Mark Scheme (Final) January 2009

GCE

GCE Chemistry (6244/01)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

If more than the correct number of answers is given penalise (-1) for each wrong answer.
Answers can be A or a, etc.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i)}$	A (1) E (1)			$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (a)(ii)	B (1) F (1)			$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (a)(iii)	A (1) C (1) D (1)			$\mathbf{3}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (a)(iv)	A (1) D (1)			$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)	Cis isomer (1) and trans isomer (1) of any of the following (trans isomer only shown):	Isomers based on cyclobutane or methylcyclopropane Molecules with bond angles 90° provided that the cis and trans structures are clearly different. Allow any other structure that is plausible. Allow CH_{3} - etc	Bonds shown as: $\begin{aligned} & \mathrm{CH}_{2} \mathrm{OH}- \\ & -\mathrm{CH}_{3} \mathrm{O} \\ & -\mathrm{HO} . \end{aligned}$ Penalise once only if cis and trans otherwise correct. Any cis and trans isomers of molecules other than $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$.	2

Questio n Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (a)}$	Dilute: small amount of (ethanoic) acid in large volume of water/solvent (1) OR low concentration (1)	Low concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$or H^{+}ions; less concentrated; water added to lower the concentration; high concentration of water; dissolved in excess water	$\mathbf{2}$	
	Weak: slightly ionised (1) OR low concentration of hydrogen ions $/ \mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}^{+}$compared with the concentration of the acid (1)		very dilute; not fully ionised; partially ionised; incompletely ionised; dissolved in excess water; any argument based on pH	

Questio n Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \frac{\left.\mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}\right.$ Ignore $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3}-\mathrm{O}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$ if it appears after the correct expression. If it is the only answer given it scores (0)	$\begin{aligned} & -\mathrm{CO}_{2}^{-} \text {for }-\mathrm{COO}^{-} \\ & {\left[\mathrm{H}^{+}\right] \text {for }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]} \end{aligned}$	any expression including [$\mathrm{H}_{2} \mathrm{O}$; [HA] instead of [$\mathrm{CH}_{3} \mathrm{COOH}$].	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iii)	First mark $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$because all $\mathrm{H}_{3} \mathrm{O}^{+}$is from the acid or none/insignificant amount of $\mathrm{H}_{3} \mathrm{O}^{+}$comes from water Second mark In the denominator $6.31 \times 10^{-4} \ll 0.025 \text { (so can }$ be ignored) OR because degree of ionisation is very small or negligible then $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.025(1)$ If the answer to part (ii) uses $0.025-6.31 \times 10^{-4}$ in the calculation score this $2^{\text {nd }}$ mark then ignore any other second assumption(s) suggested even if they are wrong. Ignore any references to 'standard temperature'.	Use of $\left[\mathrm{H}^{+}\right]$for [$\mathrm{H}_{3} \mathrm{O}^{+}$]	$\text { Just }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$ on its own	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	$\mathrm{I}^{\text {st }}$ mark			4
	The mixture is a buffer (1)			
	$2^{\text {nd }}$ mark			
	there are large amounts of			
	/a large reservoir of the acid			
	and its conjugate			
	$3{ }^{\text {rd }}$ mark			
	EITHER			
	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$		Not \rightleftharpoons for \rightarrow	
	$\rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}(1)$			
	OR both of			
	$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$	both equations in		
	$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$			
	and the equilibrium moves to			
	RHS.			
	$4^{\text {th }}$ mark			
	and so the ratio of /the			
	value of both [$\mathrm{CH}_{3} \mathrm{COOH}$] and			
	[$\mathrm{CH}_{3} \mathrm{COO}^{-}$] hardly changes (1)			
	Ignore any references to			
	addition of $\mathrm{H}_{3} \mathrm{O}^{+}$			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	Equilibrium moves to LHS			$\mathbf{2}$
	ER Equilibrium moves to reactants (1)	pH goes up/rises/increases (1) stand alone. If it is said that the equilibrium moves to RHS then score (0) overall.	Just 'becomes more alkaline', 'becomes less acidic' on its own.	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(i)	$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{p}\left(\mathrm{NH}_{3}\right)^{2}}{\mathrm{p}\left(\mathrm{N}_{2}\right) \mathrm{p}\left(\mathrm{H}_{2}\right)^{3}}$	(1)	$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{NH} 3}{ }^{2}}{\mathrm{P}_{\mathrm{N} 2} \mathrm{P}_{\mathrm{H} 2}{ }^{3}}$ $\mathrm{p}^{2}\left(\mathrm{NH}_{3}\right)$ etc Ignore the position of brackets.	Any use of square brackets []

