

Mark Scheme Summer 2008

GCE

GCE Chemistry (8080/9080)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Services on 0870 240 9800, or visit our website at www.edexcel.org.uk.

Summer 2008 Publications Code UA 020042

All the material in this publication is copyright $^{\odot}$ Edexcel Ltd 2008

Contents

1.	6241/01	1
2.	6242/01	15
3.	6243/01A	27
4.	6243/01A Materials	31
5.	6243/01B	33
6.	6243/01B Materials	38
7.	6243/01C	39
8.	6243/01C Materials	43
9.	6243/02	45
10.	6244/01	53
11.	6245/01	67
12.	6246/01A	83
13.	6246/01A Materials	88
14.	6246/01B	89
15.	6246/01B Materials	94
16.	6246/01C	95
17.	6246/01C Materials	100
18.	6246/02	101

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

- 1 / means that the responses are alternatives and either answer should receive full credit.
- 2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
- 3 [] words inside square brackets are instructions or guidance for examiners.
- 4 Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.
- 5 OWTTE means or words to that effect
- 6 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

6241/01

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(i)	High energy/fast/gun electrons hit/strike <i>OR</i> bombarded by electrons (1) Removes/knocks out /causes loss of electron		Any suggestion that a negative ion is produced score zero overall	2
	$X \rightarrow X^{+} + e^{(-)}$ OR $X + e \rightarrow X^{+} + 2e^{-}$ (1) IGNORE state symbols If knock out is mentioned, hit/strike is not required in 1 st mark		If just "forms a cation/positive ion", not sufficient for second mark	

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
1 (a)(ii)	Mass (1)	Weight		2
	Charge (1)			
	<i>Ignore the following: speed kinetic energy size/volume radius charge density density</i>	Mass: charge ratio OR <i>m/e</i> OR <i>m/z</i> (1)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)	1 st mark (stand alone) The mass of an atom (of the isotope) (1) 2^{nd} mark (stand alone) Relative to $1/_{12}$ th the mass of a 1^{2} C (atom) OR Relative to 1^{2} C = 12(exactly)	1 st mark The mass of a mole of the isotope (1) 2^{nd} mark Relative to $1/_{12}$ th the mass of a mole of 1^{12} C OR On a scale where a mole of C ¹² has a mass of 12 g	Average mass/ weighted average/ Element instead of isotope	2
	OR On a scale where C ¹² has a mass of 12 (1)	(1)		
	If 'atom' missing from 1 st mark it can score if mentioned in 2 nd mark	Must mention the word 'mole' at least once in these definitions		
		Answer must be either consistently atoms or moles in order to be awarded both marks		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)	$[(49.95 \times 4.345)+(51.94 \times 83.79)+(52.94 \times 9.501)+(53.94 \times 2.364)]/100 (1) = 51.9958 = 52.00 must be to 4 SF(1)$ Correct answer to 4SF with no working (2) Should not have units but allow g mol ⁻¹ Allow error carried forward only on transcription error of mass or percentage	51.99 scores (1) not (2)	52 52.0 52.00 g	2

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers	2	
1 (d)	1s 2s 2p 3s 3p 3d 4s 1s 2s 2p 3s 3p 3d 4s 2 marks for fully correct configuration 1↓ 1↓ 1↓ 1↓ 1↓ 1↓ 1↓ 2 mark if 26 electrons with 2 in 4s but the 3d electrons shown as pairs Ignore the way the arrow heads point in the singly occupied 3d boxes. Ignow half arrows 1↓ or or ↑ or any combination in any box	Vertical lines in place of arrows 1 max		2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (a)	First ionisation energy of the elements Li to Ne			2
	General increase, starting with carbon above boron (1)	Lines joining points do not need to be drawn in. a very small drop from N to O		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)	 The nuclear charge/proton number increases / becomes more positive (1) The (inner shell) shielding is the same/same number of inner shell electrons/ no or little increase in shielding (1) Either Outer electron closer to nucleus /atomic radius decreases /size of atom decreases electrons being removed are in same shell Outer electrons are in same shell (1) 		Atomic Number increasing	3

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
2 (c)	In boron the extra electron is in a p	Reverse	Shell for sub-shell	2
	orbital /new sub-shell (1)	argument for		
		beryllium	Answers that refer	
	Either		to full shell being	
	Which has extra shielding (by the s orbital		left do not score	
	electrons)		second mark	
	OR			
	Which is at a higher energy (level than the		Further from the	
	s orbital in Be) (1)		nucleus	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)	Mg ⁺ (g) → Mg ²⁺ (g) + e ⁽⁻⁾ Mg ⁺ (g) - e ⁽⁻⁾ → Mg ²⁺ (g) Species (1) State symbols (1) Ignore (g) as state symbol for e ⁻	X ⁺ (g) → X ²⁺ (g) + e Or any other symbol can score SS mark only	Any other equations score zero	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	Dative /dative covalent/co-ordinate	"dative convalent"	Just "covalent"	1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
3 (b)(ii)	Covalent	Polar covalent	Any reference to hydrogen bonding	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)	Please read complete answer first 1 st mark Stand alone The Mg ²⁺ /cation/Mg ion has (the same charge but) smaller size OR Mg ²⁺ /cation has larger charge density (1)	Reverse argument based on Ba ²⁺	Mention of molecules and atoms throughout answer scores (0) Penalise omission of ions only once	3
	2 nd Mark Mg ²⁺ /cation /Mg ion is more polarising OR Carbonate anion more polarised (1)	Mg ²⁺ /cation /Mg ion has greater polarising power	Mention of covalency between metal and carbonate/ electronegativity/ vdW or other intermolecular forces / polarising power of the carbonate ion scores zero for last 2 marks	
	3 rd mark We are looking for some effect on the carbonate ion of the above Carbon to oxygen bond weakened OR Weakens (covalent) bonds in the carbonate OR electrons in anion pulled towards the cation OR Distorts the electron cloud (around the carbonate)		Weakens IONIC BONDS	

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
4 (a)(i)	Diagram with	Correct structure		2
	Layer made of alternate	with + for Na ⁺ and		
	identified Na ⁺ /sodium ion	- for l ⁻ scores (2)		
	and I / lodide ion (1)			
	Extended to more than one	correct unlabelled		
	layer (1)	omission of		
		charges scores (1)		
	I			
	Na I			
	Nat -			
	L'			
	I/va			
	a O ONA			
	Nat I TI			
	$\tilde{\mathcal{C}}$			
	Nat DI -			
	T			
	I U Nat			
	Also allow			
	Nat			
	Nat Nat			
	<u> </u>			
	Nat			
	Na			
	Nat			
	(1)			
	Ţ.			
	E			
	-I-			
	Na			
	1			
	I-			
	(\cdot)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	lonic radius /Size of ion (1)	Size and charge scores (2)	Any reference to size of element, atoms or molecules loses first mark	2
	Charge (1)	Charge density scores (1)	Nuclear charge	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iii)	lodide (ion) larger than chloride (ion) (but has same charge) larger ionic radius (1) <i>Note</i> <i>References to iodine</i> <i>and/or chlorine loses</i> 1 st <i>mark</i> (So increase distance between centres of charge means)forces of attraction are less/ weaker ionic bond OR CI ⁻ has higher charge density so stronger attraction to Na ⁺ (1)	Reverse argument	References to atoms, molecules or other forces such as vdW or covalent bonding scores zero overall	2

4 (b)In molten (Nal) the ionsElectron movement2	Question Number	Correct Answer	Acceptable Answers	Reject	Mark
are free to move (1) (and carry the current)scores (0)In solid (Nal) the ions are in fixed lattice / fixed position /cannot move(1)In the solid, there are no mobile charge carriersBoth stand aloneBoth stand alone	4 (b)	In molten (Nal) the ions are free to move (1) (and carry the current) In solid (Nal) the ions are in fixed lattice / fixed position /cannot move(1) Both stand alone	In the solid, there are no mobile charge carriers	Electron movement scores (0)	2

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
4 (c)	Strong attraction between ions (in liquid) OR Strong forces/bonds/ionic bonds (in liquid) Or Lots of energy needed to overcome the ionic attraction or Needs a lot of energy to break ionic bonds (in liquid) (1)		Any reference to lattice/melting	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(i)	$CI_2 + 2NaBr \rightarrow Br_2 + 2NaCl$ OR $CI_2 + 2Br^- \rightarrow Br_2 + 2Cl^-$ Ignore state symbols	multiples		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(ii)	Disproportionation (1)	Redox Any reasonable spelling		2
	(Bromine oxidised from 0) goes to +1 and (reduced from 0) goes to -1 (1) These could be shown as annotation on the equation		A general definition of disproportionation i.e. no reference to bromine	
	Answer must be in terms of change of oxidation number. Correct references to gain and loss of electrons are non- scoring points			

Question	Correct Answer		Acceptable	Reject	Mark
Number			Answers		
5 (a)(iii)	SO ₂ + 4	4 etc (1)	4+ IV +IV Four	S ⁴⁺	2
	$H_2SO_4 + 0$	6 etc (1)	6+ VI +VI six	S ⁶⁺	
	If both S ⁴⁺ and S ⁶⁺ given award 1 (out of 2)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(iv)	The oxidation number of S is increasing (so bromine is acting as an oxidising agent) Or oxidation number of Br is decreasing so it must be acting as an oxidising agent ecf but do not award this mark if the ON of S in H_2SO_4 is shown as less than or equal to that in SO ₂ in (iii)	(The oxidation number of) S goes from +4 to +6	If say oxidation number of bromine goes from 0 to -2 score zero	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(i)	$SO_2+2H_2O \rightarrow SO_4^{2-}+4H^++2e^{(-)}$ OR $SO_2+2H_2O - 2e^{(-)} \rightarrow SO_4^{2-}+4H^+$	multiples		1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
5 (b)(ii)				
	Correct balanced equation	multiples		2
	$2 IO_3 + 5 SO_2 + 4H_2O \rightarrow I_2 + 5 SO_4^2 + 8H^+$			
	(2)			
	If candidate gives this equation with one			
	omission in balancing numbers or one ionic			
	charge, check rest of working to see if this			
	is a transcription error in final answer. If			
	so, award one mark			
	Also allow 1 mark for:			
	$2IO_3^- + 12H^+ + 5SO_2 + 10H_2O \rightarrow I_2 + 5SO_4^{2-} +$			
	20 H ⁺ + 6H ₂ O (1)			
	[There is no consequential marking from			
	(i)]			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (a)(i)	(pale) green	apple green	blue green	1
		yellow(y) green		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (a)(ii)	Crimson	Red Scarlet Carmine Depth of red colour e.g. Dark red Deep red Pale red Light red Bright red	Red with any other colour e.g. Brick-red Orange-red Yellow-red Magenta	1

Question	Correct Answer		Acceptable	Reject	Mark
Number			Answers		
6 (b)	Ba <u>81.1</u> 137 = 0.592 1	0 <u>18.9</u> 16 (1) = 1.18 2	Dividing by 32 scores (0) unless their table is headed by O ₂ , then answer BaO ₂ scores (1)	Any answer dividing by atomic number (0) This leads to Ba ₂ O	2
	Correct working answer BaO ₂ (1 Working must be and final formul 2 marks BaO ₂ without wo mark	leading to) e shown a given for orking 1	but if this is the case BaO scores (0)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (c)(i)	Ba + 2H ₂ O → Ba(OH) ₂ + H ₂ Ignore state symbols even if they are wrong	Multiples	Equations based on BaO	1

6 (c)(ii) • Gets warm Heat produced 2 • Effervescence/fizzing/ bubbles/mist Bubbles of hydrogen Reference to flame Melts 2 • Ba sinks/moves up and dumm (Decement flagt) Support Reference to flame Melts 2	Question Number	Correct Answer	Acceptable Answers	Reject	Mark
Give one mark for observation from each bullet point to max of 2 answers 3 answers given, one wrong scores (1) 3 answers given, two wrong scores zero answers Ignore mention of Steam/steamy fumes Ba gets smaller Ba disappears Goes cloudy / precipitate Gas/hydrogen evolved is not an observation answers	6 (c)(ii)	 Gets warm Effervescence/fizzing/ bubbles/mist Ba sinks/moves up and down /Does not float <i>Give one mark for</i> <i>observation from each</i> <i>bullet point to max of 2</i> 3 answers given, one wrong scores (1) 3 answers given, two wrong scores zero Ignore mention of Steam/steamy fumes Ba gets smaller Ba disappears Goes cloudy / precipitate Gas/hydrogen evolved is not an observation 	Answers Heat produced Bubbles of hydrogen	Reference to flame Melts Dashes about on surface are wrong answers	2

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
6 (c)(iii)	<i>Red litmus</i> (goes) blue/ "(\rightarrow) blue"			1
	and			
	<i>blue litmus</i> unchanged/stays blue/no			
	effect/nothing			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
7 (a)(i)	:Ċİ : P̈ : Ċİ: :ĊI: ¨ 8 electrons around each CI (1) three shared pairs and one lone pair around P (1) If symbols omitted max 1	All dots or all crosses		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
7 (a)(ii)		Must be an attempt to draw as a pyramid. Wedge, dashes, both. If draw 3 lines must not look planar Ignore name unless they say planar Ignore indicated bond angles unless it is written as 120°	Planar triangular even if no lone pair shown in part (i)	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
7 (a)(iii)	Mark consequentially on part (a) (ii) 1^{st} mark PCl ₃ has 4 pairs of electrons/3 bond and 1 lone pair (1) 2^{nd} mark The electron pairs repel to a position of maximum separation /minimum repulsion OR Ip-bp repulsion > bp-bp (1) 3^{rd} mark CH ₄ has 4 bonding pairs of electrons so angle less in PCl ₃ or more in CH ₄ OR CH ₄ has no lone pairs so angle less in PCl ₃ or more in CH ₄ (1) If in part (ii) they give a structure which <u>is planar triangular</u> they can score full marks for a correct description of why it is planar triangular i.e. PCl ₃ has 3 pairs of electrons (1) The electron pairs repel to a position of maximum separation /minimum repulsion (1) So the angles are 120 ° for PCl ₃ and CH ₄ has 4 bonding pairs of electrons, so 109(.5) ° for CH ₄ (1)	Phosphorus in PCI ₃ has a lone pair but carbon in CH₄ has no lone pairs scores first mark	Repulsion of atoms or bonds	3

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
7 (b)(i)	Ignore sig figs unless they round to 1 sig.fig during calculation Incorrect /absent units in final answer penalise only once in part (i)/(ii) 7.19 g of PCI ₅ = $\frac{7.19}{208.5}$ mol (1) $\frac{208.5}{208.5}$ (= 0.03448) (1 mol of PCI ₅ from 1 mol	Answers 2 x 31 g of P produce 2 x 208.5 g of PCI ₅ (1) 7.19 g of PCI ₅ from 2 x 21 x 7 10		2
	Mass of P = 0.03448 x 31 = 1.07 g (1) Penalise use of Atomic Number only once Answer with no working scores 2	<u>2 x 31 x 7.19</u> 2 x 208.5 =1.07g (1) Allow 0.034 but NOT 0.035		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
7 (b)(ii)	Mark consequentially on part (i)			2
	Moles of chlorine needed = 0.03448 x 2.5 (1)	2 x 208.5 g of PCI ₅ produced from 5 x 24 dm ³ of CI ₂ (1)	Just 24 x 2.5 = 60 dm ³ scores zero	
	Volume = 24 x 0.03448 x 2.5 = 2.07 dm ³ (1) - Value and unit necessary Value consequential on their calculated/stated moles of chorine x 24 Answer with no working scores 2	7.19 g PCI ₅ produced from $\frac{5 x 24 x 7.19}{2 x 208.5}$ 2.07 dm ³ (1)		

6242/01

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
1 (a)(i)	anode: titanium (1) cathode: steel/Nickel/Ni (1) If both correct but in wrong place max 1		graphite	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(ii)	Anode $2Cl^- \rightarrow Cl_2 + 2e^{(-)}$ $2Cl^2e^{(-)} \rightarrow Cl_2$ Cathode $2H_2O + 2e^{(-)} \rightarrow H_2 + 2OH^{(-)}$ (1) If both correct but in wrong place max 1	Multiples $2H^{\star} + 2e^{(-)} \rightarrow H_2$		2

Question	Correct Answer	Acceptable	Reject	Mark
1 (a)(iii)	$2H_2O + 2Cl^- \rightarrow H_2 + Cl_2 + 2OH^-$	multiples	$2H^+$ +2Cl ⁻ →H ₂ +Cl ₂ Equation with $2e^{(-)}$ on both sides	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(iv)	treatment of (drinking) water Or to kill bacteria in water/swimming pools Or sterilisation of water Or as a disinfectant Or in production/manufacture/making of any one of: PVC bleaches herbicides insecticides/pesticides HCl/hydrochloric acid/hydrogen chloride named chlorinated solvents bromine titanium paper chloroethene poly(chloroethene) CFCs/HCFCs Silicon	as a bleach Or in bleach Or bleach	water purification Or swimming pools Or cleaning anything Or anything else	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	species oxidised chlorine/Cl ₂ <u>oxidation product</u> sodium chlorate(I) / NaOCl / OCl ⁻ /chlorate(I) (ions) (1) both required for mark	Species oxidised Cl (in Cl ₂) ox. prod. sodium hypochlorite	Just "chlorate" and "sodium chlorate"	2
	<u>species reduced</u> chlorine / Cl ₂	Species reduced Cl (in Cl_2)		
	reduction product (sodium) chloride / NaCl / chloride ion/Cl ⁻ (1)			
	both required for mark			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)	IGNORE SF unless rounded to 1SF moles NaOCl = $\frac{100}{74.5}$ 1.342 (1) (= moles Cl ₂)	Method using mass: volume ratio 74.5 (g) gives 24 (dm ³) (1) \therefore 100 (g) gives 32.2 dm ³ (1)		2
	volume Cl ₂ = 1.342 x 24 = 32.2 dm ³ - unit essential (1)	<u>Some</u> common acceptable answers are: 32.16/32/31.2/31 dm ³		
	2 nd mark consequential on moles			
	To get the 2^{nd} mark, must show attempt to calculate moles ie 100 \div x			
	Correct answer with no working (2)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a) QWC	enthalpy/heat/energy change when 1 mole (of a substance) (1)	"evolved" instead of "change" "sulphur" or "element" or "species" instead of "substance"	Heat/energy required "compound" instead of "substance"	3
	is completely burned in oxygen / burned in excess oxygen (1)		reacts completely with oxygen Any mention of specific products or specific amounts of products, other than SO ₂ , negates 2 nd mark	
	(all species) at 1 atm/100 kPa/10⁵Pa/ 1 Bar and "a specified temperature" (1)	298 K/ 25 °C /101 kPa Or "a specified temperature e.g. any value"	Just "273 K" Any mention of concentration negates third mark	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	Temperature 400 to 500 (⁰ C) or any value or range within this range inclusive (1)	673 - 773 K or any value or range within this range		3
	Pressure >1 to 5 atm or any value or range within this range inclusive (1)		1 atm or any range that includes 1 atm	
	Vanadium(V) oxide / V ₂ O ₅ (1)	vanadium pentoxide	Just "vanadium oxide"	

