Mark Scheme (Results) J une 2010

GCE

GCE Chemistry (6CH04/ 01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Alternatively, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 08445760037

Summer 2010
Publications Code UA023636
All the material in this publication is copyright
© Edexcel Ltd 2010

Section A (multiple choice)

Question Number	Correct Answer	Mark
$\mathbf{1}$ (a)	D	$\mathbf{1}$
Question Number Correct Answer		
$\mathbf{1}$ (b)	\mathbf{D}	Mark

Question Number	Correct Answer	Mark
$\mathbf{1}(\mathbf{c})$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{2}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{3}$	C	$\mathbf{1}$

Question	Correct Answer	Mark
Number		
$\mathbf{4}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{5}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{6}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{7 ~ (a)}$	\mathbf{C}	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{7 (b)}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{7}$ (c)	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{8}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
9	D	1
Question Number	Correct Answer	Mark
10	D	1
Question Number	Correct Answer	Mark
11	B	1
Question Number	Correct Answer	Mark
12	A	1
Question Number	Correct Answer	Mark
13	B	1
Question Number	Correct Answer	Mark
14	C	1
Question Number	Correct Answer	Mark
15	C	1
Question Number	Correct Answer	Mark
16	A	1

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}$ (a)(i)	$5.7 \times 10^{-5} / 5.71 \times 10^{-5} / 5.714 \times 10^{-5} / 0.000057$ IGNORE SF except 1 (ie don't accept 6×10^{-5})	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}$ (a)(ii)	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$: first order / 1 (1) (going from first to second experiment) rate doubles when concentration / number of moles doubles (and [OH-] constant)/ rate and concentration increase in proportion (1) ALLOW 'time halves' instead of 'rate doubles'	$\mathbf{3}$	
OH'$^{-}$: zero order / 0 and (going from second to third expt) as increase in concentration does not affect rate (and [C4H9Br] constant) (1)	ALLOW 'doubling in concentration of OH' instead of 'increase in concentration'	ALLOW time increases by the same factor as increase in hydroxide concentration (5/3) May refer to experiment number rather than concentrations	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}$ (a)(iii)	Rate $=\mathrm{k}\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]$ OR Rate $=\mathrm{k}\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]^{1}\left[\mathrm{OH}^{-}\right]^{0}$ ALLOW k in lower or upper case Rate equation must be consistent with orders in (a)(ii) If no order is given for hydroxide in (ii) mark cannot be given	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
17 (a)(iv)	$\begin{aligned} \mathrm{k} & =\frac{2.9 \times 10^{-5}}{0.017} \\ & =1.7 \times 10^{-3} / 1.71 \times 10^{-3} / 1.706 \times 10^{-3} \mathrm{~s}^{-1} \end{aligned}$ ALLOW k=1. 68×10^{-3} (value obtained from experiment 2 or 3) value of k (1) units (1) stand alone mark ALLOW TE from (a)(iii) IGNORE SF except 1 Rate $=k\left[C_{4} \mathrm{H}_{9} B r\right]^{2}$ gives $k=0.10036 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ Rate $=\mathrm{k}\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]\left[\mathrm{OH}^{-}\right]$gives $\mathrm{k}=1.42 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ ALLOW $\mathrm{k}=1.39 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ (value obtained from experiment 2 or 3) Rate $=k\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]\left[\mathrm{OH}^{-}\right]^{2}$ gives $\mathrm{k}=1184.6$ $\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$ Rate $=\mathrm{k}\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]^{2}\left[\mathrm{OH}^{-}\right]$gives $\mathrm{k}=83.62$ $\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b)}$	$\left[\mathrm{OH}^{-}\right]$is (in chemical equation but) not in rate equation / not in rate determining step (so is in a step other than rate determining step) OR Only $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ is in rate equation / rate determining step (so OH^{-}is in a step other than rate determining step)	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
17 (d) QWC	(Primary and tertiary) carbocation intermediates have different stabilities (1) as (inductive effects of) alkyl groups stabilise tertiary carbocation (1) OR Steric hindrance differs for attack on primary and tertiary carbon (in the molecule) / less space available for attack by OH^{-}on tertiary carbon / more space for attack by OH^{-}on primary carbon (1) as bulky / three alkyl groups obstruct attack (1)	"Tertiary bromoalkanes react by SN1" without further explanation carbocation intermediates have different reactivity steric hindrance in carbocation	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$ (a)(i)	(Acid) hydrolysis	substitution	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (a) (i i)}$	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ Potassium dichromate $((\mathrm{VI})) /$ sodium dichromate((VI)) / dichromate((VI)) ions	Just "dichromate"	$\mathbf{1}$
ALLOW manganate((VII)) ions, etc	Correct formula with wrong name and vice versa Incorrect oxidation number		

