Mark Scheme (Results) June 2010

GCE

GCE Chemistry (6CH05/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 08445760037

Summer 2010
Publications Code UA023639
All the material in this publication is copyright
© Edexcel Ltd 2010

Section A

Question Number	Correct Answer	Mark
$\mathbf{1}$	D	$\mathbf{1}$
Question Number Correct Answer Mark $\mathbf{2}$ C $\mathbf{1}$ Question Number Correct Answer Mark $\mathbf{3}$ A $\mathbf{1}$ Question Number Correct Answer Mark $\mathbf{4}$ A $\mathbf{1}$ Question Number Correct Answer Mark $\mathbf{5}$ C $\mathbf{1}$		

Question Number	Correct Answer	Mark
$\mathbf{6}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{7}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{8}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{9}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 1}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 2}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 4}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 6}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 7}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 8}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 9}$	B	$\mathbf{1}$

Question	Correct Answer	Mark
Number	D	$\mathbf{1}$
$\mathbf{2 0}$	D	

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1}$ (a)(i)	Copper: 0 to $+2 / 2+/ 2^{+} /$II $/ 2$ (1)		$\mathbf{2}$
	Nitrogen: $+5 / 5+/ 5^{+} / \mathrm{V} / 5$ to $+4 / 4+/ 4^{+} / \mathrm{IV} / 4$ (1)		

Question Number	Acceptable Answers	Reject	Mark
21(a)(ii)	$\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{(-)}$ OR $\mathrm{Cu}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{Cu}^{2+}(\mathbf{1})$ $\mathrm{Cu}\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \mathrm{OK}$ if 6 waters shown on I.h.s. $\mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{e}^{(-)} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$ OR $\begin{equation*} 2 \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{(-)} \rightarrow 2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ OR $\begin{equation*} 2 \mathrm{NO}_{3^{-}}+4 \mathrm{H}^{+}+2 \mathrm{e}^{(-)} \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ Ignore the full equation if it is given as well Allow equations written as reverse of above Ignore state symbols even if wrong Allow \rightleftharpoons for \rightarrow		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (i i i)}$	(electrode potential) values are for standard conditions (1)		$\mathbf{2}$
	nitric acid is concentrated / not 1 mol dm not $1 \mathrm{M} \mathrm{(1)}$	$\mathrm{NO}_{3}-$ are not 1 mol dm ${ }^{-3}$	

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2 1 (b) (i)}$	initially a (pale/light) blue precipitate (1)		$\mathbf{2}$		
	Allow blue solid				
Ignore white precipitate					
(re-dissolves in excess to form) a (deep) blue					
solution (1) Stand alone mark					
Accept any shade of blue except greenish-blue				\quad	Any colour (other than
:---					
blue) precipitate in blue					
solution	,				

Question Number	Acceptable Answers	Reject	Mark
21(b)(ii)	$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})(1)$		3
	$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})(1)$		
	$\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{4}{ }^{2-}(\mathrm{aq})(1)$		
	If two previous equations combined correctly		
	then (1) only : $\mathrm{Zn}^{2+}+4 \mathrm{OH}^{-} \rightarrow \mathrm{Zn}(\mathrm{OH})_{4}{ }^{2-}$		
	Allow		
	$\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{HH}^{-}(\mathrm{aq}) \rightarrow \mathrm{ZnO}_{2}{ }^{2-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$		
	OR		
	$\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+4 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{6}{ }^{4-}(\mathrm{aq})$		
	OR		
	equivalent non-ionic equations, including those with $\mathrm{Zn}^{2+}+2 \mathrm{NaOH}$ etc		
	OR		
	Correct balanced equations starting with hexaqua or tetraqua cations		
	ALLOW the hydroxides to be shown as e.g. $\mathrm{Zn}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{~s})$ provided that the whole equation balances.		
	Penalise missing /incorrect state symbols on product once only. Ignore other state symbols		

Question Number	Acceptable Answers	Reject	Mark
21(b)(iii) QWC	First 2 marks: zinc hydroxide/oxide amphoteric because it reacts with alkali (to give a solution of a zincate) (1) and reacts with acid (to give a salt) (1) zinc hydroxide is / acts as both an acid and an alkali - scores (1) only Third mark: hexaquazinc or hydrated zinc ions exchanged water for ammonia or other named ligand (1) OR	Reference to zinc ions or zinc metal allow deprotonation	3
Zn(H2O) ${ }^{2+}+4 N H_{3} \rightarrow \quad$ etc (1) Allow any number of ammonias from 1 to 6	Allow balanced equations, ionic or full. Ligand exchange reaction must start with a complex ion Note: If zinc mentioned initially but equation refers to a correct compound then credit should be given If equations wrong but words are correct then ignore equations		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (c) (i)}$	$\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$	Non-ionic equation.	$\mathbf{1}$
	Ignore state symbols even if wrong.		

