## Mark Scheme (Results)

## January 2015

## Pearson Edexcel International Advanced Subsidiary in Chemistry (WCH03) Paper 01

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( a ) ( i )}$ | Ammonia / $\mathrm{NH}_{3}$ | Ammonium / $\mathrm{NH}_{4}{ }^{+}$ | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( a ) ( i i )}$ | Bromide $/ \mathrm{Br}^{-}$ | If name and formula are given both <br> must be correct | Iodide, $\mathrm{I}^{-}$, <br> Chloride, $\mathrm{Cl}^{-}$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( a ) ( i i i )}$ | Precipitate does not dissolve / no <br> change / remains | "Resolved" for <br> "dissolved" <br> Precipitate insoluble/ <br> Precipitate is partially soluble /sparingly <br> soluble <br> TE from (a)(ii) for chloride dissolves / <br> iodide does not dissolve | Precipitate <br> becomes paler/ <br> colour does not <br> change |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 1(a)(iv) | $\mathrm{NH}_{4} \mathrm{Br} / \mathrm{NH}_{4}{ }^{+} \mathrm{Br}^{-}$ <br> ALLOW correct formula even if charge missing on ion in (ii) <br> TE on incorrect halide anion or halide ion with incorrect negative charge if formula otherwise correct <br> No TE on a formula with a metal cation Ignore name even if incorrect | $\mathrm{NH}_{3} \mathrm{Br}$ | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( b ) ( i )}$ | C=C bonds absent / alkene absent | Just "double bonds <br> absent" | 1 |
|  | IGNORE <br> "it is an alkane"/ contains C-C/ It is <br> saturated/ is a saturated hydrocarbon |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( b ) ( i i )}$ | (Fumes are ) $\mathrm{HCl} /$ hydrogen chloride <br> ALLOW <br> Hydrochloric acid <br> (Formula) (-) $\mathrm{OH} / \mathrm{O}-\mathrm{H}$ <br> ALLOW <br> $\mathrm{C}-\mathrm{OH}$ | (1) | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( b ) ( i i i )}$ | Fizzing/ bubbles/ effervescence (of <br> colourless gas)/ <br> (sodium/ it) dissolves/ (sodium/ it) <br> disappears/ <br> white solid forms <br> ALLOW <br> White precipitate forms <br> Gas evolved which pops with a lighted <br> splint/ which ignites | References to <br> coloured gas or <br> coloured fumes | 1 |
| IGNORE <br> Gets warmer/ Heat is evolved/ "solution is <br> temperature rises/ vigorous reaction <br> colourless" <br> Vapour forms <br> Sodium sinks/floats <br> disappears / <br> dissolves |  |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 1(b)(iv) | (Identity) <br> Methanol / $\mathrm{CH}_{3} \mathrm{OH}$ <br> OR <br> Displayed/skeletal formula <br> (Justification) <br> (only) alcohol with $M_{r}=32 /$ methanol has $M_{r}=32$ / $\mathrm{CH}_{3} \mathrm{OH}=32 /$ <br> right hand peak has mass 32/ right hand peak has $M_{r}$ of methanol <br> NOTE <br> Allow mark for any mention of 32 in conjunction with methanol. <br> OR <br> Other use of mass spec data: <br> Peak at m/e 15 is for $\mathrm{CH}_{3}\left({ }^{+}\right)$and 32- $15=\mathrm{OH}^{(+)}$ <br> OR $32-\left(\text { mass of) } \mathrm{OH}=\mathrm{CH}_{3}\left(^{+}\right)\right.$ <br> OR <br> Peak at 31 is for $\left.\mathrm{CH}_{3} \mathrm{O}^{+}\right) / \mathrm{CH}_{2} \mathrm{OH}\left({ }^{+}\right)$ <br> IGNORE <br> Negative or missing charges on peaks <br> Second mark depends on identification of methanol. | Correct name with wrong formula or vice versa. <br> Highest peak has $M_{r}$ of methanol <br> Just <br> "Peak at m/e 15 is for $\mathrm{CH}_{3}\left(^{+}\right.