Question	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	Temperature			4
QWC	· · · · · · · · · · · · · · · · · · ·			
	More molecules/collisions/ particles have E ≥ E _{act} /sufficient energy to react (1)	E > E _{act} "energy barrier" instead of "E _{act} /activation energy"	More atoms	
	∴ a greater proportion of collisions are successful Or More of the collisions are	Collisions more likely to be successful Greater chance of	just "more successful collisions"	
	successful (1)	successful	"fruitful collisions"	
		More successful collisions per second	Consions	
	IGNORE greater frequency of collision			
	2 nd mark dependent on 1 st mark UNLESS 1 st mark is not awarded through use of "atoms"			
	<u>Catalyst</u>			
	EITHER: provides alternative route of lower activation energy (1)	"energy barrier" instead of "E _{act} /activation energy"		
	more molecules have E > E _{cat} / a greater proportion of collisions are successful (1)	Collisions more likely to be successful	just "more successful collisions"	
	2 nd mark dependent on mention of lowered activation energy	Greater chance of successful	N.B. Penalise "more collisions are successful"	
	Do not penalise use of "atoms" again	More successful collisions per second	only once	
			collisions"	
	OR: provides (active) sites (1)			
	where reactant molecules can bond/be adsorbed (1)		Where reaction can take place	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iii)	reaction exothermic (1)	ΔH negative/reverse		2
QWC				
	equilibrium shifts to the left decreasing the yield (1)		Just "equilibrium shifts to the	
	2 nd mark is dependent on the 1 st and is not consequential.		left"	
	IGNORE Le Chatelier explanations		Just "yield decreases"	

-	-			
Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (b)(iv) QWC	fewer (gaseous) molecules /particles/moles on the right (1) equilibrium shifts to the right increasing the yield (1) 2 nd mark is dependent on the 1 st and is not consequential. IGNORE Le Chatelier explanations N.B do not penalise omission of either 'equilibrium shifts' or change of yield if already penalised in (iii)		Just "equilibrium shifts to the right" Just "yield increases" Arguments based on volume	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)	$\Delta H = \Delta H_{\rm f} \text{ (products)} - \Delta H_{\rm f}$ (reactants) Or (-814×2) - (-286×2) (1) = -1056 (kJ mol ⁻¹) (1) IGNORE units Correct answer with no working (2) Omission of either or both of ×2 max 1. Hence -242 with some working (1) -1342 with some working (1) -528 with some working (1) (+)1056 with some working (1)		Δ <i>H</i> f vaues added scores zero overall	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	any one of: making fertiliser/ detergents/ paint/ pigment inc TiO ₂ / dyes/ fibres/ plastics/ pharmaceuticals/ explosives		Making soap	1
	OR (in) car batteries OR pickling iron OR anodising Al OR electrolytic refining of copper			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(i)	Any two of			2
	• (same) general formula	(Same) general molecular formula	(Same) molecular	
	• (successive) members differ by CH ₂		formula	
	 (same) functional group/ (similar/same) chemical properties/reactions 			
	 regular trend in physical properties 		Same physical properties	
	IGNORE "same properties"		Reference to a specific	
			same reaction with chlorine	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(ii)	alkene(s)		C=C alkane	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(iii)	electrophilic addition (1) both needed IGNORE heterolytic and penalise homolytic hydrogen chloride/HCl (1)		(Dilute) hydrochloric	2
			ACIO/GILUTE HCL /HCl(aq)	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	Classification nucleophilic substitution (1)Reagent potassium cyanide/KCN Or sodium cyanide/NaCN (1)Condition 	Cyanide ions/CN ⁻	Cyanide Aqueous alone	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	same molecular formula (1) different structural formulae/ displayed formulae/ arrangement of atoms (1)	Same numbers of each atom different structure	different arrangement in space	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(iii)	There are many possibilities e.g. $H \\ H-C-H \\ H-C-C=N \\ H-C-H \\ H$	Accept CH ₃ and/or CN e.g. CH_3 H-C-CN CH_3		1
	multiple bonds / isonitriles			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)	1-bromopropane faster (1) Stand alone	Reverse statement	Any answer which gives 1-chloropropane as faster scores zero overall	3
	because C-Br bond weaker (than C-Cl) (1)	Reverse argument	If no reference to carbon-halogen bond	
	IGNORE attempted explanations of why C-Br bond weaker			
	therefore lower activation energy/E _{act} (1) [Lower E _{act} must be related to C-X bond]	Reverse argument		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)	$\begin{array}{c c} H & H \\ -C & C \\ C & C \\ C & H_3 C \\ \end{array}$ 2 carbon chain with continuation bonds in repeat unit (1) All other atoms correct (1) IGNORE subscript n IGNORE where the bond to the CH ₃ goes e.g.	If more than one repeat unit given and number of repeat units stated or the repeat unit identified (2) If repeat unit not stated or identified can score 2 nd mark only	3 carbon chain Or Any repeat unit containing a double bond scores zero	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (e)	Restricted rotation around double bond (1)	No rotation/double bond cannot rotate (at room temperature)		2
	1-chloropropene has two different groups on both carbons/each carbon (in the double bond)(but propene does not) (1)	Propene has two identical groups on one carbon (of the double bond) (but 1- chloropropene does not)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	KMnO4 /potassium manganate(VII) / potassium permanganate	Sodium analogues	Just "Potassium manganate"	1
	IGNORE any acid or alkali	Or O ₂ followed by aqueous acid		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	1,2(-)dibromoethane			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iii)	EITHER: sodium bromide/NaBr /potassium bromide/KBr (1)	HBr with concentrated/50 % sulphuric (1 only)		2
	(50 %) sulphuric acid/ H_2SO_4 / phosphoric acid/ H_3PO_4 (1)	concentrated H_2SO_4	Dilute/aqueous sulphuric acid/H2SO4	
	OR: (Moist) red phosphorus/P (1)			
	Bromine/Br ₂ (1)	PBr₃ alone (1 only)	PBr₃ plus any other reagent (0)	
	2 nd mark is conditional on the 1 st			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				<u> </u>
4 (a)(iv)	<u>Colour change</u>			3
	from orange to green/blue (1)		to brown	
	Oxidation products (2) any 2 of:			
	О—H H—C—C H H	OH instead of O–H		
	O H H H	If any two of the following given (1 out 2)		
	0н _{.0}	CH₂OHCHO	CH₂OHCOH	
		CH₂OHCOOH		
		CHOCHO Or OHCCHO	CHOCOH Or OHCCOH	
	Н О-Н	CHOCOOH Or OHCCOOH		
	0 0 0			
	Н-0 0-н	COOHCOOH Or (COOH) ₂ Or HOOCCOOH		
	Bonding from C must be to O of OH			
	groups - penalise once only	Allow CO2H for COOH in the above		
	IGNORE any names			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(v)	$C_{2}H_{2}/CH=CH/ethyne$ Or $CH_{2}=CHBr /CH_{2}CHBr/bromoethene$	1-bromoethene 2-bromoethene	CH ₂ BrCH C ₂ H ₃ Br	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(i)	$C_2H_5Br/bromoethane (1)$		Side reactions	2
	(only) monosubstitution occurs (1)		Reaction reaches equilibrium	
	Or			
	1,1-dibromoethane/CH ₃ CHBr ₂ (1)			
	isomer of B / substitutes onto same carbon/Br (radical) can			
	remove H from either carbon (1)			
	Or 1,1,2-tribromoethane etc. (1)			
	substitution continues/ polysubstitution/reaction continues (1)			
	Or Butane/C4H10 (1) Combination of two C2H5 radicals (1)			
	The 1 st mark is stand alone in each case.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	$C_2H_6 + 3\frac{1}{2}O_2 \rightarrow 2CO_2 + 3H_2O$	Multiples	If incorrect hydrocarbon e.g.	2
	Balancing (1) IGNORE state symbols		zero	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (b)(iii)	simplest (whole number) ratio of	ratio of moles of		1
	the different atoms in a	atoms	"elements" for	
	compound/molecule		"atoms"	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iv)	CH ₃			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(v)	Any alkane formula with odd no. of C atoms other than CH ₄ This can be a structural, full structural or molecular formula IGNORE names even if incorrect			1

6243/01A

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)	Obs: Lilac (1)	Purple/ mauve	Violet	2
	Inf: Potassium/ K ⁺ (1)		К	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(b)(i)	Obs: White precipitate (1)	Cloudy/milky	Goes misty	2
	Inf: sulphate/SO4 ²⁻ (1)	hydrogen	SO ₄ / HSO ₄	
		sulphate/HSO₄		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(ii)	To prevent the precipitation with other ions (1) Any correct ion specified	Destroy any ion which would interfere with the test. Any correct ion specified So that only sulphate will precipitate	Dissolve precipitate of ions or compounds	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)	K_2SO_4 Conditional on correct (a) and (b)	K(HSO ₄) ₂	Potassium sulphate No charges allowed	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(d)(i)	Grey brown precipitate [observation only requested]		Brown solid Not "just" brown without precipitate	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)(ii)	Obs: Litmus turns blue (1) Inf: Ammonia/ NH ₃ (1)			3
	Nitrate/ NO_3^-	Nitrite/NO ₂		

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(e)	Obs: (Pale) yellow precipitate (1)		Cream	3
	Inf: Ag ⁺ (1)	Silver/Pb ²⁺ /lead	Ag/Pb	
	Agl (1)	Pbl ₂		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	Check subtractions and averaging			12
	anthinetic, correcting if necessary			
	All volumes read to 0.05 cm ³ (1)	Allow 1 slip but withhold this mark if		
	All subtractions complete (1)	any readings are in the		
	✓✓ top RHS of Table 1	wrong boxes. Accept 0; 0.0; 0.00 as initial reading	Reject 50 as initial reading	
	Mean Titre For correct averaging of chosen values/ choosing identical values and for recording the average correct to 2 or 3 dps or to the nearest 0.05 cm ³ [unless already penalised]			
	\checkmark by the mean titre (1)			
	Accuracy			
	 If the candidate has made an arithmetical error in Table 1 volumes used in the mean or in averaging, the examiner must calculate a new average. For an averaging error simply calculate a new value using the candidate's chosen values If a wrongly subtracted titre has been used in the mean then choose any two identical titres or take an average of the closest two titres Calculate the difference between the candidate's mean titre and that of the examiner or supervisor Record the difference on the scripts as d = ** 			
	Examiner's titre 22.80 cm ³			
	Award marks for accuracy as follows:Difference ± 0.20 (6)Difference ± 0.30 (5)Difference ± 0.40 (4)Difference ± 0.60 (3)Difference ± 0.80 (2)Difference ± 1.00 (1)Difference >1.00 (0)			

Range Award a mark on the range of titres used by the candidate to calculate the mean. The range (r) is the difference between the outermost titres used to calculate the mean. If the examiner has corrected titres because of incorrect subtraction then award the range mark on the corrected titres used by the examiner to calculate the mean.	
Range ± 0.20 (3) Range ± 0.30 (2) Range ± 0.50 (1) Range > 0.50 (0) Examiner to show the marks awarded for the accuracy and range as $d = \checkmark 6 max$ $r = \checkmark 3 max$ then the mark out of 12 written in the	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(i)	0.150 x titre 1000 S.F. i) ii) iii) Penalise rounding to 2 s.f. once unless trailing zero iv) Ignore s.f.			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(ii)	answer (i)			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2.(b)(iii)	answer (ii) x 40			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(iv)	13.5/ answer (iii)	lgnore unit		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2.(b)(v)	Titre would be too low/smaller/lower/too small (1) Because some alkali remains in the flask (1) Stand alone marks	No difference because quantity of excess alkali is within experimental error.	Just "small" Just "low" Stops too quickly or too soon	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Table 2Weighings in correct spaces to at least2 dp (1)Correct subtractions (1)Table 3Two temps recorded in correct spaces(1)BOTH to 0.5 ° C or better (1) ΔT correct with neg. sign (1)EXPECTED VALUE TO BE -6.2 for [4.95 -5.05]g \pm 0.8°C (3) \pm 1.2°C (2) \pm 1.6°C (1)> 1.6°C (0)			8

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(i)	For correct substitution and evaluation (1) positive sign (1) Answer to 2 sig figs (1)			3

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3.(b)(ii)	No because it has the same systematic errors/same errors with measuring cylinder/thermometer/heat loss/impure sample (1)		Same error in balance	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.	Weigh crucible (1) \checkmark m1 Weigh with sample (1) \checkmark m2 Heat (1) \checkmark m3 to constant weight (1) \checkmark m4 Either Calculate mass (of gas) lost (1) \checkmark c1 Moles CO ₂ = <u>mass lost</u> = moles MgCO ₃ (1) 44/Mr \checkmark c2 Mass MgCO ₃ = moles x 84 Mr (hence %) (1) \checkmark c3	Take known mass/stated mass (1)		7

6243/01A - Materials

Apparatus and Materials

Apparatus

Each candidate will require:

- apparatus for a flame test; 1.
- 2. spatula;
- 10 cm3 measuring cylinder; 3
- 50 cm3 measuring cylinder; 4
- 5 test tubes and 1 boiling tube in a rack: 5.
- 1 stopper to fit a test tube; 6.
- 7. supply of dropping pipettes;
- 8. test tube holder;
- 9. Bunsen burner;
- 10. 50 cm³ burette, stand and clamp, with small funnel for filling, white tile and a small beaker for draining burette:
- 2×250 cm³ conical flasks; 11.
- 12. 25 cm³ pipette with safety filler;
- expanded polystyrene cup held securely in a 250 cm3 beaker; 13.
- a thermometer of range from at least room temperature to 50 °C (e.g. 0 to 50 °C or -10 to 14. +110 °C), able to be read to ± 0.5 °C or better;
- access to a balance reading to at least 2 decimal places. 15.

Materials

Each candidate will require:

- (a)* approximately 0.5 g of potassium sulphate, labelled X. The identity of this must not be revealed to candidates:
- (b)* 3 cm³ of aqueous silver nitrate: concentration approximately 0.05 mol dm⁻³, labelled Y. The identity of this must not be revealed to candidates;
- 2 cm³ of dilute hydrochloric acid: concentration approximately 2 mol dm⁻³; (c)
- (d) 1 cm³ of aqueous barium chloride: concentration approximately 0.1 mol dm⁻³;
- 2 cm³ of dilute aqueous sodium hydroxide: concentration approximately 2 mol dm⁻³; (e)
- aluminium foil, approximately 2×2 cm; (f)
- (g) red litmus paper;
- 1 cm³ of aqueous potassium iodide: concentration approximately 0.1 mol dm⁻³; (h)
- (i)* 200 cm³ of aqueous sodium hydroxide: concentration 0.150 mol dm⁻³, labelled B;
- (j)^{*} 200 cm³ of aqueous sulphamic acid (NH₂SO₃H): concentration 13.5 g dm⁻³, labelled C. The identity of the solute must not be revealed to candidates;
- (k) (1)* phenolphthalein indicator;
- specimen tube containing 5.0 ± 0.05 g of sodium nitrate, labelled **D**. The identity of this must **not** be revealed to candidates:
- distilled water. (m)

For home centres (ONLY), the materials identified with an asterisk (*) will be sent by a firm of manufacturing chemists.
6243/01B