$\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline \mathbf{1 8} \text { (a)(iii) } & \begin{array}{l}\text { Lithium tetrahydridoaluminate/ lithium } \\ \text { aluminium hydride/ LiAlH }\end{array} \text { (in dry ether) }\end{array} \quad$ Just [H $\left.\mathrm{H}^{-}\right] \quad \mathbf{1}$.

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$ (a)(iv)	Methyl butanoate (1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}^{2}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$ (1) ALLOW \rightleftharpoons IGNORE state symbols even if wrong	Methyl butoate	$\mathbf{2}$

Question Number	Acceptable Answers	Rej ect	Mark
$\mathbf{1 8 (a) (v)}$	$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}^{-}=\mathrm{O}$ Don't penalise undisplayed methyl groups as here. COCl must be displayed as above.	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{for}$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$	$\mathbf{1}$

Question Number	Acceptable Answers	Rej ect	Mark
$\mathbf{1 8}$ (b)(i)	Nitrogen inert / unreactive / less reactive (than oxygen) OR Oxygen might react with chemicals going through column / sample might oxidise	$\mathbf{1}$	

Question Number	Acceptable Answers	Rej ect	Mark
18 (b)(ii)	Solubility (in liquid / stationary phase) OR Interaction with liquid / stationary phase OR Interaction between mobile and stationary phase OR Attraction for liquid / stationary phase OR Strength of (named) intermolecular forces OR Adsorption on liquid / stationary phase OR Absorption on liquid / stationary phase	Size of molecule / molar mass Polarity, unless with explanation Boiling point / volatility Viscosity Attraction for carrier gas J ust a named intermolecular force J ust 'retention time' Density	1

Question Number	Acceptable Answers	Reject	Mark
18 (c)(i)	 OR Ester link including C=O (1) Rest of polymer with oxygens at end correct (1) All H atoms must be shown. PENALISE lack of displayed $\mathrm{C}=0$ once only ACCEPT Without brackets around formula but bonds at end should be shown More than two correct units IGNORE n after brackets		2

Question Number	Acceptable Answers	Rej ect	Mark
$\mathbf{1 8}$ (c)(ii)	Hydrolysis		$\mathbf{1}$
	OR Splits / breaks ester link OR polymer breaks down to monomers OR equation showing hydrolysis	Jolymer down'	

Question Number	Acceptable Answers	Rej ect	Mark
19 (a)(i)	$\left(\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{pCH}_{3} \mathrm{CO}_{2}-\frac{\mathrm{H}}{\mathrm{pCH}_{3}} \mathrm{OH}^{(\mathrm{x})} \mathrm{pCO}}{}\right.$ Partial pressure symbol can be shown in various ways, eg pp, p_{co}, (CO)p, etc ALLOW p in upper or lower case, round brackets IGNORE units	[] State symbols given as (I) +in bottom line	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9}$ (a)(ii)	$\mathrm{P} \mathrm{CH} 3 \mathrm{OH}=4.9(\mathrm{~atm})(\mathbf{1})$ $\mathrm{P} \mathrm{CO}=4.9(\mathrm{~atm})(\mathbf{1})$ 1 mark for recognition that pressures are equal IGNORE units	$\mathbf{2}$	