$) " <br> Peak at 29 is for $\mathrm{COH} / \mathrm{CHO}$ | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( a )}$ | (Bubble into) lime water / calcium <br> hydroxide (solution) / Ca(OH) $2((\mathrm{aq}))$ <br> and <br> Goes cloudy / white precipitate forms / <br> turns milky / turns chalky <br> IGNORE extinguishes a lighted splint | Goes muddy <br> Turns misty | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 2(b) | Flask stoppered with connection to <br> apparatus in which gas can be collected. <br> ALLOW <br> Either bung in neck or side arm sealed <br> IGNORE <br> Small gaps between bung and mouth of <br> flask <br> Heater under flask | Large gaps in <br> connection to flask <br> / unstoppered flask <br> Delivery tube <br> through wall of <br> trough | 2 |
| Syringe <br> OR inverted burette/ inverted measuring <br> cylinder in trough of water <br> ALLOW <br> Tubes without graduation marks shown <br> if labelled as burette, syringe or <br> measuring cylinder | Burette or <br> measuring cylinder <br> without water | (Test) tube without <br> graduation marks |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( c )}$ | $($ Mol gas $=41 / 24000=)$ <br> $1.7083 \times 10^{-3} / 0.0017083(\mathrm{~mol})$ <br> Ignore sf except 1sf <br> Ignore lack of units | Incorrect units |  |$\quad 1$|  |
| :--- |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 2(d) | Correct answer of $\mathbf{8 7 . 8}$ without working scores 2 $\begin{equation*} \mathrm{Mol} \mathrm{XCO}_{3}=1.7083 \times 10^{-3} \tag{1} \end{equation*}$ $\begin{aligned} \text { Mass of } 1 \mathrm{~mol} & =\left(0.15 / 1.7083 \times 10^{-3}\right) \\ & =87.8 \end{aligned}$ <br> (Use of 1.7 gives mass 88.2 use of 1.71 gives 87.7) <br> Ignore sf except 1 sf <br> TE from 2 c <br> I gnore lack of units | Incorrect units but do not penalise if already penalised in (c). | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( e )}$ | Relative atomic mass X = (87.8- <br> $(12+48))=27.8$ <br> $\mathrm{X}=\mathrm{Mg}$ <br> ALLOW <br> $\mathrm{Mg}^{2+}$ | Element with no <br> justification. | 1 |
|  | No mark for identification of Mg without <br> relative atomic mass or some working. <br> ALLOW <br> Calculation of atomic mass shown in (d) <br> TE from 2d | Identification as Sr <br> because 2(d) gives <br> 88 |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( f )}$ | (Some) carbon dioxide dissolved in the <br> dilute hydrochloric acid / water <br> $\mathrm{CO}_{2}$ reacts with water <br> Ignore references to standard conditions <br> and faulty apparatus | Impure carbonate <br> hydrochloric acid. <br> Impure acid <br> Incomplete reaction <br> Side reactions | 1 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 2(g) | No colour/ no change (to flame) <br> ALLOW <br> Colourless flame <br> TE from incorrect Group 2 metal in 2(e): <br> Ca (brick) red/ yellow-red <br> Sr crimson/ (dark) red <br> Ba green | White/ bright light Answers about Mg metal No flame More than one colour given | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( h )}$ | Some sulfates are insoluble/ <br> BaSO4 is insoluble/ Sulfates <br> become less soluble going down <br> group <br> ALLOW <br> A precipitate of the sulfate <br> would form <br> IGNORE <br> All group II sulfates are insoluble <br> (1) | Carbonates become less <br> soluble going down group <br> Element is insoluble in <br> sulfuric acid. | 2 |
| Gases other than carbon <br> dioxide form e.g $\mathrm{SO}_{2}$. | Just "it would form a |  |  |
| Reaction with acid will be <br> incomplete <br> Mark independently. | (1) |  |  |