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)	Obs: yellow (1)	Orange/Golden		2
	Inf: sodium/ Na⁺ (1)		Na	
Question	Correct Answer	Accontable Answers	Deject	Mark
Number	Correct Answer	Acceptable Allsweis	Reject	IVIAI K
1.(b)	Obs: (effervescence and) white ppt (1) Inf: carbon dioxide / $CO_2(1)$	Milky; cloudy	misty	2
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)	Na ₂ CO ₃ / NaHCO ₃ (1)		Just name	1
	Conditional on correct (a) and (b)			
Question	Correct Apswor	Accontable Answers	Poioct	Mark
Number	Correct Answer	Acceptable Answers	Reject	IVIAI K
1.(d)(i)	(Grey)-Brown precipitate [observation only requested] (1)		Brown solid Not just "brown"	1
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)(ii)	Obs: Litmus turns blue (1)			3
	Inf: Ammonia/ NH_3 (1)			
	Nitrate/ $NO_3^{-}(1)$	Nitrite/NO ₂ ,		
Question	Correct Answer	Acceptable Answers	Reject	Mark
Number			Reject	Mark
1.(e)	Obs:White ppt (1)	Goes clear/precipitate		3
	soluble in ammonia (1)	disappears		
	Int: Ag ⁺ (1)	silver	Ag	
Question	Correct Answer	Accentable Answers	Reject	Mark
Number			Reject	Wark
1.(f)	White or brown/precipitate [observation only requested] (1)	Cream coloured ppt	Misty/cloudy	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	Check subtractions and averaging			12
	arithmetic, correcting if necessary			
	All volumes read to 0.05 cm ³ (1)	Allow 1 slip but withhold	Reject 50 as initial	
	All subtractions complete (1)	readings are in the wrong boxes Accept 0	leading	
	✓✓ top RHS of Table 1	; 0.0 ; 0.00 as initial readings		
	Mean Titre For correct averaging of chosen values and for recording the average correct to 2 or 3 dps or to the nearest 0.05 cm ³ [unless already penalised] ✓ by the mean titre (1)			
	Accuracy			
	 If the candidate has made an arithmetical error in Table 1 volumes used in the mean or in averaging, the examiner must calculate a new average. For an averaging error simply calculate a new value using the candidate's chosen values If a wrongly subtracted titre has been used in the mean then choose any two identical titres or take an average of the closest two titres 			
	Calculate the difference between the candidate's mean trite and that of the examiner or supervisor			
	Record the difference on the scripts as d= **			
	Examiner's titre 23.55 cm ³			
	Award marks for accuracy as follows:			
	Difference ± 0.20 (6)Difference ± 0.30 (5)Difference ± 0.40 (4)Difference ± 0.60 (3)Difference ± 0.80 (2)Difference ± 1.00 (1)Difference > 1.00 (0)			

	Range		
	Award a mark on the range of titres		
	mean. The range (r) is the difference		
	between the outermost titres used to		
	calculate the mean. If the examiner has		
	corrected titres because of incorrect		
	subtraction then award the range mark		
	on the corrected titres used by the		
	examiner to calculate the mean.#		
	Range ± 0.20 (3) Pange ± 0.30 (2)		
	Range ± 0.50 (2) Range ± 0.50 (1)		
	Range > 0.50 (0)		
	Examiner to show the marks awarded		
	for the accuracy and range as		
	$d = \sqrt{6} max$		
	$r = \sqrt{3} max$		
	then the mark out of 12 written in the		
	margin		
L			l

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(i)	0.150 x titre 1000 S.F. i) ii) iii) Penalise rounding to 2 s.f. once uless trailing zero iv) Ignore s.f. ignore unit			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2.(b)(ii)	<u>answer (i)</u>			1
	2			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2.(b)(iii)	answer (ii) x 40			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2.(b)(iv)	6.43 / answer (iii)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(v)	titre would be too large/larger/too big/ bigger (1) Because some alkali is neutralised with acid remaining in burette (1) Stand alone marks	Conc of alkali reduced (1)	Just "big" Just "large" Reject just "wrong" Takes too long	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Table 2Weighings in correct spaces to at least2 dp (1)Correct subtractions (1)Table 3Two temps recorded (1)BOTH to 0.5 ° C or better (1) ΔT correct with negative sign (1)EXPECTED VALUE -7.6°C For [4.95 –5.05]± 1.0°C (3)± 1.5°C (2)± 2.0°C (1)> 2.0°C (0)			8

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3.(b)(i)	For correct substitution and evaluation			3
	(1) positive sign (1)			
	Answer to 2 sig figs (1)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3.(b)(ii)	(ΔT more negative)	(bigger)		1
	Either			
	More accurate because % of error in ΔT			
	smaller (1)			
	OR:			
	Less accurate because error due to			
	heat gain is more (1)		Heat loss	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.	Weigh crucible (1) \checkmark m1 Weigh with sample (1) \checkmark m2 Heat (1) \checkmark m3 to constant weight (1) \checkmark m4 Either Calculate mass (of gas) lost (1) \checkmark c1 Moles $O_2 = \frac{\text{mass lost}}{32/\text{Mr}} = \frac{1}{2}$ moles NaNO ₃ (1) \checkmark c2 Mass NaNO ₃ = moles x 85 Mr [hence %] (1) \checkmark c3	Take known mass/stated mass (1) √m2		7

6243/01B - Materials

Apparatus and Materials

Apparatus

Each candidate will require:

- 1. apparatus for a flame test;
- spatula;
- 10 cm³ measuring cylinder;
- 50 cm³ measuring cylinder;
- 5 test tubes and 1 boiling tube in a rack;
- 1 stopper to fit a test tube;
- supply of dropping pipettes;
- test tube holder;
- Bunsen burner;
- 50 cm³ burette, stand and clamp, with small funnel for filling, white tile and a small beaker for draining burette;
- 2×250 cm³ conical flasks;
- 25 cm³ pipette with safety filler;
- expanded polystyrene cup held securely in a 250 cm³ beaker;
- 14. a thermometer of range from at least room temperature to 50 °C (e.g. 0 to 50 °C or -10 to +110 °C), able to be read to ± 0.5 °C or better;
- access to a balance reading to at least 2 decimal places;
- 16. apparatus for testing gas with limewater e.g. delivery tube or dropper pipette.

Materials

Each candidate will require:

- (a)* approximately 0.5 g of sodium carbonate, anhydrous, labelled J. The identity of this must **not** be revealed to candidates;
- (b)* 3 cm³ of aqueous silver nitrate: concentration approximately 0.05 mol dm⁻³, labelled K. The identity of this must not be revealed to candidates;
- (c) 2 cm³ of dilute hydrochloric acid: concentration approximately 2 mol dm⁻³;
- (d) 10 cm³ of limewater;
- (e) 2 cm³ of dilute aqueous sodium hydroxide: concentration approximately 2 mol dm⁻³;
- (f) aluminium foil, approximately 2 × 2 cm;
- (g) red litmus paper;
- (h) 1 cm³ of aqueous sodium chloride: concentration approximately 0.1 mol dm⁻³;
- (i)* 200 cm³ of aqueous sodium hydroxide: concentration 0.150 mol dm⁻³, labelled L;
- (j)* 200 cm³ of aqueous ethanedioic acid: concentration 9.00 g dm⁻³ of (COOH)₂.2H₂O, labelled M. The identity of the solute and this concentration must not be revealed to candidates;
- (k) phenolphthalein indicator;
- (1)* specimen tube containing 5.0±0.05 g of potassium nitrate, labelled E. The identity of this must **not** be revealed to candidates;
- (m) distilled water;
- (n) 5 cm³ of aqueous ammonia: concentration approximately 2 mol dm⁻³.

For home centres (ONLY), the materials identified with an asterisk (*) will be sent by a firm of manufacturing chemists.

6243/01C (overseas practical test)

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(a)	Obs: yellow (1)	Orange/golden		2
	lnft codium (Na+ (1))		No	
	III. SUUIUIII/ Na (I)		INd	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	Obs: (Effervescence and) white ppt (1) Inf: Carbon dioxide / CO_2 (1) Carbonate / $CO_3^{2^-}(1)$ hydrogen carbonate/ HCO_3^- (1) ions are conditional on CO_2	Goes milky/cloudy		4

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(c)	Na ₂ CO ₃ /NaHCO ₃			1
	Conditional on correct (a) and			
	observation in (b)			

Question Number	Correct Answer	-	Acceptable Answers	Reject	Mark
1.(d)(i)	Obs: white precipitate (1) Inf: any two of Sulphate/ SO ₄ ²⁻ Sulphite /SO ₃ ²⁻ Carbonate /CO ₃ ²⁻ Hydrogensulphate/ HSO ₄ ⁻	(1) (1) (1) (1)	Cloudy/milky		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)(ii)	Conditional on two ions in (i) Substances: dilute hydrochloric acid/HCl (aq) (1) Observations: consequential two from (Barium)Carbonate: effervescence (and ppt dissolves) (1) (Barium)Sulphate: Ppt insoluble/Stays/no change (1) (Barium)Sulphite: ppt dissolves (without effervescence) (1) Hydrogensulphate: Add blue litmus HSO ₄ ⁻ goes red SO ₄ ⁻²⁻ stays blue	HCl / HNO3		3

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2.(a)	Check subtractions and averaging arithmetic, correcting if necessary			12
	All volumes read to 0.05 cm ³ (1)	Allow 1 slip but withhold this mark if	Reject 50 as initial reading	
	All subtractions correct (1)	any readings are in the wrong boxes. Accept 0	5	
	✓ ✓ top RHS of table 1 Mean titre For correct averaging of chosen values/choosing identical values and for recording the average correct to 2 or 3 dps or to the nearest 0.05 cm ³ [unless already penalised]	; 0.0 ; 0.00 as initial readings		
	\checkmark by the mean titre (1)			
	Accuracy			
	 If the candidate has made an arithmetical error in table 1 volumes used in the mean or in averaging, the examiner must calculate a new average. For an averaging error simply calculate a new value using the candidate's chosen values If a wrongly subtracted titre has been used in the mean then choose any two identical titres or take an average of the closest two titres 			
	Calculate the difference between the candidate's mean titre and that of the examiner or supervisor Record the difference on the script as d = **			
	Examiner's titre 22.00 cm ³ or s/v value			
	Award marks for accuracy as follows:			
	Difference ± 0.20 (6)Difference ± 0.30 (5)Difference ± 0.40 (4)Difference ± 0.60 (3)Difference ± 0.80 (2)Difference ± 1.00 (1)Difference > 1.00(0)			

RangeAward a mark on the range of titresused by the candidate to calculate themean. The range (r) is the differencebetween the outermost titres used tocalculate the mean. If the examinerhas corrected titres because ofincorrect subtraction then award therange on the corrected titres used bythe examiner to calculate the mean.Range ± 0.20 (3)		
Range \pm 0.30 (2) Range \pm 0.50 (1) Range > 0.50 (0) Examiner to show the marks awarded		
for accuracy and range as $d = \checkmark 6 \ max$ $r = \checkmark 3 \ max$		
then the mark out of 12 written in the margin		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(i)	0.150 x titre 1000 S.F. i) ii) iii) Penalise rounding to 2 s.f. once unless trailing zero iv) Ignore s.f. ignore unit			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2.(b)(ii)	answer (i) / 2			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2.(b)(iii)	answer (ii) x 40			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2.(b)(iv)	5.94 / answer (iii)			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2.(b)(v)	titre would be too big/bigger/too		Reject just "wrong"	2
	large/larger (1)			
	Because some alkali is neutralised with	[Conc of alkali reduced		
	acid remaining in burette (1)	(1)]		
	Stand alone marks			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Table 2Weighings in correct spaces to at least2 dp (1)Correct subtractions (1)Table 3Two temps recorded (1)BOTH to 0.5 ° C or better (1) ΔT correct with negative sign (1)EXPECTED VALUE -7.6°C or s/v value $\pm 1.0°C$ (3) $\pm 1.5°C$ (2) $\pm 2.0°C$ (1)> 2.0°C (0)			8

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3.(b)(i)	For correct substitution and evaluation(1) positive sign (1) Answer to 2 sig figs (1)			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(ii)	Either less accurate because % of error (in ΔT) greater (1) OR: More accurate because error due to heat gain is less (1)		Heat loss	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.	Weigh crucible (1) \checkmark m1 Known mass/stated mass (1) \checkmark m2 Heat in crucible(1) \checkmark m3 To constant weight (1) \checkmark m4 Calculate mass (of gas) lost (1) \checkmark c1 Moles CO ₂ = <u>mass lost</u> = moles CaCO ₃ (1) <u>44/Mr</u> \checkmark c2 Mass CaCO ₃ = moles x 100 Mr (hence %) (1) \checkmark c3	If gas collection method Moles CO₂ = vol/molar volume √C1		7

6243/01C - Materials

Apparatus and Materials

Apparatus

Each candidate will require:

- 1. apparatus for a flame test;
- spatula;
- 10 cm³ measuring cylinder;
- 50 cm³ measuring cylinder;
- 3 test tubes in a rack;
- supply of dropping pipettes;
- Bunsen burner;
- 50 cm³ burette, stand and clamp, with small funnel for filling, white tile and a small beaker for draining burette;
- 2×250 cm³ conical flasks;
- 25 cm³ pipette with safety filler;
- 11. expanded polystyrene cup held securely in a 250 cm³ beaker;
- 12. a thermometer of range from at least room temperature to 50 °C (e.g. 0 to 50 °C or -10 to +110 °C), able to be read to ± 0.5 °C or better;
- 13. access to a balance reading to at least 2 decimal places;
- 14. apparatus for testing gas with limewater e.g. delivery tube or dropper pipette.

Materials

Each candidate will require:

- (a) approximately 0.5 g of anhydrous sodium carbonate, labelled F. The identity of this must not be revealed to candidates;
- (b) 3 cm³ of aqueous potassium sulphate: concentration approximately 0.1 mol dm⁻³, labelled G. The identity of this must not be revealed to candidates;
- (c) 2 cm³ of aqueous barium chloride: concentration approximately 0.1 mol dm⁻³;
- (d) 10 cm³ of limewater;
- (e) 2 cm³ of dilute hydrochloric acid, concentration approximately 2 mol dm⁻³;
- (f) 200 cm³ of aqueous sodium hydroxide: concentration 0.150 mol dm⁻³, labelled T;
- (g) 200 cm³ of aqueous ethanedioic acid: concentration 8.32 g dm⁻³ of (COOH)₂.2H₂O, labelled U. The identity of the solute and this concentration must not be revealed to candidates;
- (h) phenolphthalein indicator;
- specimen tube containing 5.0 ± 0.05 g of potassium nitrate, labelled B. The identity of this must not be revealed to candidates;
- (j) distilled water.

6243/02

Question Number	Correct Answer	Acceptable	Reject	Mark
1 (a)(i)	Lighted/burning splint (1) Pops/explodes/squeaky pop (1) 2 nd mark conditional on 1 st being correct (see above) or a near miss (glowing splint, smouldering splint, burn, ignite are near misses)	Lit/flaming flint/spill flame	Near misses do not score 1 st mark Just 'splint' Correct result without test or near miss scores zero	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(ii)	Glowing splint (1) Reignites/relights (1) 2 nd mark conditional on 1 st OR Burning splint burns more brightly (2)	Smouldering Burning splint relights scores 1	Splint alone No test	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	White precipitate / solid (1) Insoluble in (hydrochloric) acid / HCL (1)	Solution turns cloudy/milky ppt or ppte for precipitate No change/	Just 'No reaction with HCl' 'Precipitate' Turns white	2
		reaction with HCl or acid		

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
1 (b)(ii)	Precipitate dissolves/ disappears in (hydrochloric) acid	effervescence with (hydrochloric) acid or Pungent gas evolved with acid or Gas evolved with acid which turns (potassium) dichromate green/blue	Just 'precipitate dissolves' or 'Effervescence' or 'Gas evolved' or (blue) litmus/pH paper turns red	1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
1 (b)(iii)	Add sodium hydroxide	Potassium	Near misses do not	2
	(solution), (warm) (1)	hydroxide	score 1 st mark	
	Gas evolved turns red	White fumes with	Alkaline gas/gas	
	litmus blue (1)	HCl		
	2 nd mark conditional on 1 st	Universal indicator	Incorrect chemistry	
	being correct (see above)	/pH paper turns	for test scores zero	
	or a near miss (alkali,	blue	(e.g. 'add acid' or add	
	hydroxide (ions) or just		NaOH followed by acid	
	'warm' or 'heat', alkali			
	with Zn/ Al/ Devarda's			
	alloy are near misses)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(i)	Lilac	Purple		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(ii)	Potassium flame masked (by strong sodium flame colour)	Sodium (yellow) flame persistent /strong Yellow flame seen instead of lilac Potassium flame not seen (clearly)	Both colours seen Colours mix Flame is yellow	1

0	Course of Augusta	A	Defect	A.A
Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
2 (a)(i)	Moles of 2-methylpropan-	Correct answer	100 x <u>5.8</u>	3
	2-ol = 7.9 (1) = 0.10676	some working	7.9	
	74	scores 3	=73.4% scores zero	
		Correct answer, no		
		working (1)		
	Fither	nonaig (1)		
	Theoretical mass of 2-	Ecf on moles		
	chloro-2-methylpropape			
	$-025 \times 70(1) - 0.875(a)$	= 92.5 x 7.9 (1) = 9.9 g		
	$= 92.5 \times \frac{7.9}{74} (1) = 9.675 (g)$	74		
		100 x 5.8 = 58.6%		
	$100 \times \frac{5.8}{0.075} = 58.7\% (1)$	(1) 9.9		
	9.875	()		
		Or		
	Or	actual moles of 2-		
	actual moles of 2-chloro-2-	chloro-2-		
	methylpropane	mothylpropapa		
	= 5.8 (1) $= 0.0627$			
	92.5	$= \frac{5.8}{00}$ (1)		
		92.5		
	100 x 0.0627 = 58.7/59 %	= 0.0627		
	0 10676 (1)			
		100 x <u>0.0627</u>		
		0.107		
		= 58.6 % (1)		
	ligners of event 1 of 1			
	[ignore s.i. except i s.i.]			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(ii)	Transfer / handling losses, or specific examples of these eg 'product left in aqueous layer', or 'other products formed'	Side reactions occur Or reaction incomplete Or by-products	experimental error or spillages or evaporation or equilibrium	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	Sensible separating funnel with tap (1) Organic layer on top (1) - stand alone		Conical/filter or Buchner funnel with tap	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	To prevent pressure building up due to formation of carbon dioxide or gas	To release the carbon dioxide/gas formed/pressure	To release vapour	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)	50 — 52 (°C)	49 or 50 - 52 or 53		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	Add PCl ₅ (1) (or SOCl ₂) Any one of No steamy/misty/white fumes(1) no gas turns (damp) blue litmus / UI / pH paper red (1) no white smoke with ammonia (1)	Na (1) Any one of No bubbles (1) No pop with a lit splint (1) Positive result if alcohol present	PCl ₃ White smoke with PCl ₅ Any physical test Any oxidant No reaction	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(i)	(glass/volumetric/ graduated/25cm ³) pipette		Burette / measuring cylinder/teat pipette	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(ii)	With (the) sodium hydroxide (solution) Ignore initial rinsing with (distilled) water	Solution to be used in the burette Alkali	Solution to be used / final rinsing with (distilled) water	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(iii)	Colourless (1) to Pink (1) Pink to colourless (1)	to permanent pink/pale pink	Red or purple or magenta	2