Question Number	Acceptable Answers	Rej ect	Mark
$\mathbf{1 9}$ (a)(iii)	$\mathrm{K}_{\mathrm{p}}=\left((22.2) /(4.9)^{2}\right)$ $=0.925(\mathbf{1})$ atm $^{-1}$ (1) stand alone mark but must match expression used in (a)(iii) OR $9.25 \times 10^{4} \mathrm{~Pa}^{-1} / 92.5 \mathrm{kPa}^{-1}$ (2) ALLOW TE from (a)(i) if inverted and/ or (a)(ii)	Answers to other than 3 significant figures	$\mathbf{2}$

Question Number	Acceptable Answers	Rej ect	Mark
$\mathbf{1 9}$ (b)(i)	$\mathrm{CH}_{3} \mathrm{OH}: 3.2$ $\mathrm{CO}: 3.2$ (1) for both values $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}: 46.8$ (1) ALLOW TE for moles of ethanoic acid based on numbers of methanol and carbon monoxide used, as long as moles of methanol and carbon monoxide are equal and moles ethanoic acid + moles methanol =50	$\mathbf{2}$	

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline \mathbf{1 9} \text { (b)(ii) } & \left(\frac{46.8 \times 32}{53.2}\right)=28.2 / 28.1504 \text { (atm) } & 28.1 & \mathbf{1} \\ & \text { IGNORE sf except } 1 \\ \text { Value = 28.16 if mol fraction rounded } \\ \text { ALLOW TE from (b)(i) } & \frac{46.8 \times 32}{50}= & 29.95 \text { (atm) }\end{array}\right]$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9}$ (b)(iii)	exothermic as yield / pp of ethanoic acid / conversion of reactants/ Kp is higher at lower temperature / as equilibrium moves (right) at lower temperature	$\mathbf{1}$	
ALLOW if partial pressure of ethanoic acid <22.2 atm in(b)(ii), endothermic as yield / pp of ethanoic acid / conversion of reactants/ Kp is lower at lower temperature			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9}$ (c)(i)	No effect and other concentrations change to keep K_{p} constant / K K_{p} is only affected by temperature/ as equilibrium moves (right) to keep K constant / change in pressure does not change K_{p}	As K is a constant	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9}$ (c)(ii)	Yield increased to restore fraction / quotient / partial pressure ratio back to K		
	ALLOW (equilibrium moves) to use up the methanol / answers based on entropy or Le Chatelier	Just Coquilibrium moves to the right'	
inadequate explanations scores 1 mark in (c)(ii)			

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{1 9}$ (d)	Mark independently Reaction can occur at lower temperature / has lower activation energy / requires less energy (1) less fuel needed / fewer emissions (from fuels) / fewer raw materials needed / less natural resources used (1) OR	Answer based on car exhaust emissions		$土$ 2 \quad	Enables use of an alternative process with
:---					
higher atom economy (1)					
fewer raw materials needed / less natural					
resources used (1)	\quad				
:---					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (a) (i)}$	Correct answer with or without working scores $\mathbf{2}$ marks $\left[\mathrm{H}^{+}\right]=\left(1.00 \times 10^{-14} / 0.250\right)=4 \times 10^{-14} \quad$ (1) $\mathrm{pH}=(13.39794=) 13.4$ (1) $\mathbf{O R}$ $\mathrm{pOH}=-\log 0.250=0.602$ (1) $\mathrm{pH}=(13.39794=) 13.4$ (1) ALLOW TE in second mark if error in $\left[\mathrm{H}^{+}\right]$calculation gives pH more than 7 3 or more sf IGNORE rounding errors e.g. accept 13.39	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0}$ (a)(ii)	$\left(\mathrm{K}_{\mathrm{a}}=\right) \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$ (1) $\mathrm{ALLOW}^{\mathrm{H}_{3} \mathrm{O}^{+} \text {instead of } \mathrm{H}^{+}}$ $\frac{\left[A^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HA}]}$ if key to symbols given IGNORE state symbols $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
20 (a)(iii)	Correct answer with or without working scores 2 marks $\begin{align*} & 1.7 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{0.125} \tag{1}\\ & \\ & {\left[\mathrm{H}^{+}\right]=1.46 \times 10^{-3}} \\ & \mathrm{pH}=2.84 / 2.8(1) \end{align*}$ no TE from an incorrect $\left[\mathrm{H}^{+}\right]$		2