Total for Question 2 = 11 marks

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 3(a) | $\left(250 \mathrm{~cm}^{3}\right)$ Volumetric flask / graduated <br> flask | Flat bottom flask <br> Titration flask <br> Measuring flask <br> Measuring cylinder <br> Conical flask <br> Pipette <br> Burette <br> Beaker | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |  |
| :--- | :--- | ---: | :--- | :--- |
| $\mathbf{3 ( b ) ( i )}$ | (From) colourless (1) <br> (to) pink  <br> ALLOW  <br> (to) red  <br> (to) Combination of pink and red/  <br> permanent pink  <br> From pink to colourless scores  | (1) | to purple | 2 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 3(b)(ii) | As an indication of when to add drop by drop <br> OR <br> Add slowly when approaching rough value <br> OR <br> Add a significant volume /a stated volume in region $18-23.0 \mathrm{~cm}^{3}$ of alkali/a volume approaching range finder volume (quickly) and then slow down <br> ALLOW <br> It is an indication of when to slow down <br> IGNORE <br> To prevent overshooting <br> Don't use in calculating mean titre <br> The answer should show how the rough titration value is used when carrying out the accurate titration | Just "to get an estimate" It gives an idea of where the end-point is Use as a control <br> Add slowly when reaches rough value | 1 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 3(b)(iii) | $\begin{aligned} & \frac{(2 \times 0.050 \times 100)}{23.30} \\ & =( \pm) 0.42918 / 0.4292 / 0.429 / 0.43 / \\ & 0.4(\%) \end{aligned}$ |  | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( b ) ( i v ) ~}$ | $23.3(0)\left(\mathrm{cm}^{3}\right)$ |  | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( b ) ( v )}$ | Mol $\mathrm{NaOH}=\left(23.3 \times 0.1 \times 10^{-3}\right)$ <br> $=2.33 \times 10^{-3}$ | (1) <br> Mol $\mathrm{H}_{2} \mathrm{~A}=\frac{\left(23.3 \times 0.1 \times 10^{-3}\right)}{2}$ <br> $=1.165 \times 10^{-3} / 1.17 \times 10^{-3}$ <br> Ignore sf except 1 sf <br> TE on 3b(iv) <br> Correct answer with no working scores 2 | (1) |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 3(b)(vi) | $\begin{align*} & \text { mol acid in } 250 \mathrm{~cm}^{3}=1.165 \times 10^{-2} \\ & / 0.01165  \tag{1}\\ & M_{r}=1.05 / 1.165 \times 10^{-2} \\ & =90.129 / 90.1 / 90 \end{align*}$ <br> Ignore sf <br> (1) <br> Give both marks for final answer if some working is shown, even if first marking point is not shown separately. <br> TE from 3b(v) <br> Final answer of 901 because mol acid in $25 \mathrm{~cm}^{3}$ is used scores (1) <br> Using $1.17 \times 10^{-3}$ gives $M_{r}=89.7$ <br> Using $1.2 \times 10^{-2}$ gives $M_{r}=87.5$ <br> Using $1.15 \times 10^{-2}$ gives $M_{r}=91.3$ | 90 with no working ( just deduced from (c)(i)) | 2 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 3(c)(i) | Potassium/ sodium dichromate((VI))/ $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ <br> and sulfuric acid/ $\mathrm{H}_{2} \mathrm{SO}_{4}$ <br> IGNORE <br> concentration of acid alcoholic potassium/ sodium dichromate((VI)) <br> (Heat under) reflux <br> Mark independently. | Potassium manganate(VII)/ potassium permanganate hydrochloric acid nitric acid <br> Just "heat" | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( c ) ( i i )}$ | Orange to (dark)green / blue / brown <br> TE if one of the reagents in c(i) is <br> potassium dichromate and the other is <br> not coloured. |  | 1 |
| TE on use of potassium manganate(VII) <br> and sulfuric acid: <br> Purple to colourless <br> No TE on other incorrect reagents |  |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 3(c)(iii) |  <br> Allow undisplayed $\mathrm{O}-\mathrm{H}$ as above or $\mathrm{O}-\mathrm{H}$ bonds shown. <br> Ignore orientation/ bond angles |  | 1 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4(a) | Bromine / $\mathrm{Br}_{2}$ <br> Redox/ oxidation <br> (1) <br> OR <br> sulfur dioxide $/ \mathrm{SO}_{2}$ <br> Redox/ reduction <br> (1) <br> ALLOW <br> Redox but no product given scores 1 <br> mark <br> Butanal/ butanoic acid and redox / oxidation scores 1 mark | HBr and redox scores 0. <br> Oxidation/ reduction if no product given | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4(b)(i) | To ensure condenser is full of water / to <br> prevent an airlock forming/ to stop air <br> bubbles forming / to stop hot spots <br> forming | To prevent back <br> flow of water <br> Just "So that <br> nothing escapes" | 1 |
|  | ALLOW <br> To ensure that all of the condenser <br> surface is covered with cold water/ <br> So that (hot) vapour is next to the <br> coolest water first / <br> So the lower region (of the condenser) is <br> colder / <br> Makes cooling more efficient | Just explanation <br> that condensation <br> occurs <br> faster cooling |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4(b)(ii) | There would be escape of <br> flammable liquid / corrosive spray / <br> corrosive acid (spray)/poisonous gas/ <br> toxic gas/ harmful gas <br> IGNORE <br> Prevents boiling over <br> Very exothermic | Named substance <br> e.g. $\mathrm{Br}_{2} /$ sulfuric <br> acid without <br> reference to hazard <br> Eg bromine could <br> escape | 1 |
|  | Any named toxic gas is only allowed if it <br> would condense. | Escape of $\mathrm{HBr} / \mathrm{SO}_{2}$ <br> which are toxic <br> (because they do <br> not condense) | Risk of explosion |
| Just "escape of <br> product" |  |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{4 ( c ) ( i )}$ | (teat) pipette/ syringe (to remove upper <br> aqueous layer) | To remove lower <br> aqueous layer | 1 |
| ALLOW decant / description of decanting | Add drying agent <br> Add dehydrating <br> agent <br> Just "Use <br> separating funnel" <br> Use a siphon |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4(c)(ii) | Separating funnel / tap funnel <br> Run off lower layer <br> ALLOW <br> pipette off upper layer | (1) | (1) | | Run off lower |
| :--- |
| aqueous layer |
| BUT do not |
| penalise if mark in |
| (c)(i) lost for |
| wrong layers. |$\quad$| Answers showing |
| :--- |
| candidate is |
| unaware that lower |
| layer is the product |$\quad$.