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
3 (b)(i)	Titres agree to within 0.2 (cm ³)	0.05 - 0.20 (cm ³)		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	(26.35 + 26.45) = 26.40 (1) 2	26.4 correct answer with no working (1)		1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
3 (b)(iii)	$0.205 \times 26.40 = 5.41 \times 10^{-3}$	Ecf from (ii)	If the factor of 1000 is	1
	1000	5.412 x 10 ⁻³	omitted penalise on	
			each occasion	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(iv)	$\frac{5.41 \times 10^{-3} \times 1000}{25}$ (1) = 0.216 (mol dm ⁻³)(1) Ignore s.f. except 1 s.f. If 26.40 & 25 transposed in 3 (b)(iii) and 3 (b)(iv) penalise once	Ecf from (iii)	If the factor of 1000 is omitted penalise on each occasion	2

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
3 (b)(v)	100 x <u>0.216</u> = 9.6 %	Ecf from (iv)	10 %	1
	2.25	9.62 % (if left on	values > 100%	
		calculator)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)	(Indicator) colour change cannot be seen/is masked (because of the colour of the wine)		Just 'end-point cannot be seen'	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)	Bromine (water/solution) (1) Orange/yellow/red-brown solution decolourised/goes colourless (1)	brown solution goes	Discoloured Goes clear Initial colour omitted	2
	OR Acidified potassium manganate(VII) (1) Purple/pink solution decolourised/goes colourless (1)	Potassium permanganate		
	OR alkaline/neutral potassium manganate(VII) (1) Purple/pink solution to green or brown (ppt)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)	Compare measured boiling point/boiling temperature to (data) book value Compare IR/mass spectrum/NMR spectrum to reference data	IR/mass spectrum/NMR spectrum (Measure) boiling point /boiling temperature Melting point /melting temperature		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)	Initially CuSO ₄ in excess so amount of reaction depends on amount of Zn or More CuSO ₄ reacts (as more Zn added) (1)	CuSO₄ in excess More Zn reacts	Reaction is exothermic	2
	Graph levels off because all CuSO₄ used up (1)	Zn now in excess	Just 'Reaction is complete'	

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
5 (b)(i)	Heat capacity (of metal) low (compared with that of solution)	Metal has negligible/low specific heat capacity Metal absorbs (much) loss heat		1
		(than solution/ water)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(ii)	q = 50 x 63.5 x 4.18 = 13271.5 J Units, if given, must be correct Ignore signs	13300/13270/13272 Answer in kJ only if units stated	13271	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(iii)	Moles $CuSO_4 = 50 \times \frac{1.25}{1000}$ = 0.0625 (1)	Correct answer with some working scores full marks		4
	$\triangle H = (-) \frac{13271.5}{0.0625 \text{ x } 1000}$ = - 212 (kJ mol ⁻¹) 1 mark for negative sign 1 mark for answer to 3 SF Units, if given, must be correct	Ecf from moles Ecf from (ii) gives -213/-212/ -212		

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
5 (c)(i)	Extra precision negligible	Measuring cylinder		1
	compared with	is least accurate		
	approximations in	measuring		
	calculations/heat loss	instrument		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(ii)	Use a lid on the cup (to reduce heat loss)	Extra insulation for cup Weigh CuSO₄ solution Use burette/ pipette to measure volumes	Repeat experiments OR use more accurate balance OR Smaller mass intervals	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
6	Strategy: Statement or diagram of method (1) Measurement (1)			5
Same for all methods	Deduction (1)	Shorter time or faster rate = less stable (1)		
(Equal moles (1)	Equal amounts	Equal mass	
	One other measure to ensure consistent results (1)	Consistent heating (e.g. position of crucible/tube or same Bunsen setting (stating 'blue flame' or same height flame can gain this mark)) Or same volume or concentration of lime water.	Use of water bath to control temperature	
	Examples of method and measurement			
	Heating and detecting CO ₂ with limewater (any valid method) (1) Time for lime water to turn milky (1)	 Valid methods include bubbling into limewater transferring CO₂ to limewater using a teat pipette 		
	Heating and measuring volume of CO ₂ (any valid method) (1) Volume in a fixed time or time for a fixed volume (1)	Amount of CO2 provided a valid volume-measurement method used		
	Heating and measuring mass loss (any valid method) (1) Mass loss in a fixed time (1)		time for a fixed mass loss	
	Heating to constant mass or complete decomposition can only score equal moles and measure to ensure consistent results marks (max 2)			

6244/01

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				4
1 (a)	can be given in either			4
	oldel			
	1 st functional group			
	alkene or C=C or carbon-		Just 'double bond' or	
	carbon double bond (1)		just 'carbon double	
	bromine water/Braturns	VM.O	bond	
	(from orange/brown etc.	$\Lambda M n O_4$		
	to) colourless/decolorised	Actorned decolorised	'clear' instead of	
	(1)		'colourless'	
	KEGOIKED			
	2 nd functional group			
	carboxylic (acid)	carboxyl		
		5	"carbonyl"	
	c'			
	н			
	(1)			
	on addition of $Na CO$ or	as avalved which	Just "a gas/CO ₂ /H ₂	
	$N_{2}UCO$ or $C_{2}CO$ or M_{2}	turns limewater milky	evolved" for fizzing	
	$Nanco_3$ of $CacO_3$ of Mig ,	OR		
		or universal indicator/		
	OR	blue litmus turns red		
	(warm with) a named			
	alconol plus conc. acid (as			
	pleasant/fruity smell			
	Ignore references to			
	testing with PCl ₅			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	W as it contains an aldehyde group / -CHO group OR W can be oxidised (whereas X cannot) OR X cannot be oxidised OR W as X is a ketone (which cannot be oxidised)		W with no reason or an incorrect reason (0) Contains C=O	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)	$\begin{array}{c} CH_2OHCH_2OH \\ OR \\ H \\ H \\ C \\ C \\ HO \\ HO \\ OP \end{array}$	(CH ₂ OH) ₂		1
	Ethan(e)-1-2-diol			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(iii)		(COOH) ₂		1
	OR HOOCCOOH OR Ethanedioic acid/oxalic acid	ethan(e)-1,2-dioic acid or ethandioic acid	Any other name	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(i)		CQ polyester on basis of monomers in 1(b)(ii) and (iii)		2
	OR	-CH ₂ CH ₂ - instead of		
		in relevant part of structure		
	(2) for a correct structure IF STRUCTURE IS INCORRECT, BUT A CORRECT ESTER LINKAGE IS FULLY DRAWN (1)	only (1) if STRUCTURE IS CORRECT, BUT the ester linkage has been written as COO/CO ₂		
	the correct repeat unit must contain only 4 carbon and 4 oxygen atoms			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(ii)	Condensation			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)	Na_2O (1)	Na_2O_2 (1)		3
	P_4O_{10} or P_2O_5 or P_4O_6 or P_2O_3 (1)			
	SO_2 or SO_3 (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	$Na_2O + H_2O \rightarrow 2NaOH$	$\dots \dots 2Na^+OH^-$ OR		1
	Ignore state symbols	$\dots 2Na^{+} + 2OH^{-}$ OR $Na_{2}O_{2} + 2H_{2}O \rightarrow 2NaOH + H_{2}O_{2}$		
		OR $Na_2O_2 + H_2O = 2NaOH$ $+ \frac{1}{2}O_2$		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	$P_4O_6 + 6H_2O \rightarrow 4H_3PO_3$		$P(OH)_3$ instead of	1
	OR		H_3PO_3	
	$P_2O_3 + 3H_2O \rightarrow 2H_3PO_3$			
	OR			
	$P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$			
	OR			
	$P_2O_5 + 3H_2O \rightarrow 2H_3PO_4$			
	Ignore state symbols			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iii)	$SO_2 + H_2O \rightarrow H_2SO_3$ OR $SO_3 + H_2O \rightarrow H_2SO_4$ Ignore state symbols			1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
2 (c)	First mark:-			2
	EITHER Tin more stable at +4 (than at +2)		"Sn ²⁺ less stable	
	whereas lead more stable at +2 (than at +4)		than Pb ²⁺ ions"	
	OR		"Pb(II) is more stable than Sn(II)"	
	+2 (oxidation state) becomes more stable relative to +4 down the group (OWTTE) (1)			
	Second mark:-			
	(so) Fe ³⁺ reduced to Fe ²⁺ (by Sn ²⁺)			
	OR			
	(2) $Fe^{3+} + Sn^{2+} \rightarrow Sn^{4+} +$ (2) Fe^{2+}			
	OR			
	tin(II) stronger reducing agent (than lead(II))			
	OR			
	redox reaction between Sn^{2*} and Fe^{3*}			
	OR			
	Sn^{2+} oxidised to Sn^{4+} / $Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$			
	OR			
	tin(II) acts as a (strong) reducing agent			
	OR			
	tin(II) reduces Fe ³⁺ (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	$SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCl$ Species (1) Balancing (1) Ignore state symbols			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)	$K_{p} = \frac{p_{NO_{2}}^{2}}{p_{N_{2}O_{4}}}$ <i>IGNORE UNITS HERE</i>		[]	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3 (b)(i)	$p_{NO_2} = 0.8 \times 1.1$			3
	= 0.88(atm)			
	and			
	$p_{N_2O_4} = 0.2 \times 1.1$			
	= 0.22(atm) (1)			
	$(0.88)^2$			
	$\mathbf{K}_{p} = \frac{1}{(0.22)}$			
	$K_p = 3.52$ (1)			
	atm (1)			
	SECOND MARK IS CO ON			
	SECOND MARK IS CO ON			
	PARTIAL PRESSURES AS			
	CALCULATED			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	First mark: $X_{N_2O_4} = 0.10$ $X_{NO_2} = 0.90$ (1) Second mark: K_p constant or use of K_p = 3.52 or use of K_p calculated in 3(b)(i) (1)		В	3
	Third mark: Value of P _T with some working e.g. $3.52 = \frac{(X_{NO_2} \times P_T)^2}{X_{N_2O_4} \times P_T}$ $3.52 = \frac{0.81}{0.10} \times P_T$	Mark CQ on first and second answers to 3(b)(ii)		
	$P_T = 0.435(atm)$ (1) <i>THIRD MARK NOT</i> <i>AVAILABLE IF K</i> _p <i>EXPRESSION DOES NOT</i> <i>CONTAIN A p² TERM</i>	in range 0.43 to 0.44		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(i)	Increases / gets larger/ gets bigger/ goes up/greater		more	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(ii)	First mark: Fraction/quotient/ $\frac{p_{NO_2}^2}{p_{N_2O_4}}$ /numerator has to increase (to equal new K_p) (1) Second mark (can only be awarded for an answer that refers to the fraction/quotient above):	Mark consequentially on "decreases" in (i)	Le Chatelier argument scores (0)	2
	EITHER so shifts to RIGHT hand side (as $p_{NO_2} \uparrow$ and $p_{N_2O_4} \downarrow$) / goes in forward direction (as $p_{NO_2} \uparrow$ and $p_{N_2O_4} \downarrow$) OR so (more) N ₂ O ₄ changes to NO ₂ OR so (equilibrium) yield of NO ₂ increases (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	BOX A Ag _(g) (1)			3
	BOX B F _(g) (1)			
	C: enthalpy (change) of formation (of AgF)/ $\Delta H_{\rm f}$ / $\Delta H_{\rm formation}$ (1)	'heat of formation'		
	IGNORE reference to 'standard'			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	EITHER -205 = (+285) + (+731) + (+79) + EA + (-958) OR EA = (-205) - (+285) - (+731) - (+79) - (-958) (1) = -342 (kJ mol ⁻¹) (1) CORRECT ANSWER ALONE (2)		Any algebraic expression for EA that would give an incorrect value (0). Any algebraic expression for EA that would give a +ve value for EA scores (0).	2

Question	Correct Answer	Acceptable Apswers	Reject	Mark
4 (b)(i)	EITHER	71130013	Reference	3
			to "atoms" or	
			"molecules"	
	EITHER		"l ₂ " scores	
	iodide (ion) larger than fluoride (ion)	Just 'iodide has	(0) overall	
	OR	smaller charge density than	An-X scores	
	Sum of ionic radii in Agl larger (than in AgF)	fluoride' scores first mark	(0) overall	
	OR			
	halide ion or X ⁻ or anion increases in size down group (1)	"atomic radius of halide ion/X ⁻ /anion increases (down group)"		
	SECOND MARK:	(
	Charges (on anions) same			
	(1)			
	THIRD MARK:			
	(so) weaker (forces of) attraction between ions (in Agl) (1)	"weaker ionic bonding" (1)	Just "weaker bonding (in	
	CORRECT REVERSE ARGUMENTS CAN SCORE ALL THE MARKS		Agl)″	
	<u>OR</u>			
	First and second marks combined by stating			
	I ⁻ (ion) larger than F ⁻ (2)	Just iodide has smaller charge density than fluoride scores only one mark		
	THIRD MARK:			
	(so) weaker (forces of) attraction between ions (in Agl) (1)	"weaker ionic bonding" (1)	Just "weaker bonding (in	
	IGNORE ANY REFERENCES TO POLARISATION OF IONS ANYWHERE IN (b)(i)		AgI)"	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	Theoretical value (assumes) 100% ionic OR no covalent character (1) (Experimental value is different) due to covalency OR covalent character OR polarisation of anion(1)		Mention of "Ag–X" OR "molecules" scores (0)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iii)	(as) size of anion increases (down group) (1)	"atomic radius of halide ion/X ⁻ /anion increases (down group)"	Mention of "Ag–X" OR "molecules" scores (0) unless already penalised in 4 (b)(ii)	2
	(anions) more easily polarised (down group) OR more distortion of anion (down group) (1) MARK THESE POINTS INDEPENDENTLY	"more covalent character"/ "more covalent" for second mark	"more covalent bonding" (0)	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(i)	$\Delta H_{SOLN} = -\Delta H_{LATT} + \Delta H_{HYD}$ OR $= -(-958) + (-464) + (-506) \text{ (1)}$ $= -12 \text{ (kJ mol}^{-1} \text{ (1)}$ CORRECT ANSWER ALONE SCORES 2	—12 kJ	+12 scores (0)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(ii)	AgF soluble / AgF slightly soluble (1)	If +12 (kJ mol ⁻¹) in (c)(i), AgF insoluble (1)		2
	as ΔH_{SOLN} exothermic / negative (1)	because endothermic / positive (1)		
	MARK INDEPENDENTLY			
	Mark CQ on sign and magnitude of answer in (c)(i)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(i)	$H_{2}O(I) \rightleftharpoons H^{+}(aq) + OH^{-}(aq)$ OR $2H_{2}O(I) \rightleftharpoons H_{3}O^{+}(aq) + OH^{-}(aq)$ $IGNORE STATE SYMBOLS$		if a full arrow is shown in the equation	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(ii)	$K_{W} = [H^{+}_{(aq)}][OH^{-}_{(aq)}]$ OR $K_{W} = [H_{3}O^{+}_{(aq)}][OH^{-}_{(aq)}]$ IGNORE STATE SYMBOLS		If $[H_2O]$ included (0). $K_w = [H^+]^2$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(iii)	$pH = -\log_{10}[H^+]$	pH = lg 1/[H ⁺]		1
	OR $pH = -\log_{10}[H_3O^+]$ OR in words			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(iv)	$K_{w} = [H^{+}][OH^{-}]$ 5.48×10 ⁻¹⁴ = $[H^{+}]^{2}$ (1) $[H^{+}] = \sqrt{5.48 \times 10^{-14}}$ $[H^{+}] = 2.34 \times 10^{-7}$ (mol dm ⁻³) pH = 6.6(3) (1) correct answer with no working (2)		pH = 13.3 /13.6 scores (0)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(v)	(In pure water) [H ⁺]=[OH ⁻] OR equal concentrations of H ⁺ and OH ⁻			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(i)	12.5			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(ii)	4.8 / 4.9 [no consequential marking from (i)]		5 or 5.0	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(iii)	$K_{a} = \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]}$ OR $K_{a} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH]}$		expressions containing [H ₂ O] OR "HA" generic equations	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(iv)	(at half-neutralised point so)		Just pH = 4.8 as already	2
	$pK_a = 4.8$	Mark CQ on (ii)	credited in 5 (b)(ii)	
	OR			
	$pH = pK_a $ (1)			
	Ka = antilog ₁₀ (-4.8) Ka = 1.6 x 10 ⁻⁵ (mol dm ⁻³) (1)	Mark CQ on pKa If pKa = 4.9, Ka = 1.3 x 10 ⁻⁵	Answers to other than	
	Must be to two sig figs CORRECT ANSWER WITH OR WITHOUT WORKING (2)		2 3.1.	
			2.5 x 10 ⁻⁹ scores (0)	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)	Phenolphthalein: changes colour (OWTTE) in vertical part of the graph OR changes colour within a stated range anywhere from 7 to 11 (1) Methyl orange changes colour at a low(er) pH OR has already changed colour OR changes colour before the vertical (section) (1) [NB There must be a statement about methyl orange for second mark]	Allow range for methyl orange of 3 to 6 or colour change takes place below pH = 7	If colour change "pink to colourless" Just 'methyl orange changes colour outside the vertical range'	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (d)(i)	$H^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow H_2O_{(l)}$ for both (acids) OR $H_3O^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow 2H_2O_{(l)}$ for both (acids) OR Both (acids) fully ionised/fully dissociated (1)	State symbols not essential.	Equations shown as equilibria	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (d)(ii)	EITHER HCN weak (acid) OR HCN ionises to (only) a small extent OR HCN equilibrium lies to the left (1)	"HCN not fully ionised" or "HCN partially dissociates / ionises"	Any idea that only partial neutralisation occurs negates first mark	2
	Energy taken in OR energy required for dissociation / ionisation (of HCN) (1) MARK INDEPENDENTLY	"endothermic dissociation of HCN"		

