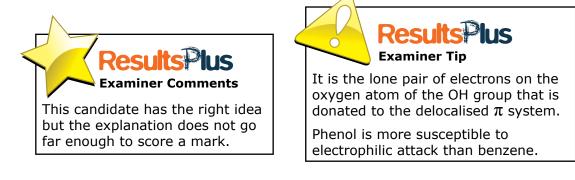
Question 19 (b)(ii)


This question was answered well overall although some candidates said the reaction would stop at a lower temperature, rather than become too slow. Others thought that the product would decompose at a higher temperature.

Question 19 (c)(i)

This question required a correct organic product to be identified in an equation for the first mark and then the rest of the equation to balance for the second. The first mark was commonly scored, but candidates found balancing the equation much more difficult as they were not aware that HBr was the second product.

*(ii) Explain why phenol reacts with bromine under much milder conditions than those required for the reaction between benzene and bromine. (2)				
The 100 off group in phenol donates its electrons to the				
delocalised T system increasing the electron density of-				
the ring and making it more susceptible to attack				
requiring milder conditions. Benzene does not have				
off group so requires triging conditions.				
Results Pus Examiner Comments A typical example of a candidate who knew the structure of the organic product, but did not produce a balanced equation as 3HBr is missing from the product side. This response scored 1 mark.				
The lone pair of electrons from oxygen is added				
to the ring of delocalised electrons in the benzene. This				
increases the charge density of the system and makes				
it more susceptible to reactions. The phenol is				
more reactive than benzene and so doesn't need				
harsher conditions.				

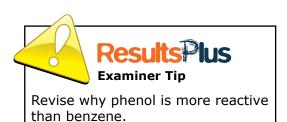


If you give more than one answer, check to make sure they are all correct as a mistake in one will lose the marks.

Question 19 (c)(ii)

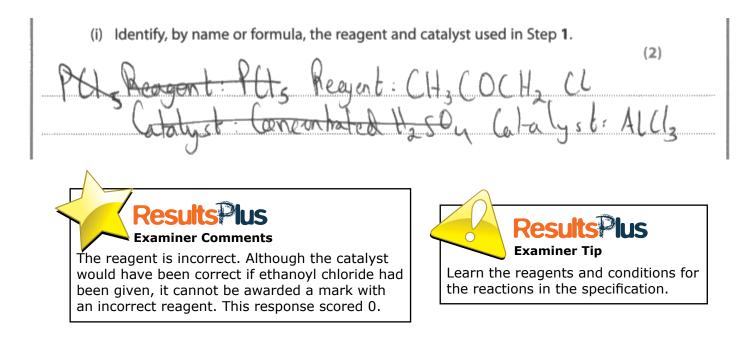
Candidates clearly had a very good understanding of the chemistry in this question, with some excellent answers seen. However, there was quite a variety in the accuracy with which this was expressed. Candidates needed to be really precise in their descriptions of both the electrons and the increase in reactivity. Marks were lost on occasion through insufficient detail in the description of which electrons were being incorporated into the delocalised system of the benzene ring. It had to be clearly stated that these were a lone pair of electrons from the oxygen atom. There was also sometimes a lack of clarity about the nature of the increased reactivity, which required a description of either the susceptibility of the benzene ring to electrophilic attack or the increasing ability of phenol to act as a nucleophile.

*(ii) Explain why phenol reacts with bromine under much milder conditions than those required for the reaction between benzene and bromine.
(2)
The 100 off group in phenol donates its electrons to the
The 100 off group in phenol donates its electrons to the delocalised The system increasing the electron density of-
the ring and making it more susceptible to attack
requiring milder conditions. Benzene does not have
off group so requires toring conditions.
\wedge



*(ii) Explain why <u>phenol</u> reacts with bromine under much milder conditions than those required for the reaction between <u>benzene and bromine</u>.

{2} The lone pair of elections from oxygen is added ring of delocalised electrons in the benzene. This to the increases the charge density of the system and makes more susceptible to reactions. The phenol i's .t than benzene and so doesn't need more reactive harsher conditions.


This example had a very nice description of the delocalisation of the lone pair of electrons into the benzene ring delocalised system, but the resulting increase in reactivity is not clearly described as making phenol more susceptible to electrophilic attack. This response scored 1 mark.

10 IAL Chemistry WCH05 01

Question 19 (d)(i)

When the reagent was identified in this question, the catalyst was very often correctly recalled as well. The most common incorrect reagents were propanoyl chloride, chloroethane and chloropropanone, CH_3COCH_2CI .

Question 19 (d)(ii)

The majority of candidates drew a correct structure which identified Compound X as 1-phenylethanol.