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2 0}$ (a)(iv)	$\mathrm{pH}=4.8 / 4.77$ (1) $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}}$ (when acid is half neutralized) (1)	$\mathrm{H}^{+}=\mathrm{K}_{\mathrm{a}}$		\quad 2 \quad	
:---					

Question Number	Acceptable Answers	Rej ect	Mark
$\mathbf{2 0}$ (a)(v)	Sigmoid curve starting between pH 2 and 4 (2.8), ending between pH 12 and 14 inclusive (1) with steep rise (may be vertical or gently sloping) of between 3-7 units between pH 6 and 12. Sloping section should not extend over more than $5 \mathrm{~cm}^{3} .(1)$ When 12.5 $\mathrm{cm}^{3}, \mathrm{NaOH}$ added. (1) ALLOW tolerance for grid Reverse curves lose first mark	$\mathbf{3}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 ~ (a) (v i) ~}$	First mark Thymolphthalein more suitable as it changes (from colourless to blue) in steep region of titration (pH 8.3 to 10.6)/ at the equivalence point / at the end point OR thymolphthalein has pH range in steep region of titration (1)	$\mathbf{2}$	
Second mark Methyl yellow changes (from red to yellow at pH 2.9 to 4) before equivalence point / before the end point / doesn't change in steep section OR Methyl yellow has pH range before / outside steep region of titration (1)	ALLOW 'Thymolphthalein more suitable as it changes at the equivalence point but methyl yellow does not.' This scores 2 marks	OR OR First mark pK in ± 1 must lie within vertical region on titration curve (1) Second mark hence thymolphthalein is suitable and methyl yellow is not (1)	

Question Number	Acceptable Answers	Rej ect	Mark
$\mathbf{2 0}$ (b)	Sodium ethanoate/ $\mathrm{CH}_{3} \mathrm{COONa}$ Potassium ethanoate $/ \mathrm{CH}_{3} \mathrm{COOK}$	Use of sodium hydroxide (because it's in food)	$\mathbf{1}$

Question Number	Acceptable Answers	Rej ect	Mark
21 (a)(i)	$\begin{align*} & \Delta S_{\text {system }}^{9}=109.2+(6 x 69.9)-343 \text { (1) } \\ & =(+) 185.6\left(\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) /(+) 186(\mathrm{~J} \mathrm{~mol}\right. \tag{1} \end{align*}$ OR $(+) 0.186\left(\mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ IGNORE units even if incorrect correct answer with no working scores 2 Value using 1 for $\mathrm{H}_{2} \mathrm{O}=-163.9$ scores 1 Use of value for $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ (188.7) gives $898.4\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ (1) correct value with incorrect sign scores 1	185	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1}$ (a)(ii)	Yes as (solid and) liquid forms (from solid) / number of moles increases	Disorder increases, with no ref to ORuid or number of moles	$\mathbf{1}$
	If $\Delta \mathbf{S}_{\text {system }}$ in (i) is negative the sign is not as expected as liquid forms from solid / number of moles increases		

Question Number	Acceptable Answers	Reject	Mark
21 (a)(iii)	First mark $\begin{equation*} \Delta S_{\text {surroundings }}^{s}=\frac{-88.1 \times(1000)}{298} \tag{1} \end{equation*}$ Second mark $\begin{aligned} & =-295.6375 \\ & =-295.6 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$ correct units must be shown but order not important OR $-0.2956 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}(\mathbf{1})$ correct units must be shown but order not important correct answer with or without working and correct units scores (2) ignore sf except 1 correct value with positive sign scores 1		2