Question	Correct Answer		Acceptable	Reject	Mark
Number			Answers		
6 (a)(i)	First two mar	rks:			4
	For correct reage	ent (ignore all state			
	symbols) (1)				
	For correct condi	tion(s), but only if with			
	matching reagent (1)				
	Descent				
	Reagent Condition				
	HUN				
	HCN	KCN			
	KCN	HCN			
	HCN or KCN	any stated pH or pH			
	KON	range between 5 and 9			
	KCN	+ (named) acid / H			
	HUN	+ (named) base / OH			
	does not have to	be identified 1			
		be identified.]			
	Hydrolysis of -CN	group to -COOH group:			
	IGNORE MENTION	OF "HEAT / REFLUX"			
	Second two n	narks (only			
	available if co	orrect reagent has			
	previously be	en given):			
	FITHER				
	Name or formula	of a mineral acid (1)	"H ⁺ "	conc H ₂ SO ₄	
	Boil or heat (1)		"warm"	(0)	
	Second mark dep	pendent on first mark			
	being awarded				
	IGNORE MENTION	OF "REFLUX"			
	OR				
	Name or formula	of correct alkali AND	OH [−] AND boil		
	boil/heat (1)		/heat/warm		
	"Acidify" / H⁺ or	name/formula of any	(1)		
	acid (1)	2			
	IGNORE MENTION	UF "REFLUX"			
			1		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (a)(ii)	CH ₃ CH(OH)CH ₂ CH ₃ OR CH ₃ CH(OH)C ₂ H ₅ OR Full structural formula of the above	CH ₃ CHOHCH ₂ CH ₃ OR CH ₃ CHOHC ₂ H ₅ -O-H can be represented as -OH		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)(i)	W: ethanamide (1)	acetamide	Formulae	3
	X: methylamine (1)	(1-)aminomethane	methanamine	
	Y: ethanenitrile (1)	'methyl cyanide'	'ethanitrile'	

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
6 (b)(ii)	Reaction 1 Bromine/Br ₂ and sodium hydroxide/NaOH/potassium hydroxide/KOH (1) <i>IGNORE CONC OR DILUTE OR AQUEOUS BEFORE</i> <i>NaOH / KOH</i> Reaction 2		'bromine water' OR 'aqueous bromine'	3
	phosphorus(V) oxide OR phosphorus pentoxide OR P ₄ O ₁₀ (1)	P_2O_5	phosphorus oxide	
	Reaction 3lithium aluminium hydride(in dry ethoxyethane)OR LiAlH4 (in dryethoxyethane)OR lithiumtetrahydridoaluminate((III))(in dry ethoxyethane)(1)	$LiAlH_4$ followed by water or acid OR H ₂ and Ni/Pt/Pd (catalyst) OR Na and C_2H_5OH	<i>LiAlH</i> 4 in water (0) <i>NaBH</i> 4	
	MARK INDEPENDENTLY			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)(iii)	Reaction 2 dehydration (1) Reaction 3		'elimination (of water)'	2
	reduction/redox (1)	'hydrogenation'		

6245/01

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)	e.m.f. of a half cell relative/compared to a (standard) hydrogen electrode OR voltage produced from a half cell joined to a hydrogen electrode (1)	Potential (difference) /voltage for emf emf of a cell with standard hydrogen as the left electrode A description of the half cell e.g. a metal dipping into a solution of its ions	SHE	2
	(solutions at) 1 mol dm ⁻³ concentration, (gases at) 1 atm/100 kPa/10 ⁵ Pa/ 1 Bar pressure and stated temperature (1)	101 kPa 298 K or 25 °C If any other	'constant' pressure "STP"	
	all 3 conditions needed STAND ALONE	temperature is quoted it must be as an example of a stated temperature	Room temperature Just "273 K"	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)	Can only measure a potential difference/emf (if a reference electrode is present) OR voltmeter needs 2 connections OR Cannot measure the potential difference between a metal and a solution of its ions		Just "electron source and sink" to make comparisons between half cells	1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
1 (c)(i)	1st mark(simultaneous) oxidation and reductionof a (single) species/ substance/reactant/compound/chemicalOr the oxidation state/number is bothincreased and decreased of a (single)species/ substance/ reactant/		oxidation and reduction occur at the same time oxidation state <u>s</u> are	2
	compound/chemical Or a (single) species/ substance/ reactant/compound/chemical both loses and gains electrons (1) $\frac{2^{nd} mark}{For a given type of atom within an ion/moleculeOr Illustrated by a suitable example inwhich the individual atom is identified(1)$			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(ii)	$2H_2O_2 \rightarrow 2H_2O + O_2$ (1) $E_{cell} = (+) 1.09$ (V) (1) E_{cell} is positive/greater than 0 so the reaction is feasible (1) 3^{rd} mark must be cq on sign of E_{cell}		2H ⁺ on both sides of equation Greater than any other stated number	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(iii)	activation energy of the reaction may be high OR reaction too slow to be observed		Just "Not enough energy to overcome the activation energy" Conditions are non- standard Just "kinetically stable"	1
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
--------------------	---	-----------------------	--------	------
2 (a)(i)	second order (1) rate proportional to the square of the			2
	(partial) pressure of NO OR the rate doubles as the square of the (partial) pressure of NO doubles (1) Conditional on correct order			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(ii)	as (partial) pressure (of O_2) doubles rate doubles, so first order OR gradient of line is $k p(O_2)^x$ so if this doubles the order (w.r.t. O_2) must be 1	Concentration of O ₂ instead of (partial) pressure		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(iii)	rate = <i>k p</i> (NO) ² <i>p</i> (O ₂) Cq on orders in (i) and (ii)	rate = k[NO] ² [O ₂] "R" for "rate" "K" for lower case "k"	Any equation without k rate = k $p[NO]^2p[O_2]$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(iv)	atm ⁻² s ⁻¹ ALLOW this mark, even if <i>p</i> [] used in (iii) Cq on (iii) [if overall second order, unit is atm ⁻¹ s ⁻¹ . If overall first order unit is s ⁻¹]	mol ⁻² dm ⁶ s ⁻¹ if concs used in (iii)		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(v)	partial pressure/concentration of NO is very small (so the collision frequency with O ₂ molecules is very low)	chance of a 3-body collision is slight	Equilibrium reaction Temp is too low	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	plot ln k vs 1/T (1) giving straight line of gradient - E_a/R OR E_a = -gradient x R (1) STAND ALONE MARKS $I2^{nd}$ mark could be scored from (ii) if no	If plot 1/T vs In <i>k</i> and gradient is -R/ <i>E</i> _a (2) If plot In <i>k</i> vs 1/RT and gradient - <i>E</i> _a (2)	" log"	2
	reference to gradient here in (i) provided a clear expression is stated]			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark 2
2 (b)(ii)	$E_a = 2.95 \times 10^4 \times 8.314$ (1) (= 245,145 J mol ⁻¹)			
	= 245 (kJ mol ⁻¹) (1)	245,000 J (mol ⁻¹) (2)		
	Correct answer with no working (2) Answers not to 3 SF can only score the 1 st mark	[Note to examiners: give credit if candidate uses 2.95 x10 ⁻⁴ or 1/2.95 x10 ⁴]		
	Note: -245 (kJ mol ⁻¹) (1) but must be 3SF 245,000 kJ (mol ⁻¹) (1) but must be 3SF -245,000 kJ mol ⁻¹ (0)			
	If 245 or -245 is given, units are not needed			
	If 245,000 is given, units are essential			
	DO NOT PENALISE K ⁻² OR K ⁻¹ in any unit			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iii)	В			1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
3 (a)	(aqueous) ethanol /ethanolic solution	ethanol		1
		alcohol		
		propanone		

	-			
Question	Correct Answer	Acceptable	Reject	Mark
Numbor		Answorg		-
number		Answers		
3 (b)(i)	1 st Mark			2
	S _N 1			
	Or			
	must be (at least) two steps (1)			
	2 nd Mark			
	anly the helegeneelkene is involved in the			
	only the halogenoalkane is involved in the			
	r.d.s.			
	CN ⁻ is not involved in rds (1)			

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
3 (b)(ii)	$\begin{array}{cccc} CH_{3} & CH_{3} \\ H_{3}C & G & H_{3}C \\ & & & H_{3}C & CH_{3} \\ & & & & H_{3}C & CH_{3} \\ & & & & & H_{3}C & CH_{3} \\ & & & & & CH_{3} \end{array}$	(CH₃)₃C-Br		3
	$\begin{array}{c} \begin{array}{c} & & & \\ H_3 & & \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$			
	structure of carbocation (1) Br ⁻ not essential attack by cyanide, arrow must start from C or -ve charge on C not N and -ve charge must be	completely correct S _N 2 version scores (1) See below		
	essential (1) IGNORE any references to rates of the steps			

Acceptable $S_N 2$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)	yes, because the CN group will cause a different chemical shift (1)	no, because the proton/ H atom environment has not changed (so the nmr spectra will be the same)	Just 'No' any mention of more than one peak	1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
3 (d)	1 st mark	Names or formulae		4
QWC	(heat with) NaOH / sodium hydroxide	can be used, but if		
	(solution)	both used both		
	OR	must be correct		
	heat to red heat with sodium and drop			
	into water (1) 2 nd mark			
	acidify / add excess / neutralise with nitric acid / HNO ₃ (1) If HCI is added here, only the 1 st mark can	Dilute sulphuric acid for nitric	add HNO ₃ concentrated HNO ₃	
	SCORE			
	add silver nitrate (solution) /AgNO ₃ (1)			
	cream ppt (1)		Yellow /off-	
	IGNORE reference to ammonia unless		white ppt	
	incorrect (e.g. soluble in dilute ammonia)			
	Note:			
	If no NaOH used only the 2 nd , 3 rd and 4 th			
	marks can score			
	If no acid is added, or if it is added before			
	NaOH, only 3 rd and 4 th marks can score			
	If order of addition is NaOH, AgNO ₃ ,			
	excess HNO ₃ , can score all marks			
	If no NaOH and no HNO ₃ , can score 3^{ra} and			
	4 th marks			
	If any reagent other than AgNO ₃ , including			
	ammoniacal AgNO ₃ , is used, only 1^{31} and 2^{nd} more score			
	Mass spectroscopy (1)			
	A doublet (1)			
	of equal beights (1)			
	in molecular ion neak (1)			
	OR			
	Mass spectroscopy (1)			
	loss of m/e of 79 (1)			
	and 81 (1)			
	from molecular ion (1)			
	OR			
	Infrared spectroscopy (1)			
	Measure/record wavenumber (1)			
	Absorption due to C-Br stretch (1)			
	Compare wavenumber with data book (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (e)(i)	dilute acid/(dilute) hydrochloric acid/dilute sulphuric acid / dilute nitric acid OR aqueous NaOH followed by dilute acid (1)	H ₃ O ⁺ (aq)/H ⁺ (aq)	concentrated acid OR Just "water"	2
	(CH ₃) ₃ CCOOH (1) STAND ALONE	(CH₃)₃CCO₂H; displayed formulae	$C_3H_{10}O_2$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (e)(ii)	$(CH_3)_3CCOOH+CH_3CH_2OH \Rightarrow (CH_3)_3CCOOCH_2CH_3+H_2O$	"-CO ₂ -" for "-COO-";	CH₃CH₂ <u>HO</u>	2
	 (1) for ethanol provided it is reacting with a carboxylic acid or acid chloride (1) for remainder of equation correct 	"→" for "⇔"		
	ALLOW (CH ₃) ₃ CCOCI+CH ₃ CH ₂ OH \rightarrow (CH ₃) ₃ CCOOCH ₂ CH ₃ +HCI (2) if acid chloride is produced in first step	full structural formulae		
		" C_2H_5 " for " CH_3CH_2 "		

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
4 (a)(i)	(anhydrous) aluminium chloride	Al ₂ Cl ₆	Fe	1
		AlBr ₃ FeBr ₃		
	[Name or formulae]	FeCl ₃		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
Question Number 4 (a)(ii)	Correct Answer $CH_{3}CHCH_{3} + RICL_{3} \rightarrow CH_{3}CHCH_{3} + RICL_{3}Br^{-}(I)$ $Br^{-} CH_{3}CHCH_{3} \rightarrow CH_{3}CHCH_{3} + RICL_{3}Br^{-}(I)$ $CH_{3}CHCH_{3} \rightarrow CH_{3}CHCH_{3} + CH_{3}CH_{3}$ $(I) CH_{3}CHCH_{3} \rightarrow CH_{3}CHCH_{3} + (H^{+}/HB_{r} + RICL_{3})$ $CR^{-} CH_{3}CHCH_{3} \rightarrow CH_{3}CHCH_{3} + RrCL_{3}$ $CR^{-} CH_{3}CHCH_{3} + RICL_{3} \rightarrow CH_{3}CHCH_{3} + RrCL_{3}$ $CR^{-} CH_{3}CHCH_{3} + RICL_{3} \rightarrow CH_{3}CHCH_{3} + CH_{3}CHCH_{3}$ $CH_{3}CHCH_{3} + AICL_{3} \rightarrow CH_{3}CHCH_{3} + Br-AICL_{3}$ $CR^{-} CH_{3}CHCH_{3} + AICL_{3} \rightarrow CH_{3}CHCH_{3} + Br-AICL_{3}$ $CR^{-} CH_{3}CHCH_{3} + AICL_{3} \rightarrow CH_{3}CHCH_{3} + Br-AICL_{3}$ $CR^{-} CH_{3}CHCH_{3} + AICL_{3} \rightarrow CH_{3}CHCH_{3} + Br-AICL_{3}$	Acceptable Answers either a delocalised or Kekule ring If CH ₃ CHBrCH ₃ → CH ₃ CH ⁺ CH ₃ + Br ⁻ loses 1 st mark but can score 2 nd , 3 rd and 4 th marks	Reject	Mark 4
	$\begin{array}{c} & & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ \end{array} \begin{array}{c} & & & & & \\ \end{array} \begin{array}{c} & & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ \end{array} \begin{array}{c} & & & & \\ \end{array} \end{array}{c} \end{array} \begin{array}{c} & & & & \\ \end{array} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}$ \\c} & & & \\ \end{array} \\c\\ \end{array}			

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
4 (b)(i)	$CH_3CH_2CH_2^+$	$C_2H_5CH_2^+$	$C_{3}H_{7}^{+}$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	secondary carbocation is more stable than primary (1) primary carbocation (CH ₃ CH ₂ CH ₂ ⁺) rearranges to produce a secondary carbocation OR primary carbocation (CH ₃ CH ₂ CH ₂ ⁺) turns into a secondary carbocation OR a description of the rearrangement e.g. a hydrogen atom moves from the middle to the end (1)		any reference to stability of intermediate /product	2

Question	Correct Answer	Acceptable	Reject	Mark
4 (c)(i)	First mark sodium nitrite /sodium nitrate(III)/NaNO ₂ (1)		HNO ₂	2
	Second mark hydrochloric acid / HCI(aq) (1) IGNORE concentration of acid 2 nd mark is conditional on NaNO ₂ or HNO ₂		HCI/hydrogen chloride	

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
4 (c)(ii)	below 0 °C reaction is too slow (1)			2
	above 10 °C the product/benzenediazonium ions decomposes /hydrolysed (1)	HNO ₂ decomposes		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(iii)	N=N link, can be shown linear (1) IGNORE other atoms Remainder correct (1)	IGNORE position of OH group. —ONa or O ⁻ instead of OH	—N=N—O—	2

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
4 (c)(iv)	the bonds around the -N=N- bond are not linear (because of lone pairs) (1) Note: this could be shown on the diagram		different groups on each N atom	2
	restricted rotation/no (free) rotation around the -N=N- (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(i) QWC	First two marks add 2,4-dinitrophenylhydrazine/Brady's reagent (1) orange/yellow ppt (1) Allow this second mark if the name of the reagent is slightly incorrect e.g. 2,4-diphenylhydrazine	2,4-dnp(h) Any combination of yellow and orange Must be ppt	Just "Red ppt" "solid" for "ppt"	3
	OR IR absorption due to C=O stretch (1) at 1700 cm ⁻¹ (1) Third mark Does not give a silver mirror with ammoniacal silver nitrate (or Tollens' reagent)	No change with Tollens'		
	OR no red ppt/stays blue with Fehling's or Benedict's solution OR $H^{+}/Cr_{2}O_{7}^{2-}$ does not change from orange to green/stays orange		lodoform	
	OR H ⁺ /MnO₄ [−] does not change from purple to colourless/stays purple (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(ii)	the C=O group is polar and the nucleophile attacks the δ^+ carbon (1) whereas C=C is non-polar/electron-rich,			2
	(1) OR C=O is polar and C=C is non-polar (1)			
	Nucleophile attacks the δ^+ carbon in C=O and electrophiles attack the π /double bond in C=C, which is electron rich/non-polar (1)			