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(ii)	$\begin{aligned} & \mathrm{p}\left(\mathrm{NH}_{3}\right)=\frac{0.2 \times 160}{3.8}=8.42 \mathrm{~atm} \\ & \mathrm{p}\left(\mathrm{~N}_{2}\right)=\frac{0.9 \times 160}{3.8}=37.9 \mathrm{~atm} \\ & \mathrm{p}\left(\mathrm{H}_{2}\right)=\frac{2.7 \times 160}{3.8}=114 \mathrm{~atm} \end{aligned}$ (1) for dividing moles of gas by 3.8 (1) for multiplying by 160 (1) for all three values, and the unit given at least once. Answers to 2 s.f. or more otherwise max (2) All three answers to 2 s.f. or more with the unit scores (3) whether working shown or not.	$\begin{aligned} & \frac{160}{19} \mathrm{~atm} \\ & \frac{720}{19} \mathrm{~atm} \\ & \frac{2160}{19} \mathrm{~atm} \end{aligned}$ $x 160$ atm for the unit mark even if not stated again		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}(\mathrm{a})(\mathrm{iii})$	$\mathrm{K}_{\mathrm{p}}=\frac{(8.42)^{2}}{(37.9)(114)^{3}}$ $=1.26 \times 10^{-6}\left(\mathrm{~atm}^{-2}\right)(\mathbf{1)}$	$1.26 \times 10^{-6}\left(\mathrm{~atm}^{-2}\right)$ to $1.28 \times 10^{-6}\left(\mathrm{~atm}^{-2}\right)$ depending on the number of s.f. used. unit not necessary, but if given must be correct to score the mark.		$\mathbf{1}$
	CQ on values in (ii) and/or on an incorrect expression in (i).	CQ on K K_{p} being the wrong way up in (i) leads to $781250-$ $793650\left(\mathrm{~atm}^{2}\right)$		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b)	The reaction is exothermic because K K_{p} increases with decrease in temperature (1) Argument consequential on value of K_{p} from (a)(iii).	Any answer not based on values of K_{p}.	$\mathbf{1}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (c)(i)	Increases (1) Ignore any comment on yield	faster/quicker	sooner	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (c)(ii)	Increases (1) Ignore any comment on yield	faster/quicker; rate of forward and back reactions increase equally.	$\mathbf{1}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)	Any answer which states or implies that the value of K alters scores zero overall. First mark: K_{p} remains constant (1) Second mark: Increase of partial pressure increases the value of the denominator or decreases the value of the fraction (and causes the equilibrium to move to RHS or increases amount of product) (1) Third mark: Hydrogen partial pressure is raised to power 3 or is cubed but nitrogen is raised only to power 1 so the doubling has greater effect. (1)	Maintain K_{p}	...decreases value of K_{p}. Any answer based on le Chatelier, i.e. not referring to K_{p}, does not score the second mark nitrogen partial pressure is raised to no power; nitrogen partial pressure is third order	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 (a)}$	2-amino-3-hydroxypropanoic acid (1)	3-hydroxy-2-amino- propanoic acid	Any answer based on the name of an alcohol; propionic instead of propanoic.	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 (b) (i)}$	H		CH2OH- on left	$\mathbf{1}$
	$\mathrm{HOCH}_{2}-\mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}$			
	NH_{2}			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)		$\begin{aligned} & \mathrm{NH}_{3}{ }^{+} \text {or } \mathrm{NH}_{3}{ }^{+} \mathrm{Cl}{ }^{-} \text {or } \\ & \mathrm{NH}_{3} \mathrm{Cl} \end{aligned}$	-HOOC	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iii)	 OR		$\mathrm{CH}_{3} \mathrm{OCO}-\text { for } \mathrm{CH}_{3} \mathrm{COO}-$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(i)	 OR exchange of any two substituent groups (not only H and NH_{2}) is acceptable. (1) for each isomer. The substituent groups can be in any order as long as the two isomers are mirror images. Structures that are clearly 3D score; it is not essential to use wedges. If the isomers are shown as mirror-imaged flat molecules (90° bond angles) then answer can score (1) only for both structures being correct.		Incorrect compound scores (0) overall	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4}$ (c)(ii)	(Angle of) rotation of plane of (plane) polarised (monochromatic) light (1) See answer to (c)(iii)		Twisting or bending or refracting or reflecting	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(iii)	One would rotate (plane polarised light) to the left or anticlockwise and one to the right or clockwise.	One rotates (plane polarised light) in positive direction, one in negative. Rotate (plane polarised light) in opposite directions (1) This can also be allowed if answer appears in (c)(ii) Do not penalise twist/bend/refract/reflect if they have been penalised in (c)(ii). If rotation is mentioned here but not in (c)(ii) then the mark for (c)(ii) can be awarded there, unless (c)(ii) is wrong when it scores (0)	$\mathbf{1}$	

