

Mark Scheme (Final) January 2009

GCE

GCE Chemistry (6245/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

- 1 / means that the responses are alternatives and either answer should receive full credit.
- 2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
- 3 [] words inside square brackets are instructions or guidance for examiners.
- 4 Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.
- 5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

Question Number	Correct Answer			Acceptable Answers	Reject	Mark				
1 (a)								Half arrows or just		2
				3d			4	vertical lines		
							S			
	Cu⁺	ţ↑	ţ	ţ↑	ţ↑	ţ				
	Cu ²⁺	ţţ	ţ	ţ	ţ	ſ				
	1 mark for each row									

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i) QWC	ligands split <i>d</i> orbitals (1) This first mark is stand alone	If sequence in wrong order eg jump then absorb		3
	absorb light in (part) of visible region/all colours except blue(1) Stand Alone	Or any implication that this is an emission		
	causes electron to jump / be promoted to a new level (1)	spectra then only first mark (orbitals splitting) available		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)	No ligands to split (d) orbitals (1) Implication that all d orbitals the same	No complex ion /water ligand present	Full so cannot jump	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(i)	X CuCl OR Cu_2Cl_2 OR copper(I) chloride(1) allow cuprous chloride CuCl ₂ + Cu \longrightarrow 2CuCl or CuCl ₂ + Cu \longrightarrow Cu ₂ Cl ₂ (1)	Allow HCI on both sides		2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (c)(ii)	Redox (1)	Reduction		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(iii)	$Cu(NH_3)_2^+$ (1)			1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
1 (c)(iv)	The copper(I) ion has a full <i>d</i> (sub) shell/d ¹⁰ OR All <i>d</i> orbitals are full (1) (so <i>d-d</i> transitions impossible) Or No partly filled d		d orbitals not splitting	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
	$C_{\rm U}(\rm NH)^{2+}$		$C_{\rm L}(\rm NH)^{2+}$	1
				1
	Or		And	
	$[Cu(NH_3)_4(H_2O)_2]^2$ (1)		$Cu(NH_3)_2$	
	[] not essential			

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
2 (a)	Nucleophilic substitution (1)	Hydrolysis		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	Expt 1 and 2/concentration of 1-brombutane constant Concentration of hydroxide trebled, rate x3 First order with respect to OH- (1) Expt 2 and 3/concentration of hydroxide constant. Concentration of 1-bromobutane x4, rate x4. First order with respect to 1-bromobutane.(1) If both orders given with no explanation 1 (out of 2) Rate = k[1-bromobutane] [hydroxide] (1)			3
	mark rate equation consequently.			

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
2 (b)(ii)	HO ⁻ : R H H R H H H H H H H H	•		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	The $S_N 1$ mechanism involves the production of a planar intermediate (1) which can be attacked from both sides(of the plane)(1) producing a racemic mixture/ equal amounts of both isomers/ both enantimorphs (1) last mark stand alone The $S_N 2$ mechanism Either involves attack from opposite side to Br Or would produce a single (inverted) optical isomer or single enantiomorph Or Attack from one side only Or Intermediate not planar (1)			4

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
2 (c)(ii)	The RDS is the slowest step (in a multi-step mechanism)	References		2
	(1)	to those		
		species in		
	Breaking of bond between carbon and bromine/formation	the rate		
	of carbocation / carbonium ion	equation		
	Or sketch to show this			
	Or equation (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(i)	H H H (1) H H H - C = C - CH ₃ H - Br (1) H H - C - C ⁺ - CH ₃ H (:)Br ⁻ (1) H H H H - C - C - C ⁺ - CH ₃ H (:)Br ⁻ (1) H H H H - C - C - CH ₃ H H H H - C - C - CH ₃ H H H H Br If charge on wrong carbon leading to 1-bromoproduct only the 1 st			3
				1