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
4 (d)(iii)	$H_{g}C \xrightarrow{\Theta} H_{g}C \xrightarrow{\Theta} H_{g$			3
	$H_{3}C \xrightarrow{O} H \xrightarrow{C} N \xrightarrow{H_{2}C} OH +:CN \xrightarrow{H_{3}C} OH +:CN$	curly arrow from O to H⁺		
	both curly arrows in 1 st diagram, attack by cyanide, arrow must start from C or -ve charge on C not N and -ve charge must be present somewhere on ion; lone pair not essential. Arrow must start from bond between C and O and point towards the O (1)			
	Intermediate - Ione pair not essential but negative charge is essential (1)			
	Arrow from O (lone pair not needed) or negative charge to HCN or H ⁺ , this can be shown on the diagram of the intermediate (1) If HCN is used the arrow from H-CN bond is required			
	Any other ketone or aldehyde, max (2)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
5 (a)(i)	Cr: [Ar] $3a^{6}4s^{1}$	4s ¹ 3d ⁵		1
	Cu: [Ar] $3d^{10}4s^{1}$	4s ¹ 3d ¹⁰		
	Both needed for the mark	[Ar] written in full		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(ii)	all the others are 4s ² / have full 4s orbital (1)	Cr and Cu/they do not have a full 4s orbital	Just 'only have one electron in 4s' OR Have incomplete 4s orbital	2
	The d subshell is more stable when either half or fully filled OR A specific example of chromium having half-filled or copper having filled d sub-shell/set of d orbitals which is more stable (1)	sub-energy levels d shell	Half-filled or filled d- orbital(s)	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(i)	Octahedral drawn must be 3-D IGNORE any or no charge	–H ₂ O (bond to H) except on water molecules on left of Cr		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(ii)	Dative bond formed from electron pair/lone pair on oxygen (of the water molecule) to the ion This could be shown on a diagram	A clear description of the dative bond	'dative' alone or from water Just "dative bond formed from oxygen"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(iii)	$[Cr(H_2O)_6]^{3+} + OH^- \rightarrow [Cr(H_2O)_5OH]^{2+} + H_2O$			2
	$\begin{array}{l} OR \\ [Cr(H_2O)_6]^{3^+} + 2OH^- \rightarrow [Cr(H_2O)_4(OH)_2]^+ + 2H_2O \end{array}$			
	$OR \\ [Cr(H_2O)_6]^{3+} + 3OH^- \rightarrow Cr(OH)_3 + 6H_2O$			
	OR $[Cr(H_2O)_6]^{3+} + 3OH^- \rightarrow [Cr(H_2O)_3(OH)_3] + 3H_2O$			
	First mark is for the correct Cr product Second mark is conditional on the first and is for the rest of the equation correct and balanced			

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
5 (b)(iv)	Forms a green precipitate (1)	any shade of		2
	IGNORE initial colour of solution	green		
	(which reacts or dissolves or changes to) a green solution (with excess reagent) (1) 2 nd mark is conditional on an initial ppt			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(v)	acid / acidic	Amphoteric/able to be deprotonated	Coloured ions/ligand exchange/ deprotonation /partially filled d orbitals	1

Turnbert Check working - correct answer can be obtained by not dividing by 2 for 2 nd mark and not multiplying by 2 for 4 th mark and amount thiosulphate in titre $= 0.0372 \text{ dm}^3 \times 0.100 \text{ mol dm}^{-3}$ $= 3.72 \times 10^{-3} \text{ mol (1)}$ amount $1_2 = 3.72 \times 10^{-3} (1) = 1.86 \times 10^{-3} \text{ mol}$ $2^{nd} \text{ mark cq on amount thiosulphate}$ amount dichromate in 25 cm ³ $= 1.86 \times 10^{-3} (1) = 6.2 \times 10^{-4} \text{ mol}$ $3^{rd} \text{ mark cq on amount } 1_2$ Total mass Cr $= 6.2 \times 10^{-4} \text{ mol } 2 \times 10 \times 52 \text{ g mol}^{-1}(1)$ = 0.645 g $4^{th} \text{ mark cq on amount dichromate}$ % of Cr = 64.5 % (1) IGNORE SF unless rounded to 1 SF cq on mass Cr, provided less than 1 g OR amount thiosulphate for whole sample $= 0.0372 \text{ dm}^3 \times 0.100 \text{ mol dm}^3 \times 10$ $= 3.72 \times 10^{-2} \text{ mol (1)}$ amount $1_2 = 1.86 \times 10^{-2} \text{ mol (1)}$ = 0.645 g $4^{th} \text{ mount dichromate} = 6.2 \times 10^{-3} \text{ mol (1)}$ $\text{mass Cr} = 6.2 \times 10^{-3} \text{ mol } x 2 \times 52 \text{ g mol}^{-1}(1) = 0.645 \text{ g}$	Question	Correct Answer	Acceptable	Reject	Mark
% of Cr = 64.5% (1) IGNORE SF unless rounded to 1sf Mark consequentially, as above Note:	Number 5 (c)(i)	Check working - correct answer can be obtained by not dividing by 2 for 2^{nd} mark and not multiplying by 2 for 4^{th} mark amount thiosulphate in titre = 0.0372 dm ³ x 0.100 mol dm ⁻³ = 3.72×10^{-3} mol (1) amount $l_2 = \frac{3.72 \times 10^{-3}}{2}$ (1) =1.86 x10 ⁻³ mol 2^{nd} mark cq on amount thiosulphate amount dichromate in 25 cm ³ = $\frac{1.86 \times 10^{-3}}{3}$ (1) = 6.2×10^{-4} mol 3^{rd} mark cq on amount l_2 Total mass Cr = 6.2×10^{-4} mol x 2 x 10 x 52 g mol ⁻¹ (1) = 0.645 g 4^{th} mark cq on amount dichromate % of Cr = 64.5 % (1) IGNORE SF unless rounded to 1 SF cq on mass Cr, provided less than 1 g OR amount thiosulphate for whole sample = 0.0372 dm ³ x 0.100 mol dm ⁻³ x 10 = 3.72×10^{-2} mol (1) amount $l_2 = 1.86 \times 10^{-2}$ mol (1) amount dichromate = 6.2×10^{-3} mol (1) mass Cr = 6.2×10^{-3} mol x 2 x 52 g mol ⁻¹ (1) = 0.645 g % of Cr = 64.5 % (1) IGNORE SF unless rounded to 1 sf Mark consequentially, as above Note:	Answers 64.48 %		5

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(ii)	Colour at the end point would be green which would prevent the loss of iodine colour being seen OR colour change at end point would be disguised by the colour of Cr ³⁺	Chromium instead of Cr ³⁺	end point disguised by colour of Cr ₂ O ₇ ²⁻ /orange	1

6246/01A

Question		Corr	ect Answ	/er		Acceptable	Reje	ect	Mark
Number						Answers			
1. (a)	Table 1 Check subtr correcting if All volumes ALLOW one readings are ALLOW 0 as volume All subtract [✓ ✓ top RHS Mean titre For correct choosing ide the average 0.05 cm³ (1) Do not penalised in <i>[✓ by the m line in paral</i> Accuracy If the candid error in the or in average • For an a new value titres. • If a wron used in f identica closest f Calculate th candidate's examiner or Examiner's at standardid Award mark	actions a f necessa recorder <i>slip but</i> <i>e in the</i> initial ver- ions corr <i>S of Tabl</i> averaging attern in <i>s</i> graph be date has Table 1 ing the e e. veraging ue using hgly subt the mean titres of wo titre ne different supervisi titre = 21 is for accond ± 0.20	and avera ary. d to 0.05 withhold wrong bo olume <i>N</i> ect (1) e 1] g of cho alues and to 2 or 3 ssing 2/3 1. pace <u>or</u> n elow] made ar volumes examiner error sin the canc the canc the canc tracted t the then ch or take an second the cracted t the canc the canc t	aging ari 5 cm ³ (1) <i>d this ma</i> <i>oxes.</i> <i>OT</i> 50 as sen value d for rec 3 dps or 1 rd dp if a <i>near the</i> n arithme used in <i>r</i> must ca mply cal- didate's a itre has noose an n averag between that of th 3 (to be c 5 follows ±0.40 2	thmetic, ark if any initial es / ording to nearest already dotted etical the mean alculate a culate a culate a chosen been y two e of the the ne confirmed ± 0.50				10

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	Moles MnO_4^- in 25.0 cm ³ = $\frac{25 \times 0.020}{1000}$ (1)	Correct answer from any method for (3)		3
	moles $S_2O_3^{2-}$ in mean titre = moles $MnO_4^- \times 5$ (1)			
	concentration Na ₂ S ₂ O ₃ = <u>moles S₂O₃²⁻ in mean titre</u> to 3 sf (1) mean titre ÷ 1000	Ignore sf except on final conc ⁿ .	Final conc ⁿ if not to 3 sf.	
	Ignore units. Do not penalise loss of trailing zeros.		∴ max (2)	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(c)	Yellow to colourless	Straw (colour) to colourless	Colourless alone Any purple/brown	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	Observations			3
	White precipitate (1)			
	Dissolves / disappears (in excess NaOH) / colourless solution (1)	Soluble in excess/ goes clear		
	Inference Zinc / Zn^{2+} , aluminium / Al^{3+} any two (1) lead(II) / Pb^{2+}		Symbols Zn, Al, Pb.	
	Ignore Cd ²⁺ / Sn ²⁺ / Sn ⁴⁺ / Sb ³⁺			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	Observations White precipitate (1)			5
	Dissolves / disappears (in excess NH ₃) / colourless solution (1)	Soluble in excess/ goes clear		
	Inferences Zinc (ions) / Zn^{2+} (1) Zn(OH) ₂ / [Zn(H ₂ O) ₄ (OH) ₂] (1) [Zn(NH ₃) ₄] ²⁺ (1)	Allow equivalent Cd species if Cd given in (a) [Zn(NH ₃) ₄ (H ₂ O) ₂] ²⁺		

Question	С	orrect Answer	Acceptable Answers	Reject	Mark
Number					
2.(c)	Observation	White precipitate (1)			2
	Inference	Sulphate / SO4 ²⁻ (1)	hydrogensulphate/ HSO4-	Barium sulphate	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2.(d)	ZnSO ₄	CdSO ₄		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(e)	Observations (any) green precipitate (1) Dissolves/ disappears (in excess) / green solution (1) Any yellow / any brown solution (1) Inferences $Cr(OH)_3 / [Cr(H_2O)_3(OH)_3]$ (1) $[Cr(OH)_6]^{3-}$ (1) CrO_4^{2-} (1)	Soluble in excess/ goes clear		6

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(f)	$Cr_2(SO_4)_3$			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Observation	Yellow-orange		2
	Yellow / orange precipitate (1)			
	Inference Carbonyl / C=O/>C=O/ both of aldehyde or ketone (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)	Observation			3
	Stays orange / no change (1)	No reaction	Just "nothing"	
	Inferences			
	Ketone / not aldehyde if follows A or K in (a) (1)		Tertiary alcohol	
	Not oxidised / no redox / does not reduce $Cr_2O_7^{2-}$ (1)		Reject cq on wrong colour	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)	Observation			3
	(pale) Yellow precipitate (1)	Cream ppte		
	Inferences			
	Triiodomethane / lodoform / CHI_3 (1)		CH₃I	
	Methyl ketone / CH₃CO (1)		Methyl secondary alcohol / ethanol / ethanal	

Question Number		Correct Answer		Acceptable Answers	Reject	Mark
3.(d)(i)	m/e	58	(1)			2
	Structure	CH ₃ —C=O CH ₃ Ignore po	(1) sitive charge		CH3COCH3 Species with negative charge	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(d)(ii)	CH ₃ CO⁺		Formula with no positive charge	1
			$C_2H_30^+$	

Question Number		Correct Answer	Acceptable Answers	Reject	Mark
4.	1 🗸	(Add NaCl to all five); the one that gives white ppte is			7
		AgNO ₃			
	2♥	Add AgNO ₃ to new samples of remaining four.			
	3♥	Solution that gives yellow ppte is KI.			
	4 🗸	Solution that gives brown ppte or no ppte is NH ₃ .	No white ppte with		
	5 🗸	Solution that give white ppts are KCI and $AICI_3$.	NH ₃		
	6♥	Add NH ₃ to remaining two unknown solutions.			
	7♥	Solution that gives white ppte is AICI ₃ .			

<u> 0R</u>

Question Number		Correct Answer	Acceptable Answers	Reject	Mark
4.	1	(Add NaCI to all five); the one that gives white ppte is $AgNO_3$			7
	2♥	Add four solutions to (AgCI) ppte.			
	3♥	Ppte dissolves in NH ₃ .			
	4 🗸	Add NH_3 to remaining three solutions.			
	5 🗸	White ppts AICI ₃ .			
	6♥	Add AgNO ₃ to remaining solutions.			
	7 🗸	Yellow ppte with KI and white ppte with KCI.			

<u>OR</u>

Question Number		Correct Answer	Acceptable Answers	Reject	Mark
4.	1	(Add NaCl to all five); the one that gives white ppte is $AgNO_3$			7
	2♥	Add four solutions to (AgCI) ppte.			
	3♥	Ppte dissolves in NH ₃			
	4 🗸	Add AgNO ₃ to remaining three solutions.			
	5 🗸	White ppts with $AICI_3 + KCI$ and yellow ppte with KI.			
	6♥	Add NH_3 to solutions of $AICI_3 + KCI$			
	7✔	White ppte with $AICI_3$.			

6246/01A - Materials

Apparatus and Materials

Apparatus

Each candidate will require:

- 50.0 cm³ burette, stand and clamp, with small funnel for filling, white tile and a small beaker for draining burette;
- two 250 cm³ conical flasks;
- 25.0 cm³ pipette and safety filler;
- six test tubes and one boiling tube in a test tube rack;
- one 10 cm³ and two 25 cm³ measuring cylinders;
- a supply of dropping pipettes;
- 7. a 250 cm³ beaker of hot water at about 70 °C to be used as a water bath.

Materials

Each candidate will require:

- (a)* 200 cm³ of aqueous sodium thiosulphate of concentration 0.110 mol dm⁻³ labelled Solution A. The concentration of this solution is not to be disclosed to candidates;
- (b)* 200 cm³ of aqueous potassium manganate(VII) of concentration 0.020 mol dm⁻³ labelled Solution B;
- (c)* 10 cm³ of approximately 0.25 mol dm⁻³ aqueous zinc sulphate labelled Solution of C. The identity of this solution is not to be disclosed to candidates;
- (d)* 5 cm³ of approximately 0.10 mol dm⁻³ aqueous potassium chromium(III) sulphate, labelled **Solution of D**. The identity of this solution is **not** to be disclosed to candidates;
- (e)* 5 cm^3 of propanone labelled E. The identity of this compound is **not** to be disclosed to candidates;
- (f) 100 cm³ of dilute sulphuric acid of concentration approximately 1.0 mol dm⁻³, labelled Dilute sulphuric acid;
- (g) 100 cm³ of aqueous potassium iodide of concentration approximately 0.50 mol dm⁻³ labelled Aqueous potassium iodide;
- (h) 15 cm³ of dilute sodium hydroxide; concentration approximately 1.0 mol dm⁻³;
- (i) 15 cm³ of dilute aqueous ammonia; concentration approximately 2.0 mol dm⁻³;
- (j) 5 cm³ of dilute hydrochloric acid; concentration approximately 2.0 mol dm⁻³;
- (k) 5 cm^3 of aqueous barium chloride; concentration approximately 0.2 mol dm⁻³;
- (1) 10 cm³ of freshly-prepared aqueous hydrogen peroxide; concentration approximately 10 vol;
- (m) 5 cm³ of 2,4-dinitrophenylhydrazine solution. This may be made by adding 0.1 g of the solid reagent to 45 cm³ of water and 5 cm³ of concentrated hydrochloric acid, stirring and filtering if necessary. Alternatively centres may prepare this reagent using their own procedure providing the reagent gives a positive test with propanone;
- (n) 5 cm³ dilute sulphuric acid; concentration approximately 1.0 mol dm⁻³ (for Question 3);
- (o) 5 cm³ of aqueous potassium dichromate(VI); concentration approximately 0.20 mol dm⁻³;
- (p) 10 cm³ of aqueous sodium hydroxide; concentration approximately 0.50 mol dm⁻³. Label this solution 0.50 mol dm⁻³ sodium hydroxide for Q3(c);
- (q) 10 cm³ of iodine/potassium iodide solution made by adding 2 g iodine to 6 g potassium iodide dissolved in 100 cm³ water and labelled aqueous iodine;
- (r) 20 cm³ of freshly prepared aqueous starch; concentration approximately 1% labelled starch;
- (s) a supply of distilled water.

For home centres (ONLY), the chemicals identified with an asterisk (*) will be sent by a firm of manufacturing chemists.