Question 19 (d)(iii)

The majority of candidates identified the reagent as lithium tetrahydridoaluminate(III). Sodium tetrahydridoborate(III) was also seen quite commonly.

Question 19 (d)(iv)

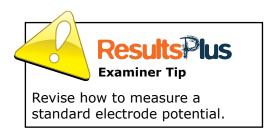
Question Introduction

One of the most common incorrect answers here was hydrochloric acid. This is only suitable for the substitution of an -OH group in a tertiary alcohol to form a chloroalkane. For a secondary alcohol another reagent, for example, phosphorus(V) chloride, is required.

Question 20 (a)

The vast majority of students selected the correct values to complete the table.

Question 20 (b)


There were some very good answers to this question, showing that candidates had a clear understanding of the measurement of a standard electrode potential. Common incorrect answers included the use of manganese as the electrode and just stating one of the ions in the solution.

Identify, by name or formula, the substances needed in the salt bridge and the right-hand half-cell to measure the standard electrode potential.

The measurement is made at 298 K and 1 atm. State the other essential condition for solution **C**.

A	Salt bridge containing a solu	ition of kNO3
		platinhm
с	Solution containing	1 moldm ³ mn ^{3†} and I moldm ³ mn ^{2†}
	Essential condition	298 k and latm,

(4)

	Identify, by name or formula, the substances needed in the salt bridge and the right-hand half-cell to measure the standard electrode potential.
	The measurement is made at 298 K and 1 atm. State the other essential condition for solution C .
	(4)
A	Salt bridge containing a solution of filter paper dipped in nitric acid.
B	Electrode made of Manganese.
c	Solution containing Mn ²⁺ caq)
	Essential condition $(1moldm^3)$
	ResultsPlus
	Examiner Comments

This correct answer scored 4 marks and shows the expected potassium nitrate solution and platinum electrode. The temperature and pressure are given in the question but the essential condition for the concentration was given with solution C and still scored a mark. There is no need to repeat the conditions given in the question.

Question 20 (c)

Many candidates could work out the overall ionic equation for the reaction although some did not cancel the electrons, H⁺ ions or water molecules. Some candidates did not read the question carefully and they selected an incorrect half-equation for the manganese ions. The majority of candidates scored a mark for calculating E_{cell} for the half-equations they used.

(c) Manganate(VII) ions, MnO₄, can be made by oxidizing manganese(II) ions with bismuthate(V) ions, BiO₃, in acid solution. (i) Use the information in (a) to write the overall ionic equation for this reaction. State symbols are not required. (2)2MnO42 + BiO3 + 6Ht = Bi 3+ + 31+0 + 2MnO4 (ii) Hence calculate E_{cell}^{\ominus} for this reaction. Include a sign and units in your answer. (1)-0.56 + 1.60 = + 1.04 V**Examiner Comments** Res This candidate has chosen incorrect manganese ions for the synthesis of the **Examiner Tip** manganate(VII) ions and consequently Read the question carefully and check that cannot score any marks in part (i). In part you have chosen the correct half-equations. (ii) however, they have correctly calculated their value for that reaction, giving a sign and units, and so score this mark.

(i) Use the information in (a) to write the overall ionic equation for this reaction. State symbols are not required.

 $M_{n}^{24} + 4H_{5}O \rightarrow M_{n}O_{4}^{-} + 8H^{4} + 5e^{-} \qquad E^{6} = -1.51V \qquad (2)$ $BiO_{3}^{-} + bH^{+} + 2e^{-} \rightarrow Bi^{3+} + 3H_{2}O \qquad E^{6} = +1.bOV$ $2Mn^{2+} + 8H_{2}^{-}O + 5BiO_{3}^{-} + \frac{14}{3}OH^{+} \rightarrow 2MnO_{4}^{-} + \frac{1}{3}bH^{+} + 5Bi^{3+} + \frac{1}{3}SH_{5}O$ $\Rightarrow 2Mn^{2+} + 5BiO_{3}^{-} + 14H^{+} \rightarrow 2MnO_{4}^{-} + 5Bi^{3+} + 7H_{5}O$

(ii) Hence calculate E_{cell}^{\ominus} for this reaction. Include a sign and units in your answer.

(1)

Results La Results Res

Results Plus Examiner Tip Remember to cancel the electrons and any H⁺ ions or H₂O molecules that are on both sides of the equation.