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4(d) | To remove / neutralize (excess) acid <br> OR <br> to neutralize unreacted acid <br> OR to remove / neutralize HCl | To eliminate HCl <br> Just "to react with <br> acid" <br> To remove/ <br> To neutralise the solution <br> To remove all the HCl <br> To wash out unreacted acid <br> IGNORE <br> To remove impurities <br> (and HCl$)$ <br> To remove HBr | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4(e) | Step 8 <br> Dry/ remove water from the bromobutane <br> With (anhydrous) calcium chloride / (anhydrous) magnesium sulfate / sodium sulfate/ silica gel <br> ALLOW CaCl $/$ / $\mathrm{MgSO}_{4} / \mathrm{Na}_{2} \mathrm{SO}_{4}$ <br> If name and formula are given both must be correct <br> Step 9 <br> (Filter / decant and then) redistil / distil <br> If only one step is given accept the answer in Step 8 or Step 9 <br> ALLOW <br> Description of drying carried out after redistillation max (2) | Dry in an oven/ evaporate to half volume scores 0 for this step. <br> Copper sulfate Concentrated sulphuric acid Calcium hydroxide Metal carbonates Calcium sulfate <br> recondense | 3 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{4 ( f ) ( i )}$ | $(7.5 \times 0.81)=6.075 / 6.08(g)$ <br> Ignore sf except 1sf | 6.07 <br> Wrong units | 1 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4(f)(ii) | Look at final answer. <br> 67\% scores 3 marks; answers with <br> 3sf rounding to $\mathbf{6 7}$ score $\mathbf{2}$ marks. <br> If this is incorrect follow this scheme: <br> METHOD 1 $\begin{align*} \text { Mol butan-1-ol } & =(6.075 / 74) \\ & =0.0820945 \tag{1} \end{align*}$ <br> maximum mass 1-bromobutane $=$ $\begin{equation*} (0.0820945 \times 137)=11.246959 \mathrm{~g} \tag{1} \end{equation*}$ $\begin{align*} \% \text { yield } & =((7.5 / 11.24659) \times 100 \\ & =66.85) \tag{1} \end{align*}$ <br> $=67 \%$ to 2 sf <br> OR METHOD 2 $\begin{equation*} 7.5 / 137=0.0547445 \mathrm{~mol} \text { (bromobutane) } \tag{1} \end{equation*}$ <br> 6.075/74 $=0.0820945 \mathrm{~mol}$ butan-1-ol <br> \% yield = $((0.05474455) \times 100 / 0.0820945)$ $\begin{equation*} =66.85) \tag{1} \end{equation*}$ <br> $=67 \%$ to 2 sf <br> Also TE from one step of the calculation to the next and TE on $4 f(i)$ unless yield > 100\%. <br> Use of 6.08 gives 0.082161 mol, 11.256216 g bromobutane, final answer 67\% <br> 11.3 g bromobutane gives $66 \%$. | Percentages calculated from volumes with no conversion to mol or mass. $\begin{aligned} & 6.075 / 7.5 \times 100 \\ & =81 \% \text { scores } 0 \end{aligned}$ <br> 67.0 (This is 3 sf ) | 3 |

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL

