

Mark Scheme (Results)

January 2015

Pearson Edexcel International Advanced Subsidiary in Chemistry (WCH01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015 Publications Code IA040461 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to: • write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Mark
1	С	1
	0	
Question	Correct Answer	Mark
Number	Correct Answer	I'ldi K
		4
2	C	1
Question Number	Correct Answer	Mark
3	D	1
Question	Correct Answer	Mark
Number		TIGHK
	P	-
4	В	1
-		
Question	Correct Answer	Mark
Number		
5	В	1
-	·	
Question	Correct Answer	Mark
Number		I I I I I I I I I I I I I I I I I I I
		-
6	A	1
		· · · · · · · · · · · · · · · · · · ·
Question	Correct Answer	Mark
Number		
7	D	1
Question	Correct Answer	Mark
Number		Hark
8	В	1
0	D	1
Question	Correct Answer	Mark
Number		
9	С	1
-		
Question	Correct Answer	Mark
Number		I I I I I I I I I I I I I I I I I I I
10	В	1
10	ט	L
Question	Correct Answer	Mark
Number		
11	A	1
Question	Correct Answer	Mark
Number		
	Δ	1
12	A	1
-		
Question	Correct Answer	Mark
Number		
13	С	1
	1	

Question Number	Correct Answer	Mark
14	В	1
Question Number	Correct Answer	Mark
15	D	1

Question	Correct Answer	Mark
Number		
16	D	1

Question Number	Correct Answer	Mark
17	A	1

Question Number	Correct Answer	Mark
18	D	1

Question Number	Correct Answer	Mark
19	В	1

Question Number	Correct Answer	Mark
20	С	1

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers	Reject	Mark
21(a)	Fractional distillation		1
	Both words needed		

Question Number	Acceptable Answers	Reject	Mark
21(b)(i)	C ₉ H ₂₀		1

Question Number	Acceptable Answers	Reject	Mark
21(b)(ii)	Correct skeletal formula (1) Correct name for the structure drawn providing that the structure is a branched-chain isomer of C ₉ H ₂₀ NO TE for name if skeletal formula is incorrect	Structural or displayed formula	2
	ALLOW Correct name, even if structural or displayed formula has been drawn (1) EXAMPLES of correct skeletal formulae and names 2-methyloctane 3-methyloctane 4-methyloctane		

Question Number	Acceptable Answers	Reject	Mark
21(c)(i)	$C_{15}H_{32} \rightarrow C_{13}H_{28} + C_2H_4$ IGNORE State symbols, even if incorrect ALLOW Correct structural OR displayed OR skeletal OR mixture of these (as long as unambiguous)		1

Question Number	Acceptable Answers	Reject	Mark
21(c)(ii)	Any carbon-carbon bond (in the chain) can break OR The carbon chain can break/split in different places OR Carbon chain is cracked in many places / different places OR $C_{13}H_{28}$ / product will break down further IGNORE 'Molecule can break anywhere' / 'It breaks into smaller molecules' / 'large number of C atoms' / 'bonds break randomly' / 'hydrocarbon chain is long'		1

Question Number	Acceptable Answers	Reject	Mark
21(d)(i)	Two double bonds anywhere on the RING (allow them to be adjacent). e.g.	If any other incorrect structure is included with the final answer	1
		Any 5-valent C atom in structure scores (0)	
	ALLOW One triple bond (instead of two double bonds) BUT not adjacent to a methyl group		
	ALLOW: (ie double bond(s) on side-chain)	If the methyl groups are joined by a bond	
		(0) Benzene ring (0)	

Question Number	Acceptable Answers	Reject	Mark
-	Acceptable Answers NOTE The answer must relate to combustion or burning To promote efficient combustion OR To increase octane number OR To reduce knocking OR Pre-ignition less likely ALLOW To allow smoother burning OR More efficient fuels OR Better burning / fuels easier to burn OR Combust more easily OR Improves combustion ALLOW Reverse argument for straight-chain hydrocarbons IGNORE References to: `less pollution' / `burning more cleanly' / `better fuels' / `to form alkenes' / `to form more useful products' /'branched	Reject `Ignition less likely' (0)	Mark 1
	chains form' / boiling point / volatility / `to form H_2 '		

(Total for Question 21 = 8 marks)