Question 20 (d)

This question required a large number of mathematical operations to be carried out successfully to score full marks. For each of the two titrations, the number of moles of manganate(VII) ions was calculated and then this was converted into the mass of iron in the original solution by multiplying by 5 to account for stoichiometry, by 20 to convert 25 cm³ into the full 500 cm³ and by the relative atomic mass of iron. Most candidates were able to make a start on the calculation and many excellent answers were seen which achieved full marks. It was often difficult to decipher, however, exactly what was being calculated. A structured and clearly labelled calculation allows examiners to award marks where errors have been made.

*(d) Iron(II) ions in solution are oxidized by the air to iron(III) ions. The amounts of iron(II) and iron(III) ions in solution can be found by using titrations with acidified potassium manganate(VII) which only reacts with the iron(II) ions. $MnO_4^- + 5Fe^{2+} + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O_4^-$ Reaction 25.0 cm³ portions of a solution A, containing a mixture of iron(II) and iron(III) ions, were acidified and titrated with potassium manganate(VII) solution of concentration 0.0195 mol dm⁻³. The mean titre was 16.80 cm³. About 150 cm³ of solution A was reacted with excess zinc, which reduced the iron(III) ions to iron(II) ions. The excess zinc was filtered off. Peartin 25.0 cm³ portions of this reduced solution, which contained iron(II) ions but no iron(III) ions were acidified and titrated with potassium manganate(VII) solution of concentration 0.0195 mol dm⁻³. The mean titre was 18.20 cm³. Calculate the mass of iron(II) ions and the mass of iron(III) ions in 500 cm³ of the original solution A. (5) Reaction 1 Moles of $k Hn^{0} = \frac{16.8}{1000} \times 0.0195$ = (1.000 3276 mol = 0.03276 mol = 0.0003276 mol peaction 2 = 0.0003549 mol 500 cm3 Moles of fe^{3t} in 500 cm³ = 0.21294 - 0.03276 = 0.18018 Mass of Fe2+ = (0.21294) (55.8) = 11.99 Mass of Fe3+ = (0.18018)(55.8) = 10.19

ResultsPlus

Examiner Comments

Here is an example of where 150 cm³ of solution caused the candidates to multiply by 6, which was not correct. The candidate has not used this answer later in the calculation, however, so it was not penalised. At the bottom a subtraction has been done, but this is of the number of moles of manganate(VII) ions in the original titrations. This has been multiplied by the atomic mass of iron. The answers are one hundredth of that expected as the candidate has not multiplied by 5 to convert manganate(VII) ions to iron(II) ions or by 20 to give the number of moles in the original 500 cm³ solution. Consequently this scored 3 marks.

Clearly label your calculations. It will help if you become confused part way through the calculation and allow examiners to see how you came to your final answer and award marks for correct chemistry.

-----> fe2+ $= 0.0195 \times \frac{18.2}{1000} = 4.08/750(100-400)$ n reduced m 25cm3 3.55 X10-9 2.13X10-3 MD) * ANOTAX6 = 213X10-3 MD) N Feet m reduced Southton m 1500m³ $Fe^{2+}m = 0.0195 \times \frac{16.8}{1000} = 3.28 \times 10^{4} mol$ NFezt m = 3,55×10⁻¹ - 3,28×10⁻⁴ = 2,74×10⁻⁵ AUDI of fe3+ change m no. of mof = 3,55110-9x 55,8 fet = m1089 M=2.74×105×55.8 = 1.53×10-39 moles (Total for Question 20 = 13 marks

Results Plus Examiner Comments

This example is neatly laid out, with some explanation of the calculation. The labelling of the reactions as 1 and 2 was helpful. The method is broadly correct with a final subtraction to give the masses of the two iron ions, but the answer is not correct. When calculating the number of moles of iron(II) in reaction 2 the candidate has multiplied by 5 and 20 correctly, but has also multiplied by 6, presumably because about 150 cm³ of solution was being used at this point. This mistake was easy to spot in the calculation, and it was quite a common one. The candidate then does a correct subtraction given their incorrect numbers of moles, and multiplies by the atomic mass correctly. As a result this scored 4 marks out of 5.

Explain your working so that you can still be awarded some marks, even if your final answer is wrong.

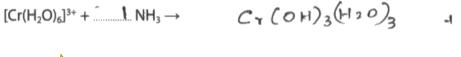
Question 21 (a)

Most candidates were able to write something about the definition of a transition element and score the first mark. It was less common for them to appreciate that scandium forms only one ion, Sc^{3+} , which has no electrons in 3d-orbitals and therefore is not a transition element.

