Mark Scheme (Results)

January 2015

Pearson Edexcel International Advanced level in Chemistry (WCH05) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015
Publications Code IA040473*
All the material in this publication is copyright
(C) Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	A		1
Question Number Correct Answer Reject Mark $\mathbf{2}$ D 1			

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{4}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{5}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{6}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 8}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 9}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 0}$	B		1

Total for Section A = 20 marks

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (i)}$	Penalise omission of charge on $\mathrm{NO}_{3}{ }^{-}$only once in (a)(i) and (a)(ii) Penalise an incorrect coefficient in (a)(i) and (a)(ii) once only $\mathrm{Cu}^{2+}+2 \mathrm{e}^{(-)} \rightarrow \mathrm{Cu} \quad\left(\mathrm{E}^{\ominus}=+0.34 \mathrm{~V}\right)$ $2 \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{(-)}$ $\rightarrow \mathrm{N}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O} \quad$ ($\left.\mathrm{E}^{\ominus}=+0.80 \mathrm{~V}\right)$ ALLOW multiples equations reversed reversible $/$ double-headed arrows 2 NO for $\mathrm{N}_{2} \mathrm{O}_{4}$ IGNORE E^{\ominus} at this point State symbols even if incorrect	Alternative nitrate(V) reductions	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (i i)}$	$\mathrm{Cu}+2 \mathrm{NO}_{3}{ }^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{N}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ ALLOW multiples reversible / double-headed arrows $2 \mathrm{NO}_{2}$ for $\mathrm{N}_{2} \mathrm{O}_{4}$ No TE for equation from incorrect half- equations $\left.E_{\text {cell }}^{\ominus}=+0.80-0.34\right)=(+) 0.46(\mathrm{~V}) \quad$ (1) TE for $\mathrm{E}_{\text {cell }}$ value on incorrect selection of half-equations electrons IGNORE State symbols even if incorrect	2	

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 1 (a) (i i i)}$	Brown fumes / gas OR Green solution ALLOW (pale) yellow fumes / gas OR effervescence / bubbling / fizzing OR blue solution IGNORE modifiers of blue IGNORE References to copper dissolving	Colourless gas bubbles	1

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 1 (b) (i)}$	In (b)(i) and (b)(ii) penalise (correct) non-ionic equations once.	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{KI} \rightarrow$ $\mathrm{CuI}+1 / 2 \mathrm{I}_{2}+$ $2 \mathrm{KNO}_{3}$	1
$\mathrm{Cu}^{2+}+2 \mathrm{I}^{-} \rightarrow \mathrm{CuI}+1 / 2 \mathrm{I}_{2}$			
$\mathrm{OR}^{2+}+4 \mathrm{I}^{-} \rightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{I}_{2}$			
$2 \mathrm{Cu}^{2+}$			
	$\mathrm{ALLOW}^{\mathrm{Cu}^{2+}+\mathrm{I}^{-} \rightarrow \mathrm{Cu}^{+}+1 / 2 \mathrm{I}_{2}}$ $\mathrm{OR}^{2+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Cu}^{+}+\mathrm{I}_{2}$ $2 \mathrm{Cu}^{2+}$ OR Multiples IGNORE State symbols even if incorrect		

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 1 (b) (i i)}$	$\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$	$2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2}$ $\rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{KI}$	1
	OR Multiples		

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 1 (b) (i i i)}$	$2 \mathrm{~mol} \mathrm{Cu}^{2+}$ forms 1 mol I with $2 \mathrm{~mol}_{2} \mathrm{O}_{3}{ }^{2-}$ OR Multiples in this explanation OR Any clear explanation in words No TE on incorrect equations in (b)(i) and (b)ii)	Just re-writing the equations.	1

Question Number	Acceptable Answer	Reject	Mark
21(b)(iv)	\% copper in rivet brass $\begin{align*} & =100 \times \text { ans }^{* * *} / 1.35 \\ & =62.591 / 62.6 \% \tag{1} \end{align*}$ Correct answer with no working scores 4 If incorrect ratio used then max 3 Answers >100\% max 3 IGNORE SF except one Do not penalise correct intermediate rounding		4