Question	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(ii)	Secondary intermediate/carbocation is the more stable (1) Or reverse argument Or drawings	Answers	Secondary bromopropane is more stable	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (b)	EITHER only consider changes			3
	Bonds broken			
	$3 \times C = C = 3 \times 612 = (+)1836$			
	$3 \times H - H = 3 \times 436 = (+)1308$			
	(+)3144			
	Bonds formed			
	$3 \times C - C = 3 \times 347 = (-)1041$			
	$6 \times C - H = 6 \times 413 = (-)2478$			
	(-)3519 (1)			
	Enthalpy change = $3144 + (-3519)$			
	=-375 kJ mol ⁻¹ (1)			
	OR break and make all bonds			
	Panda brokon			
	$3 \times C_{-} C_{-} = 3 \times 347_{-} = (+)1041_{-}$			
	3 x C = C = 3 x 612 = (+)1836			
	6 x C - H = 6 x 413 = (+)2478			
	$3 \times H - H = 3 \times 436 = (+)1308$			
	(+)6663 (1)			
	Bonds formed			
	$6 \times C - C = 6 \times 347 = (-)2082$	+375 is worth 2 marks		
		since only one error.		
	12 x C - H = 12 x 413 = (- <u>)4956</u>			
		mark the third mark		
	(-)7038 (1)	consequentially		
	Enthalpy change = $6663 + (-7038)$			
	=-375 (kJ mol ⁻¹			
)(1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(i)	The unused p electron orbitals overlap (sidewayst to produce a π system that extends over the whole ring of carbon atoms) (1) Diagram (1)		Any suggestion that sigma bond being formed	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(ii)	Addition would disrupt the delocalised π system (1) Substitution restores or retains the delocalised π system and this has greater (energetic) stability (1)	Allow reverse argument		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(i)	One in which the solute shows high solubility in hot but low in cold (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(ii)	Firsthot filtration/ second step (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(iii)	Soluble impurities will not crystallise out after cooling OR Soluble impurities remain in solution after cooling OR Cold solution is not saturated with the impurities (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(iv)	To remove any impure solvent/solution on crystals (1) Must be idea of liquid not solid Allow remove any soluble impurities still in the solution			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(v)	Minimum (volume) of hot solvent OR wash with (ice-)cold solvent OR I st filtration so that crystals not removed. (1)	"Bullets 1, 2 or 5"		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4	Diagram Stand alone Lozenge drawn (1) At least 2 horizontal and 2 vertical tie bars starting at 50/50 mixture (1) Explanation - stand alone Vapour richer in the more volatile component/ hexane (1) (Evaporates,)condenses and reboils(1) Pure hexane distilled off (1) If say heat at 69 °C and boil off hexane NO marks for explanation			5

	Question Number	Correct Answer	Acceptable Answers	Reject	Mark
S(d) $ \frac{Carbon Hydrogen Oxygen}{81.82 6.06 12.12} $ $ \frac{1}{12} \frac{6.06}{1} \frac{12.12}{16} (1) $ $ = 6.818 = 6.06 = 0.7575 $ $ \frac{6.818}{0.7575} 0.7575 0.7575 $ $ = 9 = 8 = 1 (1) $ Empirical formula = C ₉ H ₈ O EF mass = 132 ∴ Molecular formula = C ₉ H ₈ O (1) Marking 1 mark for division by Ar 1 mark for division by smallest 1 mark for division by smallest 1 mark for division by smallest 1 mark for showing EF = MF by use of 132 Note the third mark is for showing that their EF adds up to 132 OR % C = <u>9x12x100</u> = 81.82 (1) 132 % O = <u>16x100</u> = 12.12 132 % O = <u>16x100</u> = 12.12 0R by difference for which ever one is not calculated(1)	S(a)	Carbon Hydrogen Oxygen $\underline{81.82}$ $\underline{6.06}$ $\underline{12.12}$ 12 1 16 (1) = 6.818 = 6.06 = 0.7575 $\underline{6.818}$ $\underline{6.06}$ $\underline{0.7575}$ 0.7575 0.7575 0.7575 $= 9$ = 8 =1 (1) Empirical formula = C ₉ H ₈ O EF mass = 132 Molecular formula = C ₉ H ₈ O (1) Marking 1 mark for division by Ar 1 mark for division by smallest 1 mark for showing EF = MF by use of 132 Note the third mark is for showing that their EF adds up to 132 OR $\%$ C = $\underline{9x12x100}$ = 81.82 (1) 132 $\%$ H = $\underline{8x1x100}$ = 6.06 (1) 132 $\%$ O = $\underline{16x100}$ = 12.12 132 OR by difference for which ever one is not calculated(1)			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(i)	Carbonyl group OR Aldehyde or ketone (both needed) OR C=O group (1)			1

