

Mark Scheme (Final) January 2009

GCE

GCE Chemistry (6244/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

- 1 / means that the responses are alternatives and either answer should receive full credit.
- 2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
- 3 [] words inside square brackets are instructions or guidance for examiners.
- 4 Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.
- 5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

If more than the correct number of answers is given penalise (-1) for each wrong answer. Answers can be A or a, etc.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(i)	A (1) E (1)			2
Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (a)(ii)	B (1) F (1)			2
.,.,		1		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(iii)	A (1) C (1) D (1)			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(iv)	A (1) D (1)			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)	Cis isomer (1) and trans isomer (1) of any of the following (trans isomer only shown): $H - CH_2OH$ $HO - CH_2OH$ $HO - CH_3$ $CH_3 - OH$ $HO - CH_2OH$ $CH_3 - OH$ $HO - CH_2OH$ $CH_3 - OH$ $H - CH_2OH$ $CH_3 - OH$ $H - CH_2OH$ $CH_3 - H$ $H - CH_2OH$	Isomers based on cyclobutane or methylcyclopropane Molecules with bond angles 90° provided that the <i>cis</i> and <i>trans</i> structures are clearly different. Allow any other structure that is plausible. Allow CH ₃ — etc	Bonds shown as: CH_2OH- $-CH_3O$ -HO. Penalise once only if <i>cis</i> and trans otherwise correct. Any <i>cis</i> and <i>trans</i> isomers of molecules other than C ₄ H ₈ O.	2

Questio n Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)	<i>Dilute:</i> small amount of (ethanoic) acid in large volume of water/solvent (1) OR low concentration (1)		Low concentration of H ₃ O ⁺ or H ⁺ ions; less concentrated; water added to lower the concentration; high concentration of water; dissolved in excess water	2
	<i>Weak:</i> slightly ionised (1) OR low concentration of hydrogen ions / H_3O^+ / H^+ compared with the concentration of the acid (1)		very dilute; not fully ionised; partially ionised; incompletely ionised; dissolved in excess water; any argument based on pH	

Questio n Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	$K_{a} = [\underline{H}_{3}O^{+}][C\underline{H}_{3}COO^{-}]$ [CH ₃ COOH] Ignore $K_{a} = [\underline{H}_{3}O^{+}]^{2}$ [CH ₃ COOH] if it appears after the correct expression. If it is the only	- CO ₂ - for -COO- [H ⁺] for [H ₃ O ⁺]	any expression including [H ₂ O]; [HA] instead of [CH ₃ COOH].	1
	answer given it scores (0)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number 2 (b)(ii)	If an incorrect expression for $K_{\rm a}$ is used the last three marks cannot score.			4
	Ignore significant figures unless they are rounded to one s.f. anywhere during the calculation: penalise once only.			
	Answer of 1.59 x 10 ⁻⁵ or with 1.592 x 10 ⁻⁵ and correct units of mol dm ⁻³ , and working, scores (4)			
	First mark $pH = -log_{10}[H_3O^+] = 3.2$ $[H_3O^+] = 6.31 \times 10^{-4}$ (1)	Use of [H ⁺] for [H ₃ O ⁺]		
	Next three marks Approximate calculation:			
	$K_{\rm a} = \frac{[{\rm H}_{3}{\rm O}^{+}]^{2}}{0.025}$ (1) OR			
	$K_{a} = \frac{[H_{3}O^{+}]^{2}}{[CH_{3}COOH]}$	This can be credited if it appears in 2(b)(i) but is not given here.		
	K _a = 1.59 x 10 ⁻⁵ (1) mol dm ⁻³ (1)	1.592 x 10 ⁻⁵		
	The unit mark can be awarded if the unit is given in (b)(i) rather than here but must be mol dm ⁻³ .			
	The last 3 marks can be awarded CQ on an incorrect value of $[H_3O^+]$ provided that $[H_3O^+] > 10^{-7}$ mol dm ⁻³ , i.e. the solution must be acidic.			
	OR without approximation:			
	$K_{\rm a} = \frac{[{\rm H}_3 {\rm O}^+]^2}{0.025 - 6.31 \times 10^{-4}} $ (1)			
	K _a = 1.63 x 10 ⁻⁵ (1) mol dm ⁻³ (1)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Question Number 2 (b)(iii)	Correct Answer First mark $[H_30^+] = [CH_3CO0^-]$ because all H_30^+ is from the acid <i>or</i> none/insignificant amount of H_30^+ comes from water Second mark In the denominator 6.31 x $10^{-4} << 0.025$ (so can be ignored) OR because degree of ionisation is very small <i>or</i> negligible then [CH_3COOH] = 0.025 (1) If the answer to part (ii) uses 0.025 - 6.31 x 10^{-4} in the calculation score this 2^{nd} mark then ignore any other second	Use of [H ⁺] for [H ₃ O ⁺]	Reject Just [H ₃ O ⁺] = [CH ₃ COO ⁻] on its own	Mark 2
	assumption(s) suggested even if they are wrong. Ignore any references to 'standard temperature'.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	I st mark The mixture is a buffer (1) 2 nd mark there are large amounts of /a large reservoir of the acid and its conjugate base/anion/salt (1) 3 rd mark EITHER CH ₃ COOH + OH ⁻ → CH ₃ COO ⁻ + H ₂ O (1) OR both of CH ₃ COOH \Rightarrow CH ₃ COO ⁻ + H ⁺ H ⁺ + OH ⁻ \rightarrow H ₂ O and the equilibrium moves to RHS. 4 th mark and so the ratio of /the value of both [CH ₃ COOH] and [CH ₃ COO ⁻] hardly changes (1) Ignore any references to addition of H ₃ O ⁺	both equations in words	Not \Rightarrow for \rightarrow	4