6246/01B

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
Number 1. (a)	Table 1Check subtractions and averaging arithmetic, correcting if necessary.All volumes recorded to 0.05 cm³ (1)ALLOW one slip but withhold this mark if any readings are in the wrong boxes.ALLOW 0 as initial volume NOT 50 as initial volumeAll subtractions correct (1)[✓ <top 1]<="" of="" rhs="" table="" td="">Mean titreFor correct averaging of chosen values / choosing identical values and for recording the average correct to 2 or 3 dps or to nearest 0.05 cm³ (1)Do not penalise missing 2/3rd dp if already penalised in Table 1.[✓ by the mean in space or near the dotted line in paragraph below]AccuracyIf the candidate has made an arithmetical error in the Table 1 volumes used in the mean or in averaging the examiner must calculate a new value using the candidate's chosen titres.• If a wrongly subtracted titre has been used in the mean then choose any two identical titres or take an average of the closest two titres.• Calculate the difference(d) between the candidate's mean titre and that of the examiner or supervisor.Examiner's titre = 22.70 cm³ (to be confirmed at standardisation)Award marks for accuracy as follows.Difference $\pm 0.20 \pm 0.30 \pm 0.40 \pm 0.50$ (d) =</br></top>	Answers		10
	· · · · · · · · · · · · · · · · · · ·			
				I

Range Award a ma the candida range(r) is t outermost t If the exami of incorrect mark on the examiner to	rk on the te to cal he diffei itres use iner has subtrac correct re-calcu	e range o loulate t rence be correcte tion the ed titres ulate the	of titres he mean etween th culate th ed titres n award s used by e mean	used by . The he me mean. because the range the range
Range(r) of	±0.20	±0.30	±0.50	
Mark	3	2	1	
Examiner to accuracy an	show th d range	ne mark as	awarded	for
d= value		r =	value	
✓ ^{4 max}		\checkmark	3 max	
Then the ma [Overseas so titre value"	ark out c cripts: ex on each	of 10 wri xaminer script]	tten in n to write	nargin. "SR =

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	Moles $S_2O_3^{2^2}$ in mean titre = mean titre x 0.110 1000 (1)	Correct answer from any method for (3)		3
	moles MnO ₄ ⁻ in 25.0 cm ³ = $\frac{\text{moles } S_2O_3^{2^-}}{5}$ (1)			
	concentration $MnO_4^- = \frac{moles MnO_4^- in 25.0 cm^3}{0.0250 (dm^3)}$ to 3 sf (1) Ignore units Do not penalise loss of trailing zeros	Ignore sf except on final conc ⁿ .	Final conc ⁿ if not to 3 sf. ∴ max (2)	

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
1.(c)	Yellow to colourless	Straw (colour)	Colourless alone	1
		to colourless	Any purple / brown	

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
2.(a)	Observations			3
	White precipitate (1)			
	Dissolves / disappears (in excess NaOH) / colourless solution (1) Inference Zinc / Zn^{2+} , aluminium / AI^{3+} any two (1) lead(II) / Pb^{2+}	Soluble in excess/ goes clear	Symbols Zn, Al, Pb.	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	Observation Any red (1) Inferences Aluminium / Al ³⁺ (1) Acidic (since only 3+ ion of Al, Zn, Pb) Acidic - Stand alone mark (1)			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)	Observations White precipitate (1) Insoluble in excess NH ₃ (1) Inference AI(OH) ₃ / [AI(H ₂ O) ₃ (OH) ₃]/aluminium hydroxide (1)			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)	Observation White precipitate (1) Inference chloride / Cl ⁻ (1)		Chlorine / Cl	2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2.(e)	AICI ₃	Al ₂ Cl ₆		1

Question	Correct Answer		Reject	Mark
		Answers		-
2.(f)	Observations			5
	(any) blue precipitate (1)			
	Dissolves/ disappears in excess (1)	Soluble in		
	Deep(er) blue solution (1)	excess/ goes		
	Inferences	clear		
	$Cu(OH)_2 / [Cu(H_2O)_4(OH)_2] (1)$			
	$[Cu(H_2O)_2(NH_3)_4]^{2+}$ (1)	$[Cu(NH_3)_4]^{2+}$	$[Cu(NH_3)_6]^{2+}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(g)	CuCl ₂			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Observation	Yellow-orange		2
	Yellow / orange precipitate (1)			
	Inference Carbonyl / C=O/>C=O/ both of aldehyde or ketone (1)			

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
3.(b)	Observation	No reaction	Just "nothing"	3
	Stays orange / no change (1)			
	Inferences			
	Ketone /not aldehyde if follows A or K in (a) (1)			
	Not oxidised / no redox / does not reduce $Cr_2O_7^{2-}$ (1)		Reject cq on wrong colour	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)	Observation			3
	(pale) Yellow precipitate (1)	Cream ppte	CH ₃ I	
	Inferences			
	triiodomethane / lodoform / CHI ₃ (1)		Methyl secondary	
	Methyl ketone / CH_3CO (1)		alcohol / ethanol / ethanal	

Question Number		Correct Answer	Acceptable Answers	Reject	Mark
3.(d)(i)	m/e	72 (1)			2
	Structure	CH_3 — CH_2 — $C=0 / C_2H_5$ — $C=0$ (1)		CH ₃ COCH ₂ CH ₃	
		 CH₃ CH₃			
		Ignore positive charge		Species with negative charge	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(d)(ii)	$CH_3CH_2CO^+$ / $CH_2 COCH_3^+$		Formula with no positive charge C ₃ H ₅ 0 ⁺	1

Question Number		Correct Answer	Acceptable Answers	Reject	Mark
4.	1	(Add Na_2SO_4 to all five): the one that gives white ppte is $BaCl_2$			7
	2 ✓ 3 ✓ 4 ✓ 5 ✓ 6 ✓ 7 ✓	Add BaCl ₂ to other four solutions. White ppte with AgNO ₃ Add AgNO ₃ to remaining three solutions White ppts with NaCl and ZnCl ₂ Brown ppte with NH ₃ / remaining one is NH ₃ Add NH ₃ to NaCl and ZnCl ₂ White ppte with ZnCl ₂	No white ppte with NH_3		

Question Number		Correct Answer	Acceptable Answers	Reject	Mark
4.	1 🗸	(Add Na ₂ SO ₄ to all five): the one that gives white pote is BaCl ₂			7
	2 🗸	Add $BaCl_2$ to other four solutions. White ppte with AgNO ₃			
	3⊻	Add remaining three solutions to AgCI ppte			
	4 🗸	AgCI dissolves in NH ₃			
	5 🗸	Add AgNO ₃ to remaining two solutions			
	6♥	White ppte with both ZnCl ₂ and NaCl			
	7♥	Add excess NH ₃ : ZnCl ₂ ppt disolves			

Question Number	С	orrect Answer	Acceptable Answers	Reject	Mark
4.	1 ✓ (Add Na ₂ SO ₄ to ppte is BaCl ₂	o all five): the one that gives white			7
	2 ✓ Add BaCl₂ to o White ppte wi	other four solutions. ith AgNO $_3$			
	3 ✓ Add remaining	g three solutions to AgCl ppte			
	4 ✓ AgCI dissolves	in NH ₃			
	5 ✓ Add NH ₃ to Na	aCI and ZnCI ₂			
	6 ✓ White ppte w	/ith ZnCl₂			
	7 ✓ No ppte with	NaCI/NaCI remaining			

OR

Question Number		Correct Answer	Acceptable Answers	Reject	Mark
4.	1 ♥ 2 ♥ 3 ♥ 4 ♥ 5 ♥ 6 ♥ 7 ♥	(Add Na ₂ SO ₄ to all five): two white ppts – BaCl ₂ and AgNO ₃ Distinguish between ppts Add AgNO ₃ to remaining three solutions White ppts with NaCl and ZnCl ₂ Brown ppte with NH ₃ / remaining one is NH ₃ Add NH ₃ to NaCl and ZnCl ₂ White ppte with ZnCl ₂	No white ppte with NH_3		7

Apparatus and Materials

Apparatus

Each candidate will require:

- 50.0 cm³ burette, stand and clamp, with small funnel for filling, white tile and a small beaker for draining burette;
- two 250 cm³ conical flasks;
- 25.0 cm³ pipette and safety filler;
- seven test tubes and one boiling tube in a test tube rack;
- one 10 cm³ and two 25 cm³ measuring cylinders;
- a supply of dropping pipettes;
- 7. a 250 cm^3 beaker of hot water at about 70 °C to be used as a water bath.

Materials

Each candidate will require:

- (a)^{*} 200 cm³ of aqueous sodium thiosulphate of concentration 0.110 mol dm⁻³ labelled Solution F;
- (b)* 200 cm³ of aqueous potassium manganate(VII) of concentration 0.020 mol dm⁻³ labelled **Solution G**. The concentration of this solution is **not** to be disclosed to candidates;
- (c)* 10 cm³ of approximately 0.25 mol dm⁻³ aqueous aluminium chloride labelled Solution of H. The identity of this solution is **not** to be disclosed to candidates;
- (d)* 5 cm³ of approximately 0.25 mol dm⁻³ aqueous copper(II) chloride, labelled Solution of I. The identity of this solution is **not** to be disclosed to candidates;
- (e)* 5 cm³ of butanone labelled J. The identity of this compound is **not** to be disclosed to candidates;
- (f) 100 cm³ of dilute sulphuric acid of concentration approximately 1.0 mol dm⁻³, labelled **Dilute** sulphuric acid;
- (g) 100 cm³ of aqueous potassium iodide of concentration approximately 0.50 mol dm⁻³ labelled Aqueous potassium iodide;
- (h) 10 cm³ of dilute sodium hydroxide; concentration approximately 1.0 mol dm⁻³;
- (i) access to a small bottle of Universal Indicator solution;
- (j) 20 cm³ of dilute aqueous ammonia; concentration approximately 2.0 mol dm⁻³;
- (k) 5 cm³ of dilute nitric acid; concentration approximately 2.0 mol dm⁻³;
- 5 cm³ of aqueous silver nitrate; concentration approximately 0.05 mol dm⁻³;
- (m) 5 cm³ of 2,4-dinitrophenylhydrazine solution. This may be made by adding 0.1 g of the solid reagent to 45 cm³ of water and 5 cm³ of concentrated hydrochloric acid, stirring and filtering if necessary. Alternatively centres may prepare this reagent using their own procedure providing the reagent gives a positive test with butanone;
- (n) 5 cm³ dilute sulphuric acid; concentration approximately 1.0 mol dm⁻³ (for Question 3);
- (o) 5 cm³ of aqueous potassium dichromate(VI); concentration approximately 0.20 mol dm⁻³;
- (p) 10 cm³ of aqueous sodium hydroxide; concentration approximately 0.50 mol dm⁻³. Label this solution 0.50 mol dm⁻³ sodium hydroxide for Q3(c);
- (q) 10 cm³ of iodine/potassium iodide solution made by adding 2 g iodine to 6 g potassium iodide dissolved in 100 cm³ water and labelled aqueous iodine;
- (r) 20 cm³ of freshly prepared aqueous starch; concentration approximately 1% labelled starch;
- (s) a supply of distilled water.

For home centres (ONLY), the chemicals identified with an asterisk (*) will be sent by a firm of manufacturing chemists.

6246/01C (overseas practical test)

Question		Corr	ect Ansv	ver			Acceptable	Reject	Mark
Number							Answers		
Question Number 1.(a)	Table 1Check subtracorrecting ifAll volumes rALLOW one sreadings areALLOW 0 as iAll subtraction[✓✓top RHSMean titreFor correct aidentical valuecorrect to 2 ofDo not penalised in[✓ by the meanparagraph beenAccuracyIf the candidatethe Table 1 waveraging theaverage.For an awvalue usiIf a wrang	Corr ctions an necessary ecorded <i>lip but w</i> in the wi nitial volu- ons correct of Table veraging ues and foor of Table 1. ean in spa elow] ate has m rolumes ue examine veraging e ng the ca	ect Answ d averagi y. to 0.05 cr <i>ithhold t</i> <i>cong boxe</i> ume <i>NOT</i> ct (1) <i>1]</i> of choser or recordi or to near ng 2/3 rd <i>ace <u>or</u> nea</i> nade an a sed in the er must c	ng arithm m ³ (1) his mark es. 50 as init n values / ing the av est 0.05 c dp if alre ar the dot rithmetic e mean of alculate a bly calculate s chosen t	netic, <i>if any</i> tial volum ⁷ choosing verage cm ³ (1) ady <i>tted line</i> al error in a new at e a new itres.	in n	Acceptable Answers	Reject	Mark 10
	 If a wrongly subtracted titre has been used in the mean then choose any two identical titres or take an average of the closest two titres. Calculate the difference(d) between the candidate's mean titre and that of the supervisor(SR). Examiner to write "SR = titre value" on each script 								
	Award marks for accuracy as follows.								
	Difference	<u>+</u> 0.20	<u>+</u> 0.30	<u>+</u> 0.40	<u>+</u> 0.50				
	(d) = Mark	4	3	2	1				
	indi it	т	5	<u> </u>				I	

Range Award a mark candidate to the differenc to calculate to corrected tith then award to used by the e	c on the r calculate e betwee the mean res becau he range examiner	range of e the mea en the ou . If the e use of inc mark on to re-cal	titres use an. The ra itermost t examiner l correct sul the corre lculate the	d by the inge(r) is itres used has otraction cted titres e mean
Range(r) of	<u>+</u> 0.20	<u>+</u> 0.30	<u>+</u> 0.50	
titres/cm ³ Mark	3	2	1	
Examiner to s and range as	show the	mark aw	arded for	accuracy
d= value		r = v	alue	
✓ ⁴ max		✓ ^{3 m}	ax	
Then the mar	rk out of	10 writte	en in marg	jin.

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
1.(b)(i)	Moles MnO_4^- in mean titre =	Correct answer		3
	<u>mean titre x 0.020</u> (1)	from any		
	1000	method for (3)		
	moles Fe^{2+} in 25cm ³ = moles MnO ₄ ⁻ in mean titre x 5 (1)			
	concentration $Fe^{2+} = \frac{moles Fe^{2+} in 25 cm^3}{0.0250 (dm^3) to 3sf(1)}$	lgnore sf except on final conc ⁿ .	Final conc ⁿ if not to 3 sf.	
	Ignore units. Do not penalise loss of trailing zeros.		∴ max (2)	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(ii)	Either mass Fe^{2+} in 1 dm ³ = conc ⁿ Fe^{2+} (from (i)) x 56.0 (1) % = <u>mass x 100</u> 38.0 OR			2
	Mass of Fe ²⁺ = moles of Fe ²⁺ in 25 cm ³ x 56.0 (1) $\% = \frac{\text{mass x 100}}{38.0 \div 40} = 14.1 \% (1)$			

Question	Correct Answer	Acceptable	Reject	Mark
2.(a)	Observations White precipitate (1)	Allsweis		3
	Dissolves / disappears (in excess NaOH) / colourless solution (1) Inference Zinc / Zn^{2+} , aluminium / AI^{3+} any two (1) lead(II) / Pb^{2+} Ignore Cd^{2+} / Sn^{4+} / Sb^{3+}	Soluble in excess/ goes clear	Symbols Zn, Al, Pb.	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	Observations			5
	White precipitate (1)			
	Dissolves / disappears (in excess NH ₃) / colourless solution (1)	Soluble in excess/ goes clear		
	Inferences			
	Zinc (ions) / Zn^{2+} (1) Zn(OH) ₂ / [Zn(H ₂ O) ₄ (OH) ₂] (1) [Zn(NH ₃) ₄] ²⁺ (1)	Allow equivalent Cd species if Cd given in (a)		
		$[Zn(NH_3)_4(H_2O)_2]^{2+}$		

Question		Correct Answer	Acceptable Answers	Reject	Mark
Number					
2.(c)	Observation	White precipitate (1)			2
	Inference	Sulphate / SO ₄ ²⁻ (1)	hydrogensulphate/ HSO ₄ ⁻	Barium sulphate	

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
2.(d)	ZnSO ₄			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(e)	Observations			5
	(any) blue precipitate (1)			
	Dissolves/ disappears in excess (1)	Soluble in		
	Deep(er) blue solution (1)	excess/ goes		
	Inferences	cical		
	Cu(OH) ₂ / [Cu(H ₂ O) ₄ (OH) ₂] (1) [Cu(H ₂ O) ₂ (NH ₃) ₄] ²⁺ (1)	[Cu(NH ₃) ₄] ²⁺	[Cu(NH ₃) ₆] ²⁺	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(f)	CuSO ₄			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Observation	Yellow-orange		2
	Yellow / orange precipitate (1)			
	Inference Carbonyl / C=O/>C=O/ both of aldehyde or ketone (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)	Observation Stays orange / no change (1)	No reaction	Just "nothing"	3
	Inferences			
	Ketone / not aldehyde if follows A or K in (a) (1)		Tertiary alcohol	
	Not oxidised / no redox / does not reduce Cr ₂ O ₇ ²⁻ (1)		Reject cq on wrong colour	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)	Observation			3
	(pale) Yellow precipitate (1)	Cream ppte		
	Inferences			
	Triiodomethane / lodoform / CHI_3 (1)		CH₃I	
	Methyl ketone / CH ₃ CO (1)		Methyl secondary alcohol / ethanol / ethanal	

Question Number		Correct Answer		Acceptable Answers	Reject	Mark
3.(d)(i)	m/e	58	(1)			2
	Structure	CH3-C=0 CH3 Ignore posit	(1) ive charge		CH ₃ COCH ₃ Species with negative charge	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(d)(ii)	CH ₃ ⁺		Formula with no positive charge	1

Question Number		Correct Answer	Acceptable Answers	Reject	Mark
4.	1 🗸	Add NaCl to all five; the one that gives white ppte is $AgNO_3$.			7
	2♥	Add AgNO $_3$ to remaining four.			
	3♥	Solution that gives yellow ppte is KI.			
	4 🗸	Solutions that give white ppts are KCI and $BaCI_2$.			
	5 🗸	No ppte with Na_2SO_4 .			
	6 🗸	Add Na_2SO_4 to remaining solutions of KCI and $BaCI_2$.			
	7⊻3	Solution that gives white ppte is BaCl ₂ .			

Question Number		Correct Answer	Acceptable Answers	Reject	Mark
4.	1 🗸	Add NaCl to all five; the one that gives white ppte is $AgNO_3$.			7
	2♥	Add AgNO $_3$ to remaining four.			
	3♥	Solution that gives yellow ppte is KI.			
	4 🗸	Solutions that give white ppts are KCI, BaCl ₂ and Na ₂ SO ₄ .			
	5 🗸	Distinguish Ag ₂ SO ₄ ppte by appearance so identify Na ₂ SO ₄ .			
	6♥	Add Na_2SO_4 to KCI and $BaCI_2$.			
	7 √ S	Solution that gives white $ppte$ is $BaCl_2$.			