21 Chromium is in the d-block of the Periodic Table and it is a transition metal.					
(a) Scandium is also in the d-block of the Periodic Table but it is not a transition met	al.				
Explain, by giving any relevant electronic configurations, why scandium is not a transition metal.					
	(3)				
Scandium has det electron configuration [Ar] 3d' 9s2. The	only				
ion it forms is Sc3+ which has electron configuration EAR [Ar],				
& Soits & ion doesn't have a particulty filled 3d orbital	as all				
of its 3d orbitals are empty. For an element to be a transit	tion metal				
they must from be able to form an ion with a partially +	Gled				
3d onbital.					

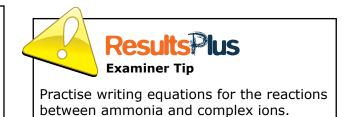
This answer gained all 3 marks with a good description of the electronic structure of the scandium ion and a statement defining a transition metal.

Make sure that you use correct terminology. Some candidates confused orbitals with sub-shells and shells.


Question 21 (b)

This question was answered much less well than similar questions on previous papers involving hydroxide ions. The use of ammonia and the formation of ammonium ions seemed to confuse some candidates, although a good number knew the structure of the chromium(III) hydroxide formed.

(b) When a few drops of aqueous ammonia are added to an aqueous solution of chromium(III) ions, a green precipitate of chromium(III) hydroxide is formed.


Complete the ionic equation for this reaction. State symbols are not required.

(2)

This typical example gives the correct product but the candidate is clearly unsure about the involvement of the ammonia, so the equation is not correct.

NH3

Question 21 (c)

There were a significant number of fully correct answers, with candidates confidently identifying the oxidation states in the chromium ions. The first reaction was sometimes, nevertheless, described as not a redox reaction as it was only a reduction of chromium(VI) to chromium(III).

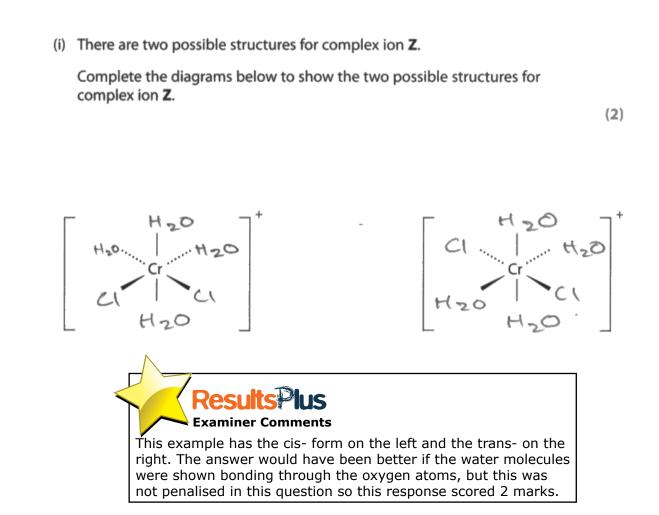
(c) Explain, in terms of oxidation numbers of chromium, whether two reactions are redox.	r or not each of these
3^{+} $Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+} \rightarrow 2Cr^{3+} + 7H_2O + 6Fe^{3+}$	Reaction 1
$2\overleftarrow{C}FO_4^{2-} + 2H^+ \rightarrow \overleftarrow{C}F_2O_7^{2-} + H_2O$	Reaction 2
ân	(2)
Reaction 1 is not redox since ~Cr	202 Cr is +6 &
in Cr ³⁺ Cr is +3.	· · · · · · · · · · · · · · · · · · ·
luit én Reaction 2 the charge o	6 CP slays lke
some -> CrOZ Cr is +6 & is	
So Reaction 2 és redox.	
	suitsPlus

С

SUILSFIUS **Examiner Comments** This candidate has identified all the relevant oxidation numbers but has the redox reactions incorrect so scores 0.

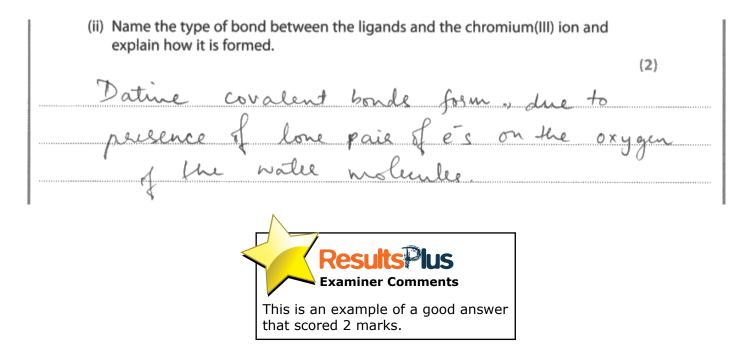
There is always a change in oxidation number during a redox reaction. The oxidation number of an element increases during oxidation and decreases during reduction.