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & \text { 21(c)(ii) } \\ & \text { QWC } \end{aligned}$	$\left.\begin{array}{l} \text { Amount thiosulphate } \\ \quad=0.0331 \mathrm{dm}^{3} \times 0.1 \mathrm{~mol} \mathrm{dm}^{-3} \\ \quad=0.00331 \mathrm{~mol}(\mathbf{1)} \end{array}\right] \begin{aligned} & \text { = amount of copper(II) ions in } 25 \mathrm{~cm}^{3} \text { portion } \\ & \text { (1) } \end{aligned} \quad \begin{aligned} \therefore \text { amount } \mathrm{Cu}=10 \times 0.00331=0.0331 \mathrm{~mol} \text { in } \\ \text { total (1) } \end{aligned} \quad \begin{aligned} \therefore \text { mass } \mathrm{Cu} & =0.0331 \mathrm{~mol} \times 63.5 \mathrm{~g} \mathrm{~mol}^{-1}(\mathbf{1}) \\ & =2.102 \mathrm{~g} \end{aligned} \quad \begin{aligned} \therefore \% \text { copper } & =(2.102 \times 100) \div 3.00(1) \\ & =70.1 \%(1) \text { to } 3 \text { s.f. only } \end{aligned}$ Mark consequentially but if \% > 100 then (-1) If equation in (i) is incorrect but used correctly in part (ii) then all marks can be scored unless answer > 100\% Correct answer can score 6 marks irrespective of the stoichiometry of the equation in (c)(i) If candidates uses 64 for molar mass of Cu final answer will be 70.6; scores max of 5	70.06 or 70.0	6

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (c) (i i i) ~}$	some reagent used to fill the jet (which does not react with the iodine solution) and so the titre is too high (1) and hence the percentage value would be too high (1) Allow only if the titre is said to be high If the titre is thought to be too low then allow percentage value too low for 2nd mark (1)		$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-}$ OR $\begin{aligned} & \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{NO}_{3}^{+}+\mathrm{HSO}_{4}^{-} \\ & \mathrm{H}_{2} \mathrm{NO}_{3}^{+} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$ Both needed OR $\begin{equation*} 2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \longrightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-} \tag{1} \end{equation*}$ Ignore state symbols even if wrong (1) (1) arrow showing attack on the nitronium ion with arrow going to N atom, or into the $\mathrm{C}-\mathrm{N}$ gap (1) Arrow must start at or inside ring Ignore position of + charge structure of the intermediate showing reasonable delocalisation (over at least 3 carbon atoms) (1) arrow from the bond showing the loss of H^{+}from the intermediate. Removal by hydrogen sulphate ion preferable but not essential (1) Kekulé structures score full marks If the electrophile is incorrect then the intermediate structure mark is lost	Delocalisation mustn't go over C where $\mathrm{NO}_{2}{ }^{+}$is attached	4

Question Number	Acceptable Answers	Reject	Mark
22(a)(ii) QWC	First mark: (lone pair of) electrons on the oxygen atom or on the OH group is delocalised / incorporated into the ring (1)	Reject hydroxide for first mark only	$\mathbf{2}$
	OR the OH group is electron donating (1) Second mark: increased electron density / ring is more nucleophilic / hence more susceptible to electrophilic attack (1) OR	Nucleophilic attack on the ring	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (a) (i i i)}$	tin (1) and concentrated hydrochloric acid (1) Formulae acceptable. If NaOH is added after HCl then ignore; if implication that HCI and NaOH are added together then second mark is lost	lithium aluminium hydride sodium borohydride	$\mathbf{2}$
	OR iron (1) and concentrated hydrochloric acid (1) $\mathbf{2 n d}^{\text {mark conditional on a metal }}$ OR hydrogen (1) and platinum / palladium catalyst (1)	Nickel Raney Nickel	

Question Number	Acceptable Answers	Reject	Mark
22(a)(iv)	ethanoyl chloride OR acetyl chloride OR $\mathrm{CH}_{3} \mathrm{COCl}$ OR equivalent displayed formula OR ethanoic anhydride OR acetic anhydride OR $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ OR equivalent displayed formula Right name but wrong formula does not score lgnore minor spelling errors if the formula is correct	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
22(b) QWC	First mark: steam is passed into the mixture OR water is added and mixture boiled or distilled or heated (1)	Passed over; anything that implies external heating with a steam bath or water bath any implication of fractional distillation any suggestion that separation based on differing boiling temperature	$\mathbf{3}$
Second mark: and the 2-nitrophenol / product vapour distilled off with the water (and condensed) (1)	water-soluble Advantage: The 2-nitrophenol / product distils at a lower temperature / prevents decomposition(1) Stand alone		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (c)}$	Read the whole answer to get the sense The (ring) hydrogen atoms are on carbon atoms which have one / a hydrogen on an adjacent carbon atom, so are doublets (1)	nearby	$\mathbf{2}$
All the other hydrogen atoms have no adjacent hydrogen (bearing carbon) atoms, so are singlets (1)			