Question	Correct Answer	Acceptable Answers	Reject	Mark
Question Number 2 (c)(ii)	Correct AnswerFirst mark: Refer to diagram. Both ranges shown so that the one for MO is between about pH 2 and 5 (outside the vertical section), the one for phenolphthalein is between about 7 and 10.3, 	before the endpoint	Methyl orange is the indicator for a strong acid and a weak base and ethanoic acid is a weak acid. 'clear' for 'colourless' Phenolphthalein is the indicator for a titration of a weak acid with a	Mark 4
	Fourth mark over a range which is within the vertical part of the graph (1)	between pH 7 and 10.3	strong base.	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	Equilibrium moves to LHS OR Equilibrium moves to reactants (1) pH goes up/rises/increases (1) stand alone. If it is said that the equilibrium moves to RHS then score (0) overall.		Just 'becomes more alkaline', 'becomes less acidic' on its own.	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(i)	$K_{p} = \frac{p(NH_{3})^{2}}{p(N_{2})p(H_{2})^{3}} $ (1)	$\mathcal{K}_{p} = \frac{P_{NH3}^{2}}{P_{N2} P_{H2}^{3}}$	Any use of square brackets []	1
		$p^2(NH_3)$ etc	$p^2(\mathrm{NH}_3)^2$	
		Ignore the position of brackets.		