Examiner Tip


(c) Explain, in terms of oxidation numbers of chromium, whether or not each of these two reactions are redox. $Cr_{2}O_{7}^{2-}$ + 14H⁺ + 6Fe²⁺ \rightarrow 2Cr³⁺ + 7H₂O + 6Fe³⁺ **Reaction 1** $2CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$ **Reaction 2** (2)Reaction 1 is a redox, since chromium is reduced from to to to Reaction 2 is not, oxidation number stays the same esuits **Examiner Comments Examiner Tip** Unfortunately in this example only the mark for reaction 1 was scored. The question specifically When you are asked for oxidation asks for the use of oxidation numbers in the numbers, you must give all of them. explanation and here the candidate has said You can write the oxidation numbers they stay the same but has not demonstrated

under the species in the equations.

they know what they are.


Question 21 (d)(i)

There were a good number of correct answers to this question, but often candidates gave two equivalent ions, either both the cis- form with the two chloride ligands at 90° or both the trans- form with the chloride ligands 180° apart.

Question 21 (d)(ii)

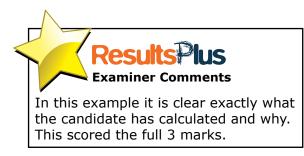
Most candidates knew the bonds were dative covalent and very many of them could describe the origin of the lone pair of electrons on the ligand. However, a few suggested the electrons came from the chromium ion and some contradicted the named bond by describing covalent bonds or ionic bonds.

Question 21 (d)(iii)

As with the calculation in Q20(d), it was common to see calculations where it was not clear what the candidate was attempting to do. Candidates should be encouraged to explain all the steps in their working. Some candidates correctly calculated the ratio of Cr^{3+} : Cl^- as 1 : 2 but they then thought that there were two chloride ligands in the complex ion, rather than as free chloride ions in the solution.

(iii) The formula of the complex ion present in the solution is found by adding aqueous silver nitrate to the solution. This only reacts with the free chloride ions to form a precipitate of silver chloride.

 $Ag^+(aq) + CI^-(aq) \rightarrow AgCI(s)$

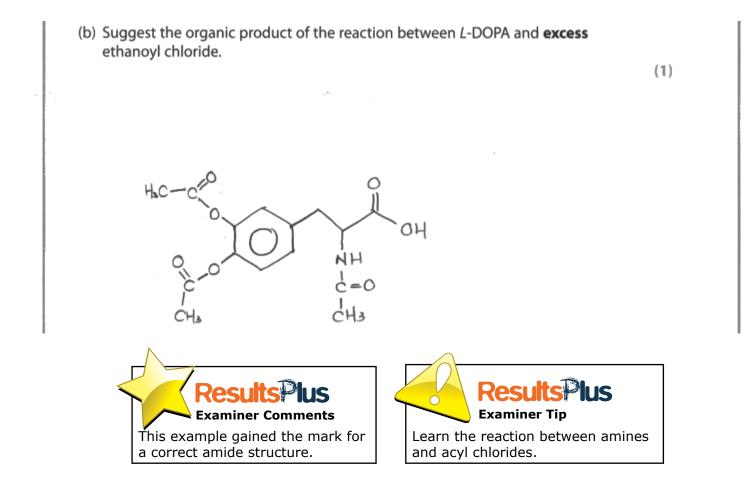

The precipitate is then filtered, washed, dried and weighed.

In an experiment, 0.012 mol of one of the forms of chromium(III) chloride was used and 3.44g of silver chloride was formed.

Deduce the formula of the complex ion. You must show your working.

moles	of Aga = 3.44
	107.9+35.5
	= 0.024 mol
moler	
ratio	chromium chloride : Agu
	0.012 : 0.024
	1:2
2 mal A	get formed for 1 chromium chronicle(111)

.: [Cr Cl (H2O)s]²⁺ as there are 2 free CF ions to react with excess silver nitrate to form 2AgCL.


(3)

Question 22 (a)

It was disappointing that only just over one third of candidates could give the correct molecular formula for *L*-DOPA. Candidates would benefit from more practice at working out molecular formulae from skeletal formulae.

Question 22 (b)

Relatively few candidates were able to score the mark on this question. Some only produced esters on the phenol groups in *L*-DOPA, whilst others converted the carboxylic acid group into an acid anhydride, which would not work directly. The specification expects candidates to know that amines react with ethanoyl chloride, although the reaction between phenol and ethanoyl chloride is not expected.