Question Number	Acceptable Answers	Reject	Mark
22(a)	1st mark – idea of moles / amounts specified (Enthalpy change when) the number of moles of reactants ALLOW (Enthalpy change when) the number of moles of products or substances / just moles of products or substances / just moles 2nd mark – idea of an equation (react as specified in the balanced) equation (I) IGNORE references to (standard) conditions / just 'enthalpy change that occurs during a reaction'	'One mole of reactants' / 'One mole of products' for 1st mark	2

Question Number	Acceptable Answers	Reject	Mark
22(b)(i)	(Heat energy absorbed = 100 x 4.2 x 5.5 =) 2310 (J) ALLOW 2.3(10) kJ IGNORE sign and sf except one sf		1

Question Number	Acceptable Answers	Reject	Mark
22(b)(ii)	(Moles $NH_4CNS = \frac{15.22}{76.1} =$) 0.2(00) (mol)		1
	IGNORE sf		
	ALLOW $M_r = 76$ for NH ₄ CNS to give 0.200(3) (mol)		

Question . Number	Acceptable Answers	Reject	Mark
22(b)(iii)	$\Delta H_{\text{reaction}} = +\frac{2.3(10)}{0.2(00)} \times 2 = +23.1 \text{ (kJ mol}^{-1})$ $0.2(00) = +23 \text{ (kJ mol}^{-1} \text{ to 2 sf}$ First mark - correct computation of $\Delta H_{\text{reaction}}$: 2 x [answer to (b)(i) in kJ ÷ answer to (b)(ii) in mol] (1) Second mark - stand alone, for correct rounding: A final answer to two sf (1) Third mark - stand alone, for giving a + sign for endothermic reaction: + sign in front of final answer (1) NOTE: +12 (kJ mol ⁻¹) scores (2) (i.e. the 2nd and 3rd marks)	Incorrect units given by the candidate (no 3 rd scoring point)	3

Question Number	Acceptable Answers	Reject	Mark
22(c)(i)	(Average amount of) energy/enthalpy required to break one mole of (covalent) bonds ALLOW Energy change/enthalpy change to break one mole of (covalent) bonds (1) (in the) gas / gaseous (state)	Energy/enthalpy released OR 'Bonds formed/made' OR 1 mol of compound for 1st mark	2

Question Number	Acceptable Answers	Reject	Mark
22(c)(iii)	π -bond is weak(er) OR σ -bond is strong(er) OR The sideways overlap is less effective than the head-on overlap ALLOW The two bonds in the (C=C) double bond are not the same strength IGNORE References to C=C bond more reactive than C-C bond / `restricted rotation'	π -bond is stronger than the σ -bond OR C=C bond weaker than C-C bond	1

Question Number	Acceptable Answers		Reject	Mark
22(c)(iv)	[FIRST, check the answer on the answer line IF answer = -1936 (kJ mol ⁻¹) award (3) marks; +1936 (kJ mol ⁻¹) scores (2)] Bonds broken ($6 \times (C-H) = 6 \times 413$ + $1 \times (C-C) = 1 \times 347$ + $1 \times (C=C) = 1 \times 612$ + $4^{1/2} \times (O=O) = 4^{1/2} \times 498 =) (+)5678$ Bonds made ($6 \times (C=O) = 6 \times -805$ + $6 \times (O-H) = 6 \times -464$ =) (-)7614 $\Delta H_{\text{reaction}} = \text{bonds broken + bonds made}$ = (+)5678 + (-)7614 = -1936 (kJ mol ⁻¹) NOTE 3rd mark CQ on answers calculated for bonds broken and bonds made	(1) (1) (1)		3

Question Number	Acceptable Answers	Reject	Mark
22(c)*(v)	Under standard conditions/298 K water is a liquid OR (Calculations involving) bond energies refer to (water in) gaseous state (1) Energy released/given out on changing from gas to liquid OR Energy absorbed/taken in on changing from liquid to gas (1) ALLOW max (1) if state that 'bond energies are average values (from a range of compounds)' IGNORE References to 'heat losses' / 'incomplete combustion'		2

(Total for Question 22 = 17 marks)