Question Number	Acceptable Answers	Reject	Mark
21 (a)(iv)	$\begin{aligned} & (185.6-295.6) \\ & =-110(\mathrm{~J} \mathrm{~mol} \\ & \left.\mathrm{m}^{-1}\right) \end{aligned}$ OR $-0.110\left(\mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ could use 186 or 296 etc TE from (a)(i) and (iii) $(+) 602.8\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ if value for $\mathbf{6 H} \mathbf{~} \mathbf{O}(\mathrm{g})$ was used in (a) (i) $-459.5\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ if value for one $\mathrm{H}_{2} \mathrm{O}$ was used in (a) (i)	Answers where values in J are added to kJ	1

Question Number	Acceptable Answers	Rej ect	Mark
$\mathbf{2 1 (a) (v)}$	Decomposition (at 298 K) will not occur as $\Delta S_{\text {total }}$ is negative / Reactions are only spontaneous if total entropy change is positive ldecomposition not thermodynamically feasible / (hydrated cobalt chloride) is thermodynamically stable	$\mathbf{1}$	
TE if answer to (a)(iv) is positive showing decomposition (at 298 K) may occur OR	Positive total entropy change doesn't indicate rate of reaction		

Question Number	Acceptable Answers	Rej ect	Mark
$\mathbf{2 1}$ (b)(i)	First mark Thermometer (1) Second mark (dependent on first) depends on choosing thermometer as temperature change is small / (\%) error in balance smaller than for temperature reading (\%) error in pipette smaller than for temperature reading (can be shown by calculation) / as scale with greater degree of precision needed / scale with more graduations needed (1) IGNORE any references to 'accurate thermometer'	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2 1 (b) (i i) ~}$	Use more cobalt chloride / less water (1) To increase temperature rise (1) Mark independently	J ust 'use more reactants' Use more cobalt chloride and more water	$\mathbf{2}$		
repeat expt					
add a lid or					
extra					
insulation to					
beaker				\quad	use distilled
:---					
water	\quad.				

Question Number	Acceptable Answers	Reject	Mark
$21 \text { (c)(i) }$ QWC	Radius (of cation) increases (down group) OR any two values of radius: $\mathrm{Mg}^{2+}=0.072, \mathrm{Ca}^{2+}=0.100 / \mathrm{Sr}^{2+}=0.113(\mathrm{~nm})$ data may be shown beside the table (1) Radius $\mathrm{Co}^{2+}=0.065 \mathrm{~nm}$ OR Co^{2+} radius smaller than other ions (1) Data on EITHER Co^{2+} OR data showing increase in radius down Group II required for BOTH of first two marks Force of attraction between ions decreases (as radius of ions increases) / charge density of ions decreases / negative ion can come closer to nucleus of positive ion (1) ALLOW "weaker ionic bonds" Predict lattice energy -2550 to $-2900\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (1) IGNORE sign	Atomic radii unless ionic radii also given Radius of cobalt chloride Polarising power decreases	4

Question Number	Acceptable Answers	Rej ect	Mark
21 (c)(ii)	First mark Qeference to enthalpy of hydration (may be in equation $\Delta \mathrm{H}_{\text {solution }}=-$ LE $+\Delta H_{\text {hydration }}$ (1) Second mark Solubility depends on relative size of lattice energy and enthalpy of hydration (1) Third mark EITHER Solubility more likely if $\Delta H_{\text {solution }}$ is negative OR	$\mathbf{3}$	
(If $\Delta H_{\text {solution }}$ is positive,) may / will dissolve if			
$\Delta \mathrm{S}_{\text {total }}$ is positive			
ACCEPT solvation instead of hydration			

Question Number	Acceptable Answers	Reject	Mark
21 (d) QWC	First mark Third ionization energy high(er) for $\mathrm{Mg} / \mathrm{Mg}=$ $7733 \mathrm{~kJ} \mathrm{~mol}^{-1}$, (third ionization energy for $\mathrm{Co}=$ $3232 \mathrm{~kJ} \mathrm{~mol}^{-1}$) (1) Second mark (Third ionization energy for Mg is high) because the electron is being removed from an inner shell / full shell / $2 p$ level / $2 p$ orbital (1) OR Not compensated by higher lattice energy for Mg^{3+} (and so $\Delta \mathrm{H}_{\text {formation }}$ of MgCl_{3} would be highly endothermic) (1)		2

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA023636 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