Question	Correct Answer	Acceptable Answers	Reject	Mark

Number			
5 (b)(ii)	Aldehyde/CHO OR "Not a ketone" if mark awarded in (i) (1)		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
5 (b)(iii)	Must have (one) C=C (1)	Alkene		1
		Ignore unsaturated		
		group		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(i)	C = C - C = 0 $ $ $H H H$		Side chain EXCLUDED BY QUESTION	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(ii)	Br H Br H \leftarrow C - C - C = 0 \mid \mid \mid H H H (1) for correct structure or with the bromine on carbon 2 (1) mark for indentification of chiral centre	If give side chain in 5(c)(ii) allow marks here consequentially		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(iii)	Substitution in the benzene ring (1) Addition to side chain (1) OR Substitution in the benzene ring (1) Different positions around the ring/multiple substitution (1)	Reacts by substitution and addition without clarification 1 mark only	Nucleophilic substitiution	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (a)	(dirty/grey) green ppt (1) (Then a dark) green solution (1) This mark does not depend on the colour of the ppt.	Any green		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)(i)	 1st mark Both directions of change of position of equilibrium given (1) 2nd mark Explanation involving H⁺ in each case(1) 			2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
6 (b)(ii)	Oxidation number of Cr in $Cr_2O_7^{2-}$ and CrO_4^{2-}		No change in	1
	is +6. (1)		ON of Cr	
	Actual oxidation number of Cr must be			
	stated			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
6 (c)(i)	$2Cr^{3+} + Zn \Rightarrow 2Cr^{2+} + Zn^{2+}$ (1)	Multiples		1
	Ignore state symbols			

Question	Correct Answer	Acceptable Answers	Reject	Mark
	10^{2+} 7^{2+} 10^{2+} 7^{2+} 10^{2+}	Multiples		1
6 (C)(II)	$Cr^2 + Zn \Rightarrow Cr + Zn^2$ (1)	Multiples		1
	Ignore state symbols			
Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
6(c)(iii)	E° for Zn reducing Cr ³⁺ going to Cr ²⁺ is+ 0.35	Answers based on other		2
	(V)	use of the data eg. As		
	and	cell diagrams and loss		
	E° for reducing Cr ²⁺ to Cr = -0.14(V) (1)	of electrons can score		
	Both required for 1 mark	full marks		
	because E° for second reaction is negative /	Must be some reasoning		
	not feasible(1)	for second mark		
	Second mark consequential on figures in			
	first part.			
	Note			
	If both E values correct final product is Cr ²⁺			
	If E_1 and E_2 are both calculated as +ve - final			
	product is Cr			
	If F_1 and F_2 both calculated as negative final			
	product is Cr^{3+}			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
6 (d)	Two possible routes ignore sig figs	Alternative routes are		5
	1 at manufa	possible for full marks		
	IST MARK	Notos		
	= 10.00 × 0.0126 (1)	If use E6 (Ee) in place		
	1000	of 132 they get 21.7%		
	$= 2.584 \times 10^{-4}$ mol	or 132 they get 21.7%.		
	2nd mark			
	Mols of iron =			
	<u>6 x 19.00 x 0.0136</u> (1)			
	1000			
	= 0.00155 mol (1.550 x 10 ⁻³)			
	3rd mark			
	Total amount in 250 cm^3			
	$= 10 \times 6 \times 19.00 \times 0.0136$ (1)			
	1000			
	= 0.0155 mol (1.55 x 10 ⁻²)			
	OR			
	= 0.00155 (1)			
	-0.025			
	4th mark			
	Mass of iron(II) sulphate			
	= <u>152 x10x6 x 19.00 x 0.0136</u>			
	1000			
	(1)			
	= 2.35/g			
	OP			
	Mass of EeSO, in 250 cm ³			
	$= 0.0620 \times 152$			
	4			
	= 2.357 g dm ⁻³			
	5th mark			
	Percentage of iron sulphate			
	<u>2.357 X 100</u>			
	4.00 - 58.9% (1) allow 59			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (e) QWC	I st mark Viable separation technique after reaction with heating with acidified potassium dichromate(VI) (1) e.g. If change in colour of dichromate from orange to green distil out product(as it is formed) 2 nd mark If no change in colour tertiary alcohol (1) 3 rd mark Either Test distillate of other two with Tollens' reagent If silver mirror aldehyde present and alcohol was primary (1) If no silver mirror ketone present and alcohol was secondary(1) OR Fehling's in place of Tollens' If answer just describes tests without chemical argument 1 out of the last two marks	If reflux to convert primary right through to acid and secondary to ketone. Allow dnp for ketone And a positive test for acid i.e not proof by elimination.		4