| Question
 Number | Correct Answer | Acceptable Answers | Reject |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (d)(i) | | | |
| | If structures have bonds to the
 atoms at each end score (0)
 Brackets are not essential if one
 repeat unit is shown. | Allow inverse
 throughout, e.g. | |

| Question |
| :--- | :--- | :--- | :--- | :--- |
| Number | Correct Answer

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)	The energy change when one mol of an ionic solid or ionic lattice (1) is formed from ions in the gaseous state (1) OR The energy change when one mol of solid/lattice is formed from its ions in the gaseous state (2) Ignore any reference to standard state.	enthalpy change, heat change, enthalpy or heat evolved formed from its gaseous ions	Energy or enthalpy or heat required formed from gaseous atoms; 1 mol of gaseous ions	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)	Answer - $2053\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ with some working scores (3), with no working (2). Ignore wrong or no units. $\begin{aligned} (-859) & =(+180)+2(+122) \\ & +(+1468)+2(-349)+ \end{aligned}$ $\Delta \mathrm{H}_{\text {latt }}$ OR $\begin{array}{r} \Delta \mathrm{H}_{\text {latt }}=(-859)-(+180)-2(+122) \\ -(+1468)-2(-349) \end{array}$ (2) $\begin{equation*} \therefore \Delta \mathrm{H}_{\text {latt }}=-2053\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ The following errors may arise: Failure to multiply -349 by 2; answer of -1931 with some working scores (2), no working (1) Failure to multiply +122 by 2 ; answer of -2402 with some working scores (2), no working (1) Failure to multiply both the above by 2 ; answer of -2280 (1) Any algebraic or transcription error, penalise (1) each time.	Equivalent information using symbols for the energy changes, or words		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (c)(i)	Theoretical model is based on 100% ionic bonding (1) If experimental Born Haber value is different or more exothermic/bigger this is due to some covalency or some covalent character in the bonding (1)			$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(ii)	Any answer based on atoms scores (0) overall. First mark Be^{2+} (ion) or beryllium ion is smaller (than the Ba^{2+} (ion)) or Barium ion (1) OR Cations get larger down the group (and have the same charge) (1) Second mark Be^{2+} ion polarises/distorts the chloride ion more (than Ba^{2+} does), leading to covalency/covalent character (1) The opposite argument starting from barium ions (2)	Cation charge density decreases down the group.	$B e$ is smaller than Ba Atoms get larger down the group polarises the chlorine ion; polarises the chlorine; weakens the ionic bond; Be^{2+} ion being polarised. Any argument based on electronegativity differences	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6(a)	First mark	H^{+}for $\mathrm{H}_{3} \mathrm{O}^{+}$		3
	For showing reaction of PbO with $\mathrm{H}_{3} \mathrm{O}^{+}$ or any acid and with OH^{-}or any alkali, equations correct or not (1)			