Question Correct Answer Acceptable Answers R Number	Reject	Mark
Number $p(NH_3) = 0.2 \times 160 = 8.42 \text{ atm}$ 160 atm 3 (a)(ii) $p(N_3) = 0.2 \times 160 = 37.9 \text{ atm}$ 19 $p(N_2) = 0.9 \times 160 = 37.9 \text{ atm}$ 720 atm 3.8 $p(H_2) = 2.7 \times 160 = 114 \text{ atm}$ 19 $p(H_2) = 2.7 \times 160 = 114 \text{ atm}$ 2160 atm 3.8 19 (1) for dividing moles of gas by 3.8 19 (1) for multiplying by 160 19 (1) for all three values, and the unit given at least once. $x 160 \text{ atm for the}$ Answers to 2 s.f. or more otherwise max (2)All three answers to 2 s.f. or more with the unit scores (3) whether working shown or not.		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(iii)	$K_{p} = \frac{(8.42)^{2}}{(37.9)(114)^{3}}$ = 1.26 x 10 ⁻⁶ (atm ⁻²) (1) unit not necessary, but if given must be correct to score the mark.	1.26 x 10^{-6} (atm ⁻²) to 1.28 x 10^{-6} (atm ⁻²) depending on the number of s.f. used.		1
	CQ on values in (ii) and/or on an incorrect expression in (i).	CQ on K_p being the wrong way up in (i) leads to 781250 - 793650 (atm ²)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)	The reaction is exothermic because K_p increases with decrease in temperature (1) Argument consequential on value of K_p from (a)(iii).		Any answer not based on values of K _p . Just 'reaction is exothermic' alone	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(i)	Increases (1) Ignore any comment on yield	faster/quicker	sooner	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (c)(ii)	Increases (1)	faster/quicker;		1
	Ignore any comment on yield	rate of forward and		
		back reactions		
		increase equally.		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)	Any answer which states or implies that the value of <i>K</i> alters scores zero overall.			3
	First mark: $K_{\rm p}$ remains constant (1)	Maintain K		
		Maintain K _p		
	Second mark: Increase of partial pressure increases the value of the denominator <i>or</i> decreases the value of the fraction (and causes the equilibrium to move to RHS <i>or</i> increases amount of product) (1)		decreases value of K_p . Any answer based on le Chatelier, i.e. not referring to K_p , does not score the second mark	
	Third mark: Hydrogen partial pressure is			
	raised to power 3 <i>or</i> is cubed		nitrogen partial pressure	
	but nitrogen is raised only to		is raised to no power;	
	power 1 so the doubling has		nitrogen partial pressure	
	greater effect. (1)		is third order	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)	2-amino-3-hydroxypropanoic acid (1)	3-hydroxy-2-amino- propanoic acid Allow 'ammino'	Any answer based on the name of an alcohol; propionic instead of propanoic.	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(i)	носн ₂ — сн ₂ он		CH2OH— on left	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	н носн₂—с—соон №Н₃ СІ ⊕ ⊖	NH₃ ⁺ or NH₃ ⁺ Cl [−] or NH₃Cl	-HOOC	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
-	CH ₂ OH HOOC CH ₂ OH H ^{WW} COOH CH ₂ OH H ^{WW} COOH CH ₂ OH HOOC CH ₂ OH HOOC		Reject Incorrect compound scores (0) overall	Mark 2
	flat molecules (90° bond angles) then answer can score (1) only for both structures being correct.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(ii)	(Angle of) rotation of plane of (plane) polarised (monochromatic) light (1)		Twisting <i>or</i> bending <i>or</i> refracting <i>or</i> reflecting	1
	See answer to (c)(iii)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(iii)	One would rotate (plane polarised light) to the left <i>or</i> anticlockwise and one to the right <i>or</i> clockwise. OR Rotate (plane polarised light) in opposite directions (1) This can also be allowed if answer appears in (c)(ii) Do not penalise twist/bend/refract/reflect if they have been penalised in (c)(ii). If rotation is mentioned here but not in (c)(ii) then the mark for (c)(ii) can be awarded there, unless (c)(ii) is wrong when it scores (0)	One rotates (plane polarised light) in positive direction, one in negative.		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(ii)	$ \begin{array}{c c} H & H & O \\ \hline C & C & C & O \\ H & NH_2 \end{array} $ OR	The methylene group can be shown as —CH ₂ —		2
	$ \begin{pmatrix} H & H & O \\ -C & -C & -C \\ H & NH_2 \end{pmatrix} $ (2)			
	More of the chain than one repeat unit is allowable; the repeat unit need not be shown.			
	If more units shown then: ester link (1) remainder of chain correct (1) if it is a whole number of repeat units		ester link in a chain not derivable from serine	
	The C=O bond must be explicitly shown; if it is not but the structure is otherwise correct score (1)			
	Do not penalise here if already penalised in (d)(i).			
	For 1 mark only:			
	$ \begin{array}{c c} \begin{pmatrix} H & O & H \\ I & I & I \\ -C - C - O - C \\ NH_2 & H \end{pmatrix} $			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)	The energy change when one mol of an ionic solid or ionic lattice (1)	enthalpy change, heat change, enthalpy <i>or</i> heat evolved	Energy <i>or</i> enthalpy <i>or</i> heat required	2
	is formed from ions in the gaseous state (1) OR The energy change when one mol of solid/lattice is formed from its ions in the gaseous state (2)	formed from its gaseous ions	formed from gaseous atoms; 1 mol of gaseous ions	
	Ignore any reference to standard state.			

