

Mark Scheme (Final) January 2009

GCE

GCE Chemistry (6246/02)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

- 1 / means that the responses are alternatives and either answer should receive full credit.
- 2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
- 3 [] words inside square brackets are instructions or guidance for examiners.
- 4 Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.
- 5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
1 (a)	Add starch when iodine colour			3
	almost disappeared / (pale)			
	straw/pale yellow (1)			
		Allow grey ppt.		
	Otherwise iodine-starch complex	since in the		
	/black /blue-black solid	experiment the		
	precipitates /formed(1)	flask will		
		contain the		
	Blue to colourless (1)	white solid Cul		

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number			-	
1 (b)	In the calculation ignore	Notes		7
	significant figures unless the			
	answers rounds to 1 during the	Allow error carried		
	calculation	forward.		
	Silver	Penalise an error only		
	Mass of AgCI = 0.244g	once in any part of the		
	Mass of Ag = <u>0.244 x 108</u> (1)	calculation if this is then		
	143.5	carried forward correctly		
	= 0.183(6)g	to give a percentage.		
	× A 0.4007 400			
	$\% \text{ Ag} = 0.1836 \times 100$			
	1.4U 12 1(1)%(1)			
	= 13.1(1)%(1)			
	Copper			
	Moles of thio used			
	= 38.45 x 0.1 (1)			
	1000			
	= 3.845 x 10 ⁻³			
	_			
	Moles of Cu ²⁺			
	= <u>38.45 x 0.1</u> (1)			
	1000			
	$= 3.845 \times 10^{-3}$			
	Mass of Cu			
	$= 38.45 \times 0.1 \times 63.5$ (1)			
	- <u>30.43 × 0.1 × 03.</u> 5 (1) 1000			
	= 0.244(1)g			
	- 3.2 1 (1/9			
	Nov. 0.244 v 100			
	$\%CU = 0.244 \times 100$			
	1.40			
	= 1/.4(4)% (1)			
	Gold			
	Calculate percentage of gold by			
	difference			
	100 - (13.1 + 17.4) = 69.5% (1)			
	Consequential on % of silver and	Allow 69.4%		
	copper no matter what the			
	answers			

Question Number	Correct Answer		Acceptable Answers	Reject	Mark
2 (a)(i)	i) M ²⁺ (g) + X ²⁻ (g)		Allow lattice	$\Delta H_{solubility}$	3
	- Lattice energy	Σ enthalpies of hydration of ions	energy with arrow the other way and positive sign.		
	MX(s)		l think we allow it as		
	$\Delta H_{\text{Solution}} = M^{2+}(aq) + X^{2-}(aq)$. <u> </u>	question is not direction		
	OR M ²⁺ (g) + X ²⁻ (g])	specific		
	$-\Delta H_{\text{latt}}$ ΔH_{hyd}	$\Delta H_{\rm hyd}$			
	$MX(s) \longrightarrow M^{2+}(aq) + X^{2-}$ $\Delta H_{solution}$	(aq)			
	Species with state symbols charge must be $+2/-2$ (1) $\Delta H_{\text{Solution}}$ labelled on arrow showing so ions (1) LE and enthalpies of hydration of ions	lid to aqueous labelled (1)			

		5	marit
1 st mark EITHER Solubility is balance between lattice energy and hydration energy OR heat released on hydration must compensate for heat needed to break up lattice OR $\Delta H_{solution} = -lattice energy +$ Σ hydration energies (1) This equation scores the mark and could be in quoted as part of the energy cycle			4
2 nd mark Both lattice energy and hydration energy decrease as cations get larger/ ionic radius increases (1)	lons (place of cations) Become less exothermic		
3^{rd} mark But hydration energy decreases more /lattice energy decreases less / both decrease but ΔH_{LE} is less significant(because of large anion size) (1) 4^{th} mark So enthalpy of solution becomes more endothermic down the group / less exothermic (hence less exothermic (hence less	Reference to atoms not ions penalise once If no change in LE in second mark carry forward this error to third mark? This does not apply to hydration energy		
	1st markEITHERSolubility is balance betweenlattice energy and hydrationenergyORheat released on hydrationmust compensate for heatneeded to break up latticeORΔHsolution = -lattice energy +∑hydration energies (1)This equation scores themark and could be in quotedas part of the energy cycle2 nd markBoth lattice energy andhydration energy decrease ascations get larger/ ionicradius increases (1)3 rd markBut hydration energydecreases more /latticeenergy decrease less /both decrease but ΔHLE isless significant(because oflarge anion size) (1)4 th markSo enthalpy of solutionbecomes more endothermicdown the group / lessexothermic (hence lesssoluble)(1) Stand alone	1^{st} mark EITHER Solubility is balance between lattice energy and hydration energy OR heat released on hydration must compensate for heat needed to break up lattice OR $\Delta H_{solution} = -lattice energy +\Sigmahydration energies (1)This equation scores themark and could be in quotedas part of the energy cycleIons (place ofcations)Become lessexothermic2^{nd} markBoth lattice energy andhydration energy decrease ascations get larger/ ionicradius increases (1)Ions (place ofcations)Become lessexothermic3^{rd} markBut hydration energydecreases more /latticeenergy decreases less /both decrease but \Delta H_{LE} isless significant(because oflarge anion size) (1)Reference to atomsnot ions penaliseonce4^{th} markSo enthalpy of solutionbecomes more endothermicdown the group / lessexothermic (hence lesssoluble)(1) Stand aloneIf no change in LE insecond mark carryforward this error tothird mark? Thisdoes not apply tohydration energy$	1st mark EITHER Solubility is balance between lattice energy and hydration energy OR heat released on hydration must compensate for heat needed to break up lattice OR OR