Question 22 (c)

There were a number of ways of scoring marks in this question. Many candidates used sodium carbonate and identified the carboxylic acid group by seeing effervescence. Some scored one mark for using phosphorus(V) chloride and observing misty fumes as this reaction occurs with any OH group and not just carboxylic acids. It was possible to add an alcohol and identify the acid by the presence of the fruity smell of an ester, but quite a few candidates who did this forgot that an acid catalyst is required.

Question 22 (d)

Many candidates were confused by the structure and drew polymer sections which were difficult to draw and decipher. The best answers had a diagram centred around the amide bridge which must be present as the question asks for two repeat units of the structure of a polyamide. Despite this a number of candidates tried to make a polyester using the phenol groups. Some candidates included an extra oxygen atom in the amide group. Most candidates would benefit from more practice at drawing structures of polyamides and polyesters.

(d) Molecules of *L*-DOPA can polymerize to form a polyamide by condensation.

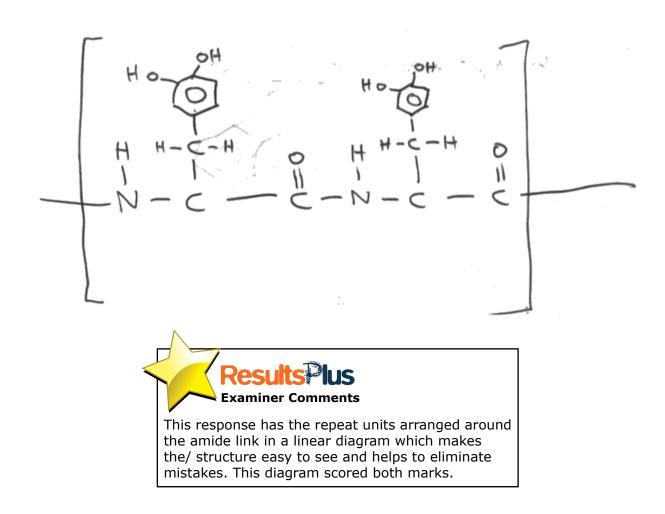

Draw two repeat units of the polyamide formed from L-DOPA.

 Image: With Structure has been arranged around the amide group in a linear diagram but unfortunately the candidate has missed an -H from the carbons at the bottom of the side chain, losing 1 of the 2 marks.

(2)

(d) Molecules of *L*-DOPA can polymerize to form a polyamide by condensation.

Draw two repeat units of the polyamide formed from L-DOPA.

Question 23 (a)(i)

This is a much practised question which is quite common in one form or another on WCH05 papers. Candidates had clearly prepared well for it, and many scored full marks. There are a number of errors candidates should try to avoid, including the incorrect use of splitting of a single d-orbital and the emission of light as the electron returns to the lower of the two sets of d-orbitals.

(a) (i) Explain why complex ions containing chr	omium(III) ions are coloured. (4)
When ligande attach to of cristion droebital to two different share to the complex, the the light more to the	the Cr ³⁺ ions, they split the energy levels. When light is electrons absorb energy from higher energy level from
the lower energy leve not absorbed is seen is not absorbed is seen absorbed.	as colonnes by ne which
Results Plus Examiner Comments This example scored 3 marks. The answer is almost entirely correct with a good description of the process, except that the candidate has split a singular d-orbital into two groups.	Results Less Examiner Tip It is easier to discuss the d-subshell rather than orbitals to avoid errors such as this.

Question 23 (a)(ii)

There were many correct responses here suggesting that the d-subshell had been split to different extents. Other possible answers included that chromium ions replaced aluminium ions in rubies (to give it a red colour) or that other metal ions might also be present to give the different colours

(ii) Sapphires have the same type of structure as rubies. Suggest why sapphires and rubies have different colours. number of e- in their (1)bohells thereta absorb light to levent Alleren extents 2esu **Examiner Comments**

Óne way to answer the question was to suggest that different splittings of the d-subshell or different metal ions would cause different colours. This response uses the different number of electrons in the d-subshell, which could be different metal ions or a different oxidation state of the same metal, as a source of the difference in colour, and was awarded 1 mark.