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 1 (c) (i)}$	More iodine would be formed (1)	2	
	(Titre / volume of thiosulfate would be larger) so (calculated) \% copper would be higher (1) Second mark dependent on first		

Question Number	Acceptable Answer	Reject	Mark
21(c)(ii)	MP1 and MP2 are stand alone Marking Point 1 Percentage difference in the titres is (approximately) $100 \times 0.25 / 26.35$ $\begin{equation*} =0.94877 / 0.95 \% \tag{1} \end{equation*}$ Marking Point 2 This MP should only be awarded if the candidate appreciates that the addition of urea improves experimental accuracy. The percentage error in the burette reading is ($\pm) 100 \times 0.1 / 26.35$ $=(\pm) 0.3795 \%$ and so change is a significant improvement OR Difference in titres is greater than uncertainty / error in burette reading OR Calculation any other specific apparatus uncertainty and use of urea has a significant effect OR Error without urea is significant when compared with the typical apparatus uncertainty (so the addition of urea improves accuracy)	1.9% Total apparatus error greater than effect of urea	2

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 1 (d) (i)}$	(When the electronic structure is built up according to the aufbau rules) the last electron goes into the (3)d-subshell / one of the d-orbitals / the d-orbitals	Just 'electrons present in (3)d-subshell outer / valence electrons are in d- subshell shell for subshell	1

Question Number	Acceptable Answer	Reject	Mark
21(d)(ii)	copper forms (one or more stable) ions having partially filled (3)d orbitals / subshell (but zinc does not)	3d shell	1
	OR Zinc does not form an ion with a partially does)	Just 'zinc only forms an ion with a full 3d subshell'	

Question Number	Acceptable Answer	Reject	Mark
21(d)*(ii)	Penalise use of orbital (singular) once only in (d)(iii) and (d)(iv) (3)d orbitals / (3)d subshell split (by the attached ligands) Electrons are promoted (from lower to higher energy d orbital(s) / levels) OR Electrons move from lower to higher energy d orbital(s) / levels ALLOW d-d transitions occur Absorbing energy /photons of a certain frequency (in the visible region) ALLOW Absorbing light Reflected / transmitted / remaining light is coloured / yellow / in the visible region ALLOW Complementary colour seen Reflected / transmitted / remaining light / frequency is seen No mention of (3)d then max 3 IGNORE reference to electrons relaxing / dropping to the ground state	Orbital / shell is split d-d splitting emitted	4

Question Number	Acceptable Answer	Reject	Mark
21(d)(iv)	(3)d subshell / (all) (3)d orbitals of zinc(II) are full (so electron transitions are not possible) Ignore No unpaired electrons	(3)d orbital full Full 3d subshell is not split	1

Total for Question 21 = 23 marks

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 2 (a) (i)}$	H—C+=0 OR non-displayed structure (with atoms in any order)	$\mathrm{HCOCl} /$ methanoyl chloride	1
	ALLOW Positive charge on any part of the structure OR Outside bracketed structure / formula		

| Question
 Number | Acceptable Answer | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 2}$ (a)(ii) | | | |

Question Number	Acceptable Answer	Reject	Mark
22(a)(ii)	hydrogen cyanide / HCN potassium (or sodium) cyanide / KCN / NaCN ignore $\mathrm{pH}=8$ OR KCN / NaCN $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{HCl}$ ignore concentrations and $\mathrm{pH}=8$ OR HCN $\begin{equation*} \mathrm{NaOH} / \mathrm{pH}=8 \tag{1} \end{equation*}$ ALLOW names or formula throughout	NaOH $\begin{equation*} \mathrm{NaOH} \tag{1} \end{equation*}$	2

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 2 (a) (i v)}$	Hydrochloric acid / HCl(aq)		1
	Sulfuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ OR sodium hydroxide / NaOH / potassium hydroxide / KOH and followed by any strong acid / H^{+}		
ALLOW $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{SO}_{4} /$ name or formula of any strong acid IGNORE Water / $\mathrm{H}_{2} \mathrm{O}$ Concentrated Dilute			