Ouestion	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (b)(i)	van der Waals / London / dispersion / induced dipole/instantaneous dipole - instantaneous dipole (1) Hydrogen bond(1)			2
	Ignore Dipole-dipole interactions but if give THREE answers one of which is wrong max 1			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (b)(ii)	The acid /COOH group (1)			2
	Can form hydrogen bonds			
	with the water(1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iii)	Energy released on formation of intermolecular forces (between aspirin and water) is less than the energy required to overcome the existing intermolecular forces OWTTE Or Large hydrophobic benzene ring /non-polar ring/non- polar group leads to low solubility Or Hydrogen bonds formed fail to overcome the hydrophobic effect of the benzene ring (1)	"strength of forces" instead of "energy"	Any reference to breaking of molecule or bonds with molecules score zero	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iv)	It is ionic and the ions can be hydrated providing enough energy to cause it to dissolve or Strong interaction between water and ions (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	Methanol / CH ₃ OH (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(ii)	Ethanoyl chloride / CH₃COCI(1)	(CH ₃ CO) ₂ O or name	CH ₃ COCI solution	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (c)(iii)	Sodium hydroxide / NaOH			1
	OR sodium carbonate / Na ₂ CO ₃			
	OR sodium hydrogen			
	carbonate/NaHCO ₃ (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	CH ₃ COOC ₆ H ₄ CO ₂ Na + HCI CH ₃ COOC ₆ H ₄ CO ₂ H + NaCI(1) Salicylic acid is a weaker acid / HCI is a stronger acid / Salicylate ions are a base(1)		If draw benzene ring it must be correct	2

Question Number	Correct Answer		Acceptable Answers	Reject	Mark
2 (e)	O $CH_2 - O - C - R_1$ $CH - O - C - R_2 + 3CH_3OH \longrightarrow R_1CO_2CH_3 + R_2CO_2CH_3 + R_3CO_2CH_3 + \frac{1}{O}$ $CH_2 - O - C - R_3$ O	СН₂ОН СНОН СН₂ОН			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)	$H_{o}^{x} C_{o}^{x} C_{o}^{x} O_{o}^{x} N_{o}^{o}$ $H_{o}^{x} C_{xo}^{xo} N_{o}^{o}$ $H_{o}^{x} C_{o}^{x} N_{o}^{o} N_{o}^{o}$ $H_{o}^{x} C_{o}^{x} N_{o}^{o} N_{o}^{o}$	Dots or crosses		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (b)(i)	$\begin{array}{rcl} HCN &\rightleftharpoons H^{+} + CN^{-} \\ \mathcal{K}_{a} &= \underbrace{[H^{+}] \ [CN^{-}]}_{[HCN]} &= \underbrace{[H^{+}]^{2}}_{[HCN]} \\ \\ \underbrace{[HCN]} & [HCN] \\ \\ \underbrace{[H^{+}]^{2}}_{0.220} &= 4.90 \text{ x } 10^{-10} \text{ (1)} \\ \\ 0.220 \\ \\ \hline \\ [H^{+}] &= \sqrt{4.90} \text{ x } 10^{-10} \text{ x } 0.220 \\ \\ \\ &= 1.038 \text{ x } 10^{-5} \text{ (1)} \\ \\ pH &= -\log_{10} 1.038 \text{ x } 10^{-5} \end{array}$			3
	= 4.98(4) (1) Allow 5.00 Correct answer with no working (3)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	100 % dissociation would give 0.220 mol dm ⁻³ Actual figure 1.038 x 10 ⁻⁵ mol dm ⁻³ % dissociation = <u>1.038 x 10^{-5 -} x 100(1)</u> 0.220 = 4.72 x 10 ⁻³ %(1) Answer must be the 3 sig.figs Cq on [H ⁺] (i)	If use 1.04 x 10 ⁻⁵ then get 4.73 x 10 ⁻³ %		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(i)	H $CH_3 - C = 0$ (1) (1	H⁺ in place of HCN		3