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
5 (b)	Answer -2053 (kJ mol ⁻¹) with some working scores (3), with no working (2). Ignore wrong or no units.			3
	(-859) = (+180) + 2(+122) + (+1468) + 2(-349) + ΔH_{latt} OR	Equivalent information using symbols for the energy changes, or words		
	$\Delta H_{\text{tatt}} = (-859) - (+180) - 2(+122)$ - (+1468) - 2(-349)			
	(2)			
	$\therefore \Delta H_{\text{latt}} = -2053 \text{ (kJ mol}^{-1} \text{) (1)}$			
	The following errors may arise:			
	Failure to multiply -349 by 2; answer of —1931 with some working scores (2), no working (1)			
	Failure to multiply +122 by 2; answer of —2402 with some working scores (2), no working (1)			
	Failure to multiply both the above by 2; answer of -2280 (1)			
	Any algebraic or transcription error, penalise (1) each time.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(i)	Theoretical model is based on 100% ionic bonding (1)			2
	If experimental Born Haber value is different <i>or</i> more exothermic/bigger this is due to some covalency <i>or</i> some covalent character in the bonding (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(ii)	Any answer based on atoms scores (0) overall.			2
	First mark Be ²⁺ (ion) or beryllium ion is smaller (than the Ba ²⁺ (ion)) or Barium ion (1)		Be is smaller than Ba	
	OR			
	Cations get larger down the group (and have the same charge) (1)	Cation charge density decreases down the group.	Atoms get larger down the group	
	Second mark Be ²⁺ ion polarises/distorts the chloride ion more (than Ba ²⁺ does), leading to covalency/covalent character (1)		polarises the chlorine ion; polarises the chlorine; weakens the ionic bond; Be ²⁺ ion being polarised.	
	The opposite argument starting from barium ions (2)		Any argument based on electronegativity differences	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6(a)	First mark For showing reaction of PbO with H_3O^+ or any acid and with OH^- or any alkali, equations correct or not (1)	H⁺ for H₃O⁺		3
	Second mark: any one of PbO + $2H^+ \rightarrow Pb^{2+} + H_2O$			
	PbO + $2H_3O^+$ → $Pb^{2+} + 2H_2O$ PbO + $2HNO_3 \rightarrow Pb(NO_3)_2 + H_2O$			
	$PbO + 2HCl \rightarrow PbCl_2 + H_2O$	PbO + 4HCl → PbCl ₄ ²⁻ + 2H ⁺ + H ₂ O		
	$PbO + H_2SO_4 \rightarrow PbSO_4 + H_2O$ (1)			
	Third mark: any one of PbO + 2OH ⁻ \rightarrow PbO ₂ ²⁻ + H ₂ O	PbO + 2NaOH → Na₂PbO₂ + H₂O		
	PbO + 2OH ⁻ + H ₂ O → $[Pb(OH)_4]^{2-}$ (1)	Pb(OH) ₄ ²⁻ PbO + 2NaOH + H ₂ O → Na ₂ Pb(OH) ₄		
	Ignore any state symbols Allow multiples			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)(i)	PbCl ₂ lonic (1)	Electrovalent		2
	SnCl₄ Covalent (1)	Convalent	dative covalent	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)(ii)	EITHER Lead (IV) is less stable than lead (II) so PbO ₂ is an oxidising agent <i>or</i> is reduced (1) Tin (IV) is more stable than tin (II) so SnO ₂ reacts as a base (1) OR Stability of (+4) state relative to (+2) state decreases down the group / from tin to lead (1) PbO ₂ oxidising agent, SnO ₂ a base. (1)	lead(II)		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (c)(i)	HCl shown as a product in both equations (1)	H ⁺ + Cl ⁻ for HCl throughout		3
	$PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl (1)$	$P(OH)_3$ for H_3PO_3		
	$PCl_5 + 4H_2O \rightarrow H_3PO_4 + 5HCl$			
	OR PCl ₅ + H ₂ O \rightarrow POCl ₃ + 2HCl (1)			
	Allow multiples Ignore any state symbols			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (c)(ii)	First mark NaCl pH 7 and PCl ₃ pH any value -1 ≤ pH < 4 (1) Credit pH values independently of any reasoning.		Neutral for pH 7; acidic	3
	Second mark NaCl dissolves to hydrated/aqueous ions			
	OR NaCl(s) (+aq) \rightarrow Na ⁺ (aq) + Cl ⁻ (aq) (1)			
	Third mark PCl ₃ hydrolyses (1)	reacts to produce acid(s)		