Question 23 (b)

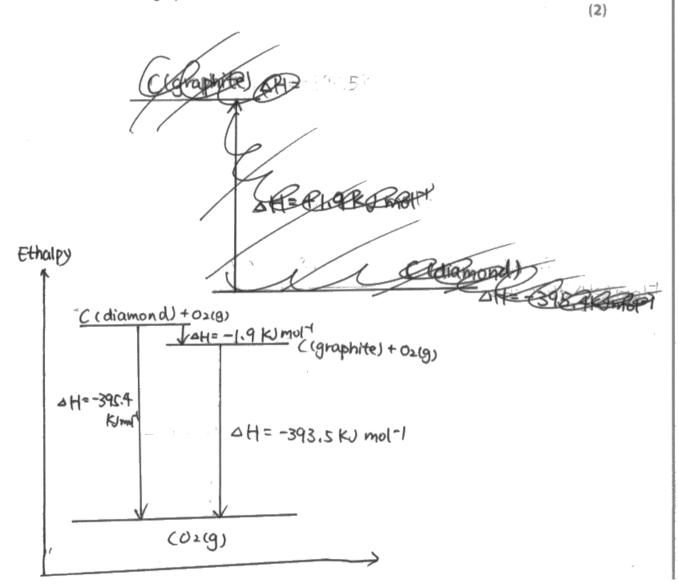
It was disappointing that there was a lack of precision in many answers. Many candidates referred to intermolecular forces in diamond or could not describe the interaction between the layers in graphite. The layers were often referred to as being held together by delocalised electrons, confusing the structure with a metallic one. Candidates should be aware that AS content can be tested in A2 papers.

*(b)	*(b) Carbon exists as diamond and graphite. Explain, in terms of <u>structu</u> re and bonding, why diamond is much harder than graphite.						
\rightarrow	Both	diamond	and	grophite	has	Strong	(3) (ovalent
h h h h h h h d 4 4 4 4 4 4 4 4 4 4 4 4	bond	s between	adja	icent m	polecules.	J	
7	graph	ite has	Weak	intermo	lecular	forces	between
****	the la	iyers			****		
->	M	diamond	1 (<u>arbon</u>	atom	is atta	ach to
4 other Carbon atoms							

This example describes the strong covalent bonds within the diamond structure and compares them to the weak intermolecular forces between the layers in graphite, although it would have been better to have identified the type of intermolecular force. The answer is rather spoiled, however, by referring to strong covalent bonds between adjacent molecules in diamond. This example was awarded 2 marks.

Revise structure and bonding thoroughly as questions involving this topic can be tested in AS and A2 papers.

Question 23 (c)(i)


Candidates quite often scored the first mark in this question. They were much more unsure about enthalpy level diagrams, perhaps confused by having to do two things in the same question and so did not often score the second mark. Candidates would benefit from more practice in drawing enthalpy level diagrams.

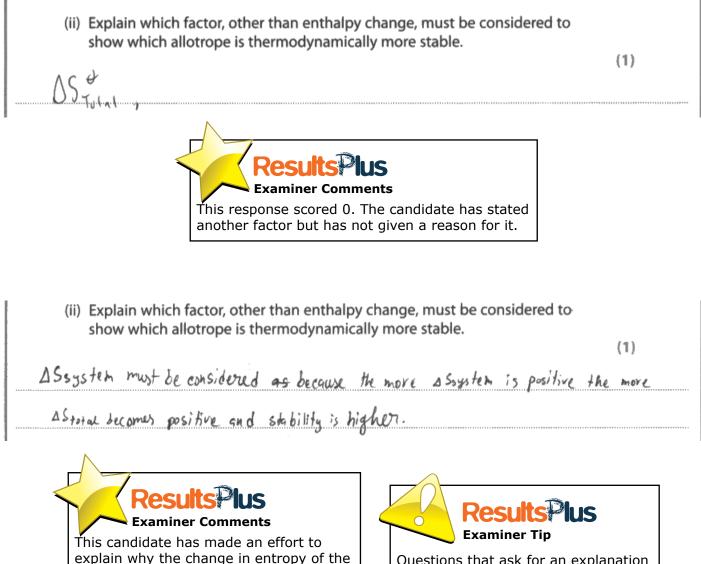
(c) (i) The standard enthalpy changes of combustion for diamond and graphite are shown below.

C(diamond) + $O_2(g) \rightarrow CO_2(g) \Delta H_c^{\ominus} = -395.4 \text{ kJ mol}^{-1}$

C(graphite) + $O_2(g) \rightarrow CO_2(g) \Delta H_c^{\ominus} = -393.5 \text{ kJ mol}^{-1}$

Calculate the enthalpy change for the conversion of diamond to graphite. Use your answer to draw an enthalpy level diagram for the combustion of diamond and graphite.

This answer does not have an explicit calculation of the energy change but the solution is present on the enthalpy level diagram and is correct, so both marks were awarded.



Practise drawing enthalpy level diagrams.

In questions requiring more than one thing to be done it is a good idea to tick them off to make sure you have answered all the points.