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (c)(ii)	(A nucleophile is a) species		Just "species which	1
	that can donate a (lone) pair		attacks a postive / δ^{+}	
	of electrons to form a		site"	
	covalent bond (1).		A negative ion	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(iii)	cyanide ion / CN ⁻ (1) HCN is a weak acid so CN ⁻ removed CN ⁻ reacts with H ⁺ CN ⁻ is a base so reacts with	Equation and statement that equilibrium moves		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)	$\begin{array}{rcl} CH_{3}CI &+ & KCN \longrightarrow CH_{3}CN &+ & KCI \\ OR \\ CH_{3}CI &+ & CN^{-} \longrightarrow CH_{3}CN &+ & CI^{-} \\ (1) \\ Ignore state symbols \\ Nucleophilic substitution(1) \end{array}$			2

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers	_	
3 (e)	H H H = H H H H H H H H H H H H H H H H	Other routes can score but they must go via a cyanide (in question) Correct route via a Grignard reagent to the acid chloride scores Max 5 (it does not answer the question actually asked)		6
	H H CICO ₂ C - C CO ₂ CI H H	Or Hydrogen/ Ni In place of LiAIH ₄		
	Marking 1 mark for each of the three intermediate compounds			
	5 reagents= (3)3 reagents= (2)2 reagents= (1)			
	The reagent marks can only be awarded for parts of correct sequences			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	Value of K will decrease (1) This mark is stand alone \therefore [SO ₃] must decrease so that the fraction equals the new /lower K (1) Not stand alone			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii) QWC	No change in value of K(1) This mark is stand alone the fraction gets smaller /decreases (because there are more molecules on the left) (1)			3
	Equilibrium moves to the right (so that the fraction equals the value of K) so concentration of SO ₃ increases (1)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (a)(iii)	No change in value of K (or in the value of the fraction) No change in equilibrium yield of SO ₃ (1)	No change because catalysts only alter rate not yield OWTTE		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)	Average KE of molecules increases/molecules move faster/molecules have more energy / (1)			3
	a greater fraction of collisions will have energy greater than activation energy(1)			
	Greater proportion of collisions are successful (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(i)	Temperature must be high enough to give a reasonable rate(1) Too high and yield would drop dramatically(1) e.g. High temp gives a low yield but low temp will slow the rate and so a compromise is chosen" (2)			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(ii)	Higher pressure not necessary as conversion 425°C and 2 atm is very high / ~98% (1) Ignore costs			1

	-		-	
Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (c)(iii)	Since reaction is exothermic	Allow reference to		2
	the temperature will rise (1)	equilibrium moving		
	Which would decrease the	for second mark?		
	yield unless cooled (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(i)	$2H_2SO_4 + HNO_3 \rightarrow H_3O^+ + NO_2^+ + 2HSO_4^-$ OR $H_2SO_4 + HNO_3 \rightarrow H_2O + NO_2^+ + HSO_4^- (1)$ OR both of: $H_2SO_4 + HNO_3 \rightarrow H_2NO_3^+ + HSO_4^-$ then $H_2NO_3^+ \rightarrow H_2O + NO_2^+$ OR $H_2NO_3^+ + H_2SO_4 \rightarrow H_3O^+ + NO_2^+ + HSO_4^-$			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (d)(ii)	The sulphuric acid is a			1
	stronger acid and so			
	protonates the nitric acid			
	OR			
	Nitric acid is a weaker acid			
	and so is protonated			
	(1)			

Question Correct Answer	Acceptable	Reject	Mark
-------------------------	------------	--------	------

Number		Answers	
4 (d)(iii)	Mechanism		3
	$(1) \xrightarrow{CH_3} NO_2^+ (1) \xrightarrow{CH_3} NO_2$ $(1) \xrightarrow{(1)} + \xrightarrow{(1)} H \xrightarrow{(1)} HSO_4^-$		
	Ļ		
	CH ₃ NO ₂		
	1 mark for arrow from ring on to N of the NO_2^+ 1 mark for intermediate with positive charge shown and delocalisation not extending over carbon attached to NO_2 but covering the other carbons 1 mark for arrow from C - H bond into ring		

1	1