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 2 (b) (i)}$	The first two marks are stand alone	OH bonded to ring the wrong way around	Benzene ring
(Concentrated) sulfuric acid ALLOW Any named strong acid / correct formula with or without state symbol IGNORE Dilute / water (Heat under) reflux Condition mark dependent on the reagent mark being awarded or near miss.	$\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$	(1)	

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 2 (b) (i i)}$	The esterification / reaction is reversible / an equilibrium (So yield is low)		1
	ALLOW Does not go to completion IGNORE References to cost/rate No TE on an incorrect reaction in (b)(i)		

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 2 (b) (i i i) ~}$	PCl_{5} reacts with both OH groups		1

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 2 (c) (i)}$		2	
	All three correct scores 2 marks Two correct from three scores 1 mark More than three circled scores max 1 mark ALLOw Any clear labelling Any ring containing only one correct carbon		

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 2 (c) (i i)}$	Any two from Only one isomer may be (more) active One isomer (or more) may have a negative effect ALLOW Side effects Different isomers have different (biochemical) properties ALLOW higher dosage required to obtain sufficient amount of active isomer (so expensive) isomers	Geometric / Itructural	2
If no other mark is scored Separation of isomers needed OR Low yield can score 1 IGNORE References to just 'cost'			

Question Number	Acceptable Answer	Reject	Mark
23(a)	$\begin{align*} & \text { Molar mass of } \mathrm{TO}_{2}=100 \times 32 / 36.82 \tag{1}\\ &=86.9093 \tag{1}\\ & \text { Molar mass of } \mathrm{T}=86.9093-32 \\ &=54.9\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \\ & \text { (hence } \mathrm{T} \text { is manganese } / \mathrm{Mn} \text {) } \tag{1} \end{align*}$ OR Amount of $\mathrm{O}\left(\right.$ in $\begin{array}{rl}100 \mathrm{~g}) & =36.82 / 16 \\ & =2.3013 \mathrm{~mol}\end{array}$ $\begin{equation*} =2.3013 \mathrm{~mol} \tag{1} \end{equation*}$ $\therefore \mathrm{mol} \mathrm{T}=1.1506$ weighs $100-36.82=63.18 \mathrm{~g}$ 1 mol T weighs 63.18/1.1506 $\begin{equation*} =54.909 \mathrm{~g} \tag{1} \end{equation*}$ (hence T is manganese / $M n$) OR Percentage of Mn 100-36.82 $\begin{equation*} =63.18 \tag{1} \end{equation*}$ Number of moles of $\mathrm{Mn}=63.18 / 54.9$ $\begin{equation*} =1.15 \tag{1} \end{equation*}$ Number of moles of oxygen $=36.82 / 16$ $=2.3$ (hence TO_{2} is MnO_{2}) ALLOW Calculations based on moles of O_{2} Correct answer with no working scores zero		3

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 3 (b) (i)}$	Molecular ion labelled in any way on the mass spectrum and Molar mass $=76\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$	1	

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 3 (c) (i)}$	IGNORE $\mathrm{H}_{2} \mathrm{O}$ ligands in c)i) \& c)ii)		2
	$\mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Mn}(\mathrm{OH})_{2}(\mathrm{~s}) \quad$ (1) Equation States ALLOW (1) use of T for Mn states mark for non-ionic equation OR for unbalanced equation with correct species		

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 3 (c) (i i)}$	$\mathrm{MnO}_{2} \cdot \mathrm{nH}_{2} \mathrm{O} \rightarrow \mathrm{MnO}_{2}+\mathrm{nH}_{2} \mathrm{O}$ OR $\mathrm{Mn}(\mathrm{OH})_{4} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{LHS}(1) \mathrm{RHS}(1)$ ALLOW use of T for Mn ALLOW for 1 mark $\mathrm{Mn}(\mathrm{OH})_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{O}$	2	

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 3 (d)}$	K^{+}		
IGNORE			
'potassium ion'	(1)	Just 'K'	2
	KMnO_{4}	(1)	
	TE on cation given for MP1		