Question 23 (c)(ii)

The need to explain the factor required was missed by many candidates in this question, with many simply stating a factor. This was most often either change in entropy of the system or total entropy change.

Questions that ask for an explanation require a reason for your answer.

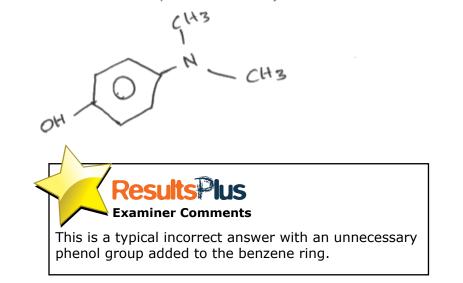
system is required and scored the mark.

Question 23 (d)(i)

The reagents required for this transformation were well known, with all the allowable options seen. The conditions were not quite so well understood. Candidates should aim to state a clear range or a value rather than just 'less than' or 'more than', as this can be confused. Some candidates stated an acceptable low temperature but then negated the mark by stating heat under reflux as well.

(i) State the reagents and condition needed f	for Step 1. (2)
Nitrous acid.	
Ion temperature	
Results Plus Examiner Comments Nitrous acid is acceptable so scores 1 mark, but a low temperature is not sufficient for the second mark.	Results Plus Examiner Tip State a temperature or a range of temperatures for the condition.
(i) State the reagents and condition needed Temp. of Alexandria and 10° c	l for Step 1. (2)
NaNoz & HCI to make HI	<u>VO.</u>

Examiner Comments


temperature range and so scores 2 marks.

This candidate uses the very top of the allowable

Question 23 (d)(ii)

This structure was well identified by many candidates, but some added extra functionality in to the benzene which lost them the mark.

(ii) Step **2** involves a reaction which is similar to the reaction of diazonium ions with phenol. Suggest the structure of the organic compound which reacts with the diazonium ion in Step **2** to form methyl red.

(1)

Question 23 (d)(iii)

The titration of a strong acid with either a strong or a weak alkali scored 1 mark, provided some justification was attempted. Many candidates were able to quote data from the Data Booklet, including the ranges over which the indicator changed colour, or the value of pK_{in} , but then some did not use these values to justify their choice.

(iii) Use information from page 19 of the Data Booklet to suggest the ty acid-alkali titration for which methyl red indicator would be most su Justify your answer.	
	(2)
pH range for methyl red: 4.2-6.3 strong acid titrated against weak vertical second hithin the vertical second	
strong acid titrated against weak	base
vertical sec pH range within the vertical second	tion of
the titration graph, most of the vertical section	on in acid
J	condition
ResultsPlus	
Examiner Comments	
This candidate scored 2 marks with a justification for their choice based on the change of colour	
with the vertical portion of the titration curve.	

Question 23 (e)(i)

This reaction had a number of possible correct equations and some options for the type of reaction, although the use of the word ligand was important. Candidates managed to score well for the type of reaction but the equation was often poorly attempted. Some candidates would benefit from more practice at writing equations for ligand exchange reactions.

- (e) Prussian Blue contains the [Fe(CN)₆]⁴⁻ ion.
 - (i) The [Fe(CN)₆]⁴⁻ ion is formed when aqueous potassium cyanide is added to an aqueous solution containing Fe²⁺ ions.

Write the equation and state the type of reaction taking place when $[Fe(CN)_6]^{4-}$ is formed in this way.

(2)

(Fe(H20)6)2+ ~> (Fe((N)6)4-+6+20. Ligand exchange. Type of reaction... **Examiner Comments**

Unfortunately this candidate has forgotten to include the cyanide ions on the reactant side of the equation, although they correctly identified the type of reaction and scored 1 mark.

Question 23 (e)(ii)

The majority of candidates could deduce the oxidation number of the iron ions.

Paper Summary

On the basis of their performance on this paper, candidates are offered the following advice:

- Remember that AS content will be required when answering A2 question papers.
- Always read the question carefully and check that you understand what is required.
- Then, after you have written your answer, re-read the question and your answer to ensure that you have fully answered the question.
- Use correct chemical terminology in your answers.
- Organic mechanisms need to be accurately drawn: ensure that 'curly arrows' are precisely located and that all intermediate structures are correct.
- Label each step of a calculation to show clearly what you are attempting to work out.
- In multi-step calculations, don't round numbers up or down until the final step.

Grade Boundaries

Grade boundaries for this, and all other papers, can be found on the website on this link: http://www.edexcel.com/iwantto/Pages/grade-boundaries.aspx

Llywodraeth Cynulliad Cymru Welsh Assembly Government

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R 0RL.