Question Number	Acceptable Answers	Reject	Mark
23(a)(i)	Curly arrow from double bond towards iodine atom AND curly arrow from the I-Cl bond to the chlorine atom (1) $H \xrightarrow{CH_3} H \xrightarrow{\delta_+} H$		3
	$\delta - c_{\mu}$ Carbocation intermediate (1)		
	$H = CH_{3}$ $H = C = C = C = H$ $H = H$ $H = H$	δ^+ for +	
	Curly arrow from the chloride ion to the correct C ⁺ in the intermediate (1)		
	$H = CH_{3}$ $H = C = C = H$ $I = (:)CI^{-}$	δ [−] for – on Cl [−]	
	NOTE Curly arrow can originate from anywhere on the CI^- ion in the final step. Do not have to have a lone pair of e^- on the CI^- ion		

Question Number	Acceptable Answers		Reject	Mark
23(a)(ii)	Electrophilic Addition	(1) (1)		2
	ALLOW answers in either order			
	IGNORE 'heterolytic'			

Question Number	Acceptable Answers	Reject	Mark
23(a)(iii)	$H = CH_{3}$ $H = C = C = H$ $H = C = C = H$ $CI = I$ C		1

Question Number	Acceptable Answers	Reject	Mark
23(b)(i)	Ultraviolet / UV OR Sun (light) OR Light	Mention of a `catalyst'	1
	ALLOW High temperature / 300°C (minimum)		
	IGNORE Just heat / just radiation / rays		

Question Number	Acceptable Answers		Reject	Mark
23(b)*(ii)	First mark:			7
	(Free) radical substitution	(1)		
	Second mark:			
	Homolytic (fission)	(1)	Heterolytic	
	Third mark:		(fission)	
	Initiation			
	AND			
	$ICI \to I \bullet \ + \ CI \bullet$	(1)		
	BOTH needed for the 3rd mark			
	Fourth mark:			
	Propagation	(1)		
	Fifth and sixth marks:			
	$CH_4 \ + \ CI \bullet \ \rightarrow \ CH_3 \bullet \ + \ HCI$	(1)	$H \bullet$ (the fifth and	
	$CH_3\bullet \ + \ \ ICl \ \rightarrow \ \ CH_3I \ \ + \ \ Cl\bullet$	(1)	sixth marks cannot be	
	IGNORE $CH_4 + I \bullet \rightarrow CH_3 \bullet + HI$		awarded if H• appears in either propagation step)	
	$CH_3\bullet + ICI \ \rightarrow CH_3CI \ + \ I \bullet$			
	Seventh mark: $CH_3 \bullet + I \bullet \rightarrow CH_3I$ OR $CI \bullet + CI \bullet \rightarrow CI_2$ OR $CH_3 \bullet + CI \bullet \rightarrow CH_3CI$ OR $CH_3 \bullet + CH_3 \bullet \rightarrow C_2H_6$ OR $I \bullet + CI \bullet \rightarrow ICI$			
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	(1)		
	IGNORE Any INCORRECT termination step(s) IGNORE State symbols, even if incorrect Curly arrows / half curly arrows, even incorrect			

(Total for Question 23 = 14 marks)

Question Number	Acceptable Answers		Reject	Mark	
24(a)	(Sub- atomic particle)	(Relative mass)	(Relative charge)		3
	(proton)	1	+1/1+	Just "+" for proton charge	
	(neutron)	1	0	Just "neutral" for neutron charge	
	(electron)	1/2000 to 1/1800 or	-1/1-	Just "—" for electron charge	
		'negligible' or 0.0005 to 0.00056		"Zero" /"0" for mass of an electron	
(1) for each correct row					
	IGNORE any	ly one COLUMN masses in g or charges in could			

Question Number	Acceptable Answers		Reject	Mark
24(b)	Atoms with the same number of prot (1) IGNORE same number of electrons (but) different numbers of neutrons IGNORE References to atomic number / mass number / `nucleons' / JUST `atoms of the same element'	tons (1)	"Element(s) with the same number of protons"	2

Question Number	Acceptable Answers	Reject	Mark
24(c)(i)	Electron gun / high-speed electrons / high-energy electrons / fast-moving electrons / bombardment with electrons (1)	Just 'electrons' / 'Highly-charged' electrons	2
	Knock-out / remove electron(s) (1)		
	IGNORE References to ionizing / forming ions / just equations such as $Rb(g) \rightarrow Rb^+(g) + e^-$ / other stages in the process of mass spectrometry		