Total for Question 23 = 12 marks Total for Section B = 51 marks

Section C

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 4 (a) (i)}$	(Both have hydrogen bonds) methylamine has stronger London / dispersion / induced dipole(-induced dipole)/ van der Waals forces (1) As it has more electrons ALLOW greater surface area	2	
	ALLOW (1) (Both have hydrogen bonds) stronger hydrogen bonds in methylamine because of electron donating effect of the methyl group \ldots makes the nitrogen lone pair more (1) available IGNORE (1) just 'hydrogen bonds stronger' If no other marks are scored then 'both molecules have hydrogen bonds and London forces' scores 1 mark		

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 4 (a) * (i i)}$	Amines form hydrogen bonds with water (molecules) As molar mass (of the amine) increases, the size / strength of the London forces/ dispersion / induced dipole(-induced dipole) / van der Waals forces (between amine molecules) increase ALLOW The size of the hydrophobic group (1) increases So the energy needed to break the London forces (of the amines) increases (becomes more and more similar to the energy released in forming hydrogen bonds) OR the nett gain in / release of energy becomes (progressively) smaller IGNORE (1) References to hydrophilic groups	3	

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 4 (a) (\text { iii) }}$	$\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{OH}^{-}$ ALLOW \rightarrow for $\rightleftharpoons \& \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+} \mathrm{OH}^{-}$ IGNORE Position of charges		1

Question Number	Acceptable Answer	Reject	Mark
24(a)(iv)	Basic strength depends on the (donation / availability of) the lone pair (of electrons on the nitrogen atom) ALLOW Basic strength depends on the ability of a nitrogen atom to accept a proton Methyl groups are electron donating (so lone pair donation increases / lone pair more available) Lone pair of (nitrogen on) phenylamine interacts with $п$ / delocalised electrons of the benzene ring (so lone pair donation decreases / lone pair less available) ALLOW Lone pair delocalised into the (benzene) ring 'Non-bonding electron pair' for lone pair	N becomes more electronegative Just `electron pair'	3
Question Number	Acceptable Answer	Reject	Mark
:---	:---	:---	:---
$\mathbf{2 4 (b) (i)}$	If neither answer refers to an electron pair then max 1 for this item Arrow 1 Movement of m electron pair / melectrons (to oxygen atom) OR Movement of a pair of electrons from the (1) double bond Arrow 2 Movement of lone pair / non-bonded pair of electrons (from the nitrogen) (to C-N bond) If neither of these marks is scored then 'each arrow shows the movement of an electron pair' scores 1 mark	(1) "breaking of the m bond"	
Question Number	Acceptable Answer	Reject	Mark
:---	:---:	:---	:---
24(b)(ii)	O^{-}		1
	$\mathrm{H}_{3} \mathrm{C}-\mathrm{C}^{-}$		
		NH_{2}^{+}	
Question Number	Acceptable Answer	Reject	Mark
:---	:---	:---	:---
$\mathbf{2 4 (b) (i i i)}$	(The electron movement shown above means that) the carbonyl carbon has a smaller (partial) positive charge than an aldehyde or ketone	ALLOW no positive charge OR carbonyl carbon is resistant to nucleophilic attack	
Question Number	Acceptable Answer	Reject	Mark
:---	:---	:---	:---
24(c)(i)	One mark for each structure with fully displayed, structural or skeletal formulae and in any orientation	2	
	Penalise lack of displayed double bonds once only ALLOW If continuation bonds added to the dimers max 1. Two fully correct polymer structures		
Question	Acceptable Answer	Reject	Mark
:---:	:---:	:---:	:---:
24(c)* ${ }^{\text {iii) }}$	Dot samples of the amino acid mixture (and known amino acids) on the plate and dip the plate in the solvent Use of ninhydrin to make amino acids visible / as a developer Compare distance travelled of mixture components and known amino acids OR Compare R_{f} with data book values The first mark may be awarded for a suitable diagram e.g. ALLOW 'Paper' or 'glass slide' for 'plate' IGNORE Omission of lid in diagram.	Amino acids dissolved in mobile phase solvent	3

Total for Section C = 19 marks
Total for paper = 90 marks

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London WC2R ORL