	Second mark: any one of $\mathrm{PbO}+2 \mathrm{H}^{+} \rightarrow \mathrm{Pb}^{2+}+\mathrm{H}_{2} \mathrm{O}$			
	$\mathrm{PbO}+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{Pb}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$			
	$\mathrm{PbO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$			
	$\mathrm{PbO}+2 \mathrm{HCl} \rightarrow \mathrm{PbCl}_{2}+\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & \mathrm{PbO}+4 \mathrm{HCl} \rightarrow \mathrm{PbCl}_{4}^{2-} \\ &+2 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$		
	$\begin{equation*} \mathrm{PbO}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{PbSO}_{4}+\mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$			
	Third mark: any one of $\mathrm{PbO}+2 \mathrm{OH}^{-} \rightarrow \mathrm{PbO}_{2}^{2-}+\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & \mathrm{PbO}+\underset{\mathrm{NaOH}}{\mathrm{Na} 2 \mathrm{PbO}_{2}+\mathrm{H}_{2} \mathrm{O}} \end{aligned}$		
	$\mathrm{PbO}+2 \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{~Pb}(\mathrm{OH})_{4}\right]^{2-}$	$\begin{align*} & \mathrm{Pb}(\mathrm{OH})_{4}{ }^{2-} \\ & \mathrm{PbO}+2 \tag{1}\\ & \quad \underset{ }{ } \mathrm{NaOH}^{-}+\mathrm{H}_{2} \mathrm{O} \\ & \\ & \mathrm{Na}_{2} \mathrm{~Pb}(\mathrm{OH})_{4} \end{align*}$		
	Ignore any state symbols Allow multiples			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6}$ (b)(i)	PbCl_{2} lonic (1)	Electrovalent		$\mathbf{2}$
	SnCl_{4} Covalent (1)	Convalent	dative covalent	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 (b) (\text { ii) }}$	EITHER Lead (IV) is less stable than lead (II) so PbO_{2} is an oxidising agent or is reduced (1) Tin (IV) is more stable than tin (II) so SnO_{2} reacts as a base (1) OR (+2) etc for	Lead lead(II)	$\mathbf{2}$	
Stability of (+4) state relative to (+2) state decreases down the group / from tin to lead (1) PbO oxidising agent, SnO_{2} a base. (1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (c)(i)	HCl shown as a product in both equations (1) $\begin{align*} & \mathrm{PCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}+3 \mathrm{HCl} \tag{1}\\ & \mathrm{PCl}_{5}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+5 \mathrm{HCl} \end{align*}$ OR $\mathrm{PCl}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{POCl}_{3}+2 \mathrm{HCl}$ (1) Allow multiples Ignore any state symbols	$\mathrm{H}^{+}+\mathrm{Cl}^{-}$for HCl throughout $\mathrm{P}(\mathrm{OH})_{3} \text { for } \mathrm{H}_{3} \mathrm{PO}_{3}$		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (c)(ii)	First mark NaCl pH 7 and $\mathrm{PCl}_{3} \mathrm{pH}$ any value $-1 \leq \mathrm{pH}<4$ (1) Credit pH values independently of any reasoning. Second mark NaCl dissolves to hydrated/aqueous ions OR $\mathrm{NaCl}(\mathrm{s})(+\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$ (1) Third mark PCl_{3} hydrolyses (1)	reacts to produce $\operatorname{acid}(\mathrm{s})$	Neutral for pH 7; acidic	3