Question Number	Acceptable Answers	Reject	Mark
24(c)(ii)	[FIRST, check the answer on the answer line IF answer = 85.6 award (3) marks]		3
	1st mark:		
	85 x 2.5 + 87 x 1 OR 85 x 71.4 + 87 x 28.6 (1)		
	2nd mark: ÷3.5 (can ÷7 if ratio given as 5:2) OR ÷100 ALLOW TE using incorrect % abundances or ratios		
	(1)		
	3rd mark – stand alone for correct rounding (TE only if value calculated is between 85 and 87)		
	<pre>(= 85.57, but `accurate' answer depends on rounding) Final answer rounded to 85.6 (ie 1 dp) Ignore units even if incorrect. (1)</pre>		
	NOTE 85.5 without working scores (0)		

Question Number	Acceptable Answers		Reject	Mark
24(d)	(Left-hand box) Delocalised electron(s) BOTH these words needed	(1)	Just 'electrons' 'Negatively- charged ions'	2
	(Right-hand box) Positive ion(s) / cation(s) / Rb ⁺ ALLOW metal ion(s)	(1)	`nuclei' / `nucleus' / `positive atoms' `positively-charged lattice'	

(Total for Question 24 = 12 marks)

Question Number	Acceptable Answers	Reject	Mark
25(a)(i)	$\begin{array}{rcl} Mg^{+}(g) & \rightarrow & Mg^{2+}(g) \ + \ e^{(-)} \\ OR \\ Mg^{+}(g) - e^{(-)} & \rightarrow & Mg^{2+}(g) \\ OR \\ Mg^{+}(g) \ + \ e^{(-)} & \rightarrow & Mg^{2+}(g) \ + \ 2e^{(-)} \end{array}$ $\begin{array}{rcl} \textbf{1st mark} \\ Correct species for reactants and \\ products & & \textbf{(1)} \\ \textbf{2nd mark} \\ Correct state symbols \\ \textbf{This mark can only be awarded if} \\ \textbf{first mark has already been awarded.} \\ \textbf{(1)} \\ \textbf{NOTE} \\ Award state symbols mark if `X^{+}(g)' OR \\ `MG' used instead of `Mg' \\ Mg(g) & \rightarrow & Mg^{2+}(g) \ + \ 2e^{(-)} \\ \textbf{scores (0)} \end{array}$	"MG" for first mark	2

Question Number	Acceptable Answers	Reject	Mark
25(a)*(ii)	Any TWO from: Electron (in Mg ⁺) is being removed from a positive ion (1)	"Mg ⁺ has more protons than Mg"	2
	Electron being removed is closer to the nucleus (in Mg ⁺) / Mg ⁺ is smaller (than Mg) (1)	Electron is being removed from a new	
	Proton: electron ratio greater (in Mg ⁺) / remaining e ⁻ more tightly held (in Mg ⁺) (1)	shell/different shell / 2nd shell scores (0) overall	
	Greater (force of) attraction between nucleus and (outermost) electron (in Mg ⁺) (1)		
	Electron repulsion is less in Mg ⁺ (than Mg) (1)		
	IGNORE References to "effective nuclear charge (ENC)" / high charge-density in Mg ⁺ / references to shielding		

Question Number	Acceptable Answers	Reject	Mark
25(a)(iii)	Any value in range 5000 to 9000 (kJ mol ⁻¹) NOTE Actual value is 7730 (kJ mol ⁻¹)		1

Question Number	Acceptable Answers		Reject	Mark
25(b)(i)	(Phosphorus) $1s^2 2s^2 2p^6 3s^2 3p^3$			2
	ALLOW p_x , p_y , p_z notation / upper case			
	(Sulfur) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	(1)		
	ALLOW p_x , p_y , p_z notation / upper case			
	ALLOW Noble gas core: [Ne] for 1s ² 2s ² 2p ⁶	(1)		

Question Number	Acceptable Answers	Reject	Mark
25(b)(ii)	1st mark – idea of paired e⁻ in S		2
	In sulfur, spin-pairing has occurred / two electrons in the same orbital / paired e [−] Note: Just 3p ⁴ stated for S does not gain this mark.		
	ALLOW an 'electrons-in-box' diagram, showing two electrons in the same orbital		
	(1) 2nd mark – idea of repulsion		
	(resultant increase in) repulsion (1)		
	ALLOW Just phosphorus has a half-filled sub- shell which is more stable (max (1))		

(Total for Question 25 = 9 marks)

TOTAL FOR SECTION B = 60 MARKS

TOTAL FOR PAPER = 80 MARKS

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R 0RL