Question Number	Acceptable Answers	Reject	Mark
23(a)(i)	Any TWO of: complex ions / complexes (1) coloured ions / compounds / solutions (1) catalytic properties (1) paramagnetic (1) Allow coloured complexes (2) coloured complex compound (1) If a list appears with 1 or 2 correct properties followed by properties related to the element, then (1) mark only Ignore 'partially filled d-orbitals'	2	

Question Number	Acceptable Answers	Reject	Mark
23(a)(ii)	I ignore absence of charge clearly octahedral (ignore bonds to the H in $\mathrm{H}_{2} \mathrm{O}$ (1) but allow some latitude in the symbols used to show the 3D structure. Wedges do not have to be exact - if used they are enough to show 3D if the axial bonds are lines The word 'octahedral' does not salvage a poor drawing dative (covalent) / coordinate (bond) (1) not just shown by an arrow lone pair (of electrons on the oxygen) (1) can be shown on the diagram	$\mathbf{3}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (b) (i)}$	$(+) 0.34(V)$ OR (+)0,34 V		$\mathbf{1}$
	sign not needed		

Question Number	Acceptable Answers	Reject	Mark		
23(b)(ii) QWC	(simultaneous) oxidation and reduction (1)		$\mathbf{2}$		
	Allow redox				
of a species / substance / reactant / compound					
/ chemical / element (1)				\quad	
:---					

Question Number	Acceptable Answers	Reject	
$\mathbf{2 3 (b) (i i i)}$	$-0.66(\mathrm{~V})(1)$		Mark
	Allow TE from (b)(i)		
reaction not feasible since the potential is negative (2 nd with sign of $\left.E^{\circ}\right)(1)$			

Section C

Question Number	Acceptable Answers	Reject	Mark
24(a)		Circles that encompass two atoms	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (b)}$	First mark: Recognition that paracetamol is not chiral / has no enantiomers / does not have optical isomers (1)	Is not optically active	
Second and third marks: Any two of: there is no racemisation so the product will not be a mixture (1) no need to separate (the enantiomers) (1) do not have to discard an unwanted enantiomer / atom economy is higher (1) OR converse arguments starting from (-)-carvone.	$\mathbf{3}$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (c)}$	(C=C): add bromine (water) (1) decolourises (1) OR KMnO_{4} (1) purple \rightarrow brown / colourless (1) (C=O): add 2,4-dnp / 2,4- dinitrophenylhydrazine/ Brady's reagent (1) orange or yellow or orange-red or red ppt (1)	1,4-dnp	
Ignore a negative Fehling's / Tollens' test			
If a positive Fehling's / Tollens' is given in			
addition to 2,4 DNP then third and fourth marks			
are lost			
Observation dependent on test			

Question Number	Acceptable Answers	Reject	Mark
24(d)(i)	amount of carvone $=(4.5 \div 150) \mathrm{mol}=0.03$ mol (1) amount of hydrogen $=(1.44 \div 24) \mathrm{mol}=0.06$ mol (allow $1^{\text {st }}$ mark for either of the mole calculations) so two double bonds are reduced (1) OR 2 moles H_{2} : (1 mol carvone) OR 4 mole H: (1 mol carvone) If hydrogen is used it must be clear whether they are atoms or molecules This mark can be salvaged if the structure is correct and both double bonds are reduced (1) stand alone Accept displayed formula if completely correct	Any structure that shows reduction of the $\mathrm{C}=0$ bond	3

Question Number	Acceptable Answers	Reject	Mark
24(d)(ii)	(a ketone/C=0) absorption / peak / trough / within the range 1680-1700 $\left(\mathrm{cm}^{-1}\right)(1)$ Ignore units will be seen in carvone but not in limonene / the reduction product (1) omission of the value for the absorption loses first mark only	1720-1740 cm ${ }^{-1}$	2

Question Number	Acceptable Answers	Reject	Mark
24(e)(i)	Any structure retaining C=C bonds	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
24(e)(ii)	HBr can be eliminated using a hydrogen from the carbon on either side of the bromine (1) which would then give a double bond in a different position from that in carvone (1) this second mark can be answered using a skeletal / structural formula (below)	Reference to substitution	$\mathbf{2}$

From the left-hand structure ahoue:

From either of the structures

From the right-hand structure ahowe:

alhove:

Question Number	Acceptable Answers	Reject	Mark
24(f)(ii)	heterogeneous catalysts can be filtered off OR do not appear in any liquid or gaseous products OR are easy to separate OR are stereospecific OR suited to continuous processes rather than batch processes	greater surface area	$\mathbf{1}$

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA023639 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