Apparatus and Materials

Apparatus

Each candidate will require:

- 50.0 cm³ burette, stand and clamp, with small funnel for filling, white tile and a small beaker for draining burette;
- two 250 cm³ conical flasks;
- 25.0 cm³ pipette and safety filler;
- six test tubes and one boiling tube in a test tube rack;
- one 10 cm³ and one 25 cm³ measuring cylinder;
- a supply of dropping pipettes;
- 7. a 250 cm^3 beaker of hot water at about 70 °C to be used as a water bath.

Materials

Each candidate will require:

- (a) 200 cm³ of aqueous potassium manganate(VII) of concentration between 0.019 and 0.021 mol dm⁻³ labelled Solution P. Candidates will be told that this solution has a concentration of 0.0200 mol dm⁻³;
- (b) 200 cm^3 of aqueous ammonium iron(II) sulphate, $(NH_4)_2SO_4.FeSO_4.6H_2O$, of concentration 38.0 g dm⁻³, made up by dissolving the solid in about 500 cm³ of 1.0 mol dm⁻³ aqueous sulphuric acid then making up to exactly 1.00 dm³ with distilled water labelled **Solution Q**. The identity of this solution is **not** to be disclosed to candidates;
- (c) 100 cm³ of dilute sulphuric acid of concentration approximately 1.0 mol dm⁻³, labelled Dilute sulphuric acid;
- (d) 10 cm³ of approximately 0.25 mol dm⁻³ aqueous zinc sulphate in a stoppered container labelled **Solution of R**. The identity of this solution is **not** to be disclosed to candidates;
- (e) 10 cm³ of approximately 0.25 mol dm⁻³ aqueous copper(II) sulphate in a stoppered container labelled Solution of S. The identity of this solution is not to be disclosed to candidates;
- (f) 5 cm³ of propanone in a stoppered container labelled T. The identity of this compound is not to be disclosed to candidates;
- (g) 15 cm³ of dilute sodium hydroxide; concentration approximately 1.0 mol dm⁻³;
- (h) 15 cm^3 of dilute aqueous ammonia; concentration approximately 2.0 mol dm⁻³;
- (i) 5 cm³ of dilute hydrochloric acid; concentration approximately 2.0 mol dm⁻³;
- (j) 5 cm³ of aqueous barium chloride; concentration approximately 0.2 mol dm⁻³;
- (k) 5 cm³ of 2,4-dinitrophenylhydrazine solution. This may be made by adding 0.1 g of the solid reagent to 45 cm³ of water and 5 cm³ of concentrated hydrochloric acid, stirring and filtering if necessary. Alternatively centres may prepare this reagent using their own procedure providing the reagent gives a positive test with propanone;
- 5 cm³ dilute sulphuric acid; concentration approximately 1.0 mol dm⁻³;
- (m) 5 cm³ of aqueous potassium dichromate(VI); concentration approximately 0.20 mol dm⁻³;
- (n) 10 cm³ of aqueous sodium hydroxide; concentration approximately 0.50 mol dm⁻³. Label this solution 0.50 mol dm⁻³ sodium hydroxide for Q3(c);
- (o) 10 cm³ of iodine/potassium iodide solution made by adding 2 g iodine to 6 g potassium iodide dissolved in 100 cm³ water and labelled aqueous iodine;
- (p) a supply of distilled water.

6246/02

Question	Correct Answer	Acceptable	Reject	Mark
Number		Allsweis		
1 (a)	Heat/enthalpy/energy change (for a	Enthalpy change	enthalpy	1
	reaction) is independent of the	for a direct	change for	
	path/route taken (depending only on the	path is the	the	
	initial and final states)	same as that of	reaction is	
	OR	an indirect	the same	
	Heat/enthalpy/energy change (for a	path.	as the sum	
	reaction) depends only on the initial and		of the	
	final states.		values for	
			each step.	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)	heat change (= mC $\Delta\theta$) = 30g x 4.18 J °C ⁻¹ g ⁻¹ x(30.1-23.7) °C for this expression or the answer = (+)803 (J). (1) Units do not have to be in the calculation. If candidate believes that 803 or - 803 is the value of ΔH next two marks are lost.	(+) 802.56 or - 803 or - 802.56		3
	$\Delta H_1 = -803 \text{ J} \div 0.0187 \text{ mol}$ = -43 for sign and value (rounded or unrounded) (1)	- 802.56 ÷ 0.0187		
	to 2sf only and kJ mol ⁻¹ (1) if value and units do not agree loses both second and third marks Correct answer plus some working (3)	-43000 J mol ⁻¹ (2)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
Number 1 (c)(i)	Multiplies the KHCO ₃ equation by 2 (1) and subtracts the K ₂ CO ₃ equation from it (1) This can come from a cycle. $\Delta H = 2\Delta H_2 - \Delta H_1 \text{ scores these first two}$ marks if $\Delta H = \Delta H_1 - 2\Delta H_2$ loses second and third marks if $\Delta H = \Delta H_1 + 2\Delta H_2$ loses second and third marks $\Delta H = 2\Delta H_2 - \Delta H_1$ = (+ 29.3 x 2) - (-43) kJ mol ⁻¹ = (+)101.6 (kJ mol ⁻¹) (1) IGNORE SF Correct answer plus some working (3) Failing to multiply by 2 loses first mark above, but can then score max 2 as follows: $\Delta H = \Delta H_2 - \Delta H_1 (1)$ = +29.3 - (-43) kJ mol ⁻¹ = (+)72.3 kJ mol ⁻¹ (1). Third mark is consequential on candidate answer in 1(b), e.g. if 1(b) equals + 43 kJ mol ⁻¹ the answer will be	(+)101.5 if candidates uses - 42.9 from (b).		3
	(+)13.0/13.7 KJ MOL			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(ii) QWC	reaction in solution produces H ₂ O(l) whereas thermal decomposition produces H ₂ O(g) OR water produced in the decomposition is gaseous which is not the standard state OR energy is required to vapourise (liquid) water		heat required to vapourise water must be taken into account	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (d)	First mark: K_c is smaller as forward reaction is endothermic (1) Second mark: The second mark can only be awarded if the amount of reactant/product changes because of a change in K_c .		Equilibrium moves to left and so K falls scores (0)	2
	Increases the amount of $KHCO_3$ /reactants OR decreases amount K_2CO_3 /products (1). If K_c is said to be larger, then the second mark can be awarded consequentially for saying that the amount of $KHCO_3$ decreases, etc.	equilibrium shifts to the left	more KHCO ₃ than K ₂ CO ₃	

Question Number	Correct Answer	Acceptable	Reject	Mark
2 (a)(i)	Ignore any conditions (other than the need for aqueous acid) and ignore mechanisms whether correct or not.			5
	$CH_2=CH_2 + HBr \rightarrow CH_3CH_2Br$ (1) mark being for whole equation;	HCl or HI in place of HBr to give the appropriate product C ₂ H ₅ instead of CH ₃ CH ₂		
	OR			
	$\begin{array}{l} H_2C=CH_2+H_2 \rightarrow CH_3CH_3 \hspace{0.2cm} \textit{and} \\ CH_3CH_3 \hspace{0.2cm} + \hspace{0.2cm} Cl_2 \rightarrow \hspace{0.2cm} CH_3CH_2Cl \hspace{0.2cm} (\hspace{0.2cm} + \hspace{0.2cm} HCl) \hspace{0.2cm} (1) \end{array}$	+ Br ₂ to give bromoethane	+ I ₂	
	Then Mg (1) $CH_3CH_2Br \rightarrow CH_3CH_2MgBr$ (1) mark for the Grignard structure. Halogen must agree with the halogenoalkane used.	C2H5 instead of CH3CH2	CH_3CH_2BrMg	
	(CH ₃ CH ₂ MgBr) + CO ₂ (1) followed by H ⁺ (aq) (1) Any acid acceptable but it must be clear that it is dilute or aqueous. Note: CO ₂ + H ⁺ (aq) scores (1) only.	dry ice for CO ₂ hydrochloric acid	e.g. HCl, conc HCl	
	An equivalent answer in words can score full marks but the halogenoalkane must be identified and the formula of the Grignard reagent must be included			
	OR for the last two marks: Grignard + HCHO and hydrolysis (to give propan-1-ol) (1) followed by oxidation of product with dichromate(VI) + acid <i>or</i> manganate(VII) + acid (1)	dichromate or	HCl with	
	This last mark can be awarded however the propan-1-ol is obtained.	permanganate	MnO₄ ⁻	
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
--------------------	---	--	--------	------
2 (a)(ii)	Nucleophile/nucleophilic reagent (1) attack by $CH_3CH_2^{\delta}$ of the Grignard on $C^{\delta+}$ (of C=O) (1)	$CH_3CH_2^-$ C_2H_5 for CH_3CH_2		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	$\begin{array}{rcl} CH_3CH_2COCl &+ & CH_3CH_2OH \rightarrow \\ CH_3CH_2COOCH_2CH_3 &+ & HCl \end{array} (1) \end{array}$	C_2H_5 instead of CH_3CH_2		2
	$CH_3CH_2COOH + CH_3CH_2OH \Rightarrow$ $CH_3CH_2COOCH_2CH_3 + H_2O$ (1)	-CO2- instead of -COO-		
	Allow $CH_3CH_2OCOCH_2CH_3$ or $CH_3CH_2OC(O)CH_2CH_3$ for the ester since it is symmetrical.	\rightarrow instead of \Rightarrow or vice versa		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	Reaction with the acid chloride since it is not an equilibrium/not reversible/goes to completion (so the yield is higher)	loss of HCl as a gas pulls equilibrium to the r.h.s.	Reaction faster HCl is a	1
	There must be a reason as to why the acid chloride reaction is better for the mark.		gas alone Just 'HCl pulls eqm to the right'	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	Solution maintaining an almost constant pH (1)	resists change in pH withstands changes in pH	resists small changes in pH maintains pH	2
	for a small addition of acid or alkali/base (1)			
	Ignore any reference to the composition of the buffer, whether correct or not. Ignore references to 'contaminated with' acid or alkali.			

Question	Correct Answer	Acceptable	Reject	Mark
2 (c)(ii)	Correct answer with unit and some working scores (4). Correct answer with unit but no working scores (3). $[H^+] = 10^{-5.06} = 8.71 \times 10^{-6} \text{ mol dm}^{-3}$ (1) $[HA] = 0.10 \text{ mol dm}^{-3}$, so	Answers		4
	$[A^{-}] = \frac{1.3 \times 10^{-5} \times 0.10}{8.71 \times 10^{-6}} $ (1) (= 0.149 mol dm ⁻³)			
	amount of A [*] = 0.149 x 0.125 (= 0.0187 mol) (1) mass NaA = 0.0187 mol x 96 g mol ⁻¹ = 1.79 g (1) MUST INCLUDE UNIT BUT IGNORE SF UNLESS ROUNDED TO 1 SF IN WORKING OR ANSWER.	1.8g	2g	
	OR			
	pH - pK _a = log([A] ÷ [HA]) = 5.06 - 4.886 = 0.174 (1)			
	([A ⁻] ÷ [HA]) = 1.49 so [A ⁻] = 0.149 x 0.0125 = 0.0187 mol (1)	1.80	20	
	mass NaA =0.0187 mol x 96 g mol ⁻¹ = 1.79 g (1) MUST INCLUDE UNIT BUT IGNORE SF	1.69	Zg	
	OR			
	Candidates who round the value of pK_a will get:			
	$pH = pK_a + log([A^-] \div [HA])$ (1)			
	pH - pK _a = log([A ⁻] ÷ [HA]) = 5.06 - 4.89 = 0.17 (1)			
	([A ⁻] ÷ [HA]) = 1.48 so [A ⁻] = 0.148 x 0.0125 = 0.0185 mol (1)	1 80	20	
	mass NaA =0.0185 mol x 96 g mol ⁻¹ = 1.77/1.78 g (1) MUST INCLUDE UNIT BUT IGNORE SF	r.oy	Δ Σ	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(iii)	$([OH^{-}] = K_w / [H^{+}])$ (=) 1.0 x 10 ⁻¹⁴ mol ² dm ⁻⁶ ÷ 8.71 x 10 ⁻⁶ mol dm ⁻³ (1) no need for units in calculation = 1.15 x 10 ⁻⁹ (mol dm ⁻³) (1) Ignore units even if wrong The answer is consequential on their value of	1.148 x 10 ⁻⁹	1.14 x 10 ⁻⁹	2
	[H ⁺] in (ii) provided that the final answer is smaller than 10 ⁻⁷ mol dm ⁻³ , i.e. the solution must be acidic.			
	OR			
	pOH = 14 - pH = 8.94 (1)			
	$[OH^{-}] = 1.15 \times 10^{-9}$ (mol dm ⁻³) (1) Ignore units even if wrong			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(iv) QWC	H ⁺ and OH ⁻ can be removed by reaction with HA or with A ⁻ (1) but since [A ⁻] is small the ratio [A ⁻]÷[HA] changes significantly and so does the pH (1)			2
	 [A⁻]÷ [HA] must remain nearly constant on addition of H⁺ or OH⁻ (1) but this is possibly only if large reserves of both are present (1) For (1) only: If H⁺ is added no/very little A⁻ available to react so the pH will alter (1) 			

Mark
2
re
nt
on
f
ns
um
on
_
p-
r tu le s 0 me d c s of sic solution

Correct Answer	Accontable	Deject	Mark
Correct Answer	Acceptable	Reject	mark
	Answers		
For the first two marks:			3
11^{δ^+} attracted to long pair on (small) O on			
different molecule (1)			
but S atom is too large/not sufficiently			
electronegative for H-bonding (1) stand alone			
For third morely			
For third mark:			
boiling temperature of H_2O higher than that of			
H ₂ S			
or melting temperature of H_2O higher than			
that of U.C			
or heat capacity of H_2O higher than that of			
H ₂ S			
or density of ice less than that of liquid water			
but solid H-S donsor than liquid H-S (must give			
the states)			
or water is a liquid but H_2S a gas (at room			
temperature) (1)			
	Correct Answer For the first two marks: H^{δ^+} attracted to lone pair on (small) O on different molecule (1) but S atom is too large/not sufficiently electronegative for H-bonding (1) stand alone For third mark: boiling temperature of H ₂ O higher than that of H ₂ S or melting temperature of H ₂ O higher than that of H ₂ S or heat capacity of H ₂ O higher than that of H ₂ S or density of ice less than that of liquid water but solid H ₂ S denser than liquid H ₂ S (must give the states) or water is a liquid but H ₂ S a gas (at room temperature) (1)	Correct AnswerAcceptable AnswersFor the first two marks: H^{δ_+} attracted to lone pair on (small) O on different molecule (1) but S atom is too large/not sufficiently electronegative for H-bonding (1) stand aloneFor third mark: boiling temperature of H2O higher than that of H2S or melting temperature of H2O higher than that of H42S or heat capacity of H2O higher than that of H42S or density of ice less than that of liquid water but solid H2S denser than liquid H2S (must give the states) or water is a liquid but H2S a gas (at room temperature) (1)	Correct AnswerAcceptable AnswersRejectFor the first two marks: H^{δ_+} attracted to lone pair on (small) O on different molecule (1) but S atom is too large/not sufficiently electronegative for H-bonding (1) stand aloneFor third mark: boiling temperature of H2O higher than that of H2S

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	Ligand (water) lost from the copper(II) ions or no ligands in the product (1) so no splitting of <i>d</i> -subshell/ <i>d</i> -orbitals or all <i>d</i> -orbitals are degenerate (1)			3
	so no electron transitions/ <i>d-d</i> transitions (and so no colour) (1) Any mention of emission loses this mark.	no electrons promoted	no light absorbed alone	
	Any suggestion that copper has full <i>d</i> -subshell or changes its oxidation state after heating loses the last two marks.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	Bonds formed between ligand/water and the copper(II) ion/copper/copper sulphate (1) There is no need to mention the nature of this bond. and bond formation is exothermic/gives out heat/gives out energy (1)		reaction is exothermic	2

Question	Correct Answer	Acceptable	Reject	Mark
3 (c) QWC	Solubility increases from Be to Ba because: hydration enthalpy (of the cation) becomes less exothermic (from Be ²⁺ to Ba ²⁺) (1)	lattice enthalpy for lattice energy	'more endothermic' for 'less exothermic' atom or molecule for cation loses first mark only	3
	lattice energy becomes less exothermic (from $Be(OH)_2$ to $Ba(OH)_2$) (1)			
	but the change in lattice energy is dominant so the enthalpy of solution is more exothermic (and the compound is more soluble) (1)			
	OR			
	Hydration enthalpy (of cation) and lattice energy both exothermic (1) both decrease but lattice energy decreases more (1) enthalpy of solution is more exothermic (so compound is more soluble) (1)			
	OR			
	lattice energy and the hydration enthalpy (of the cation) both decrease/fall (1) but lattice energy decreases/falls more (than hydration enthalpy) (1) enthalpy of solution is more exothermic (so compound is more soluble) (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(i) QWC	silicon has (energetically available) 3 <i>d</i> - orbitals (1)	converse for CCl4		4
	for the lone pair on water to attack (1)			
	whereas carbon has no energetically accessible/available <i>d</i> -orbitals or has no 2 <i>d</i> orbitals (1)		no <i>d</i> - orbitals/CCl₄ has no <i>d</i> - orbitals	
	so a strong C-Cl bond would need to break first/ the small C atom is obstructed by the large Cl atoms so the water cannot get close enough to form a bond (1)		anything based on C-Cl bond being stronger than Si-Cl	
			Cl ⁻ ions for Cl atoms	
	OR			
	(small) C atom surrounded by large Cl atoms (1)	converse for SiCl4	Cl ⁻ ions for Cl atoms	
	leads to obstruction/steric hindrance (1)			
	so the water cannot get close enough to form a bond via its lone pairs (1)			
	whereas the larger silicon atom will allow attack since the chlorine atoms are further apart (1)			
	The marks are for four ideas that are relevant to the steric hindrance argument, the <i>d</i> -orbital argument, or a mixture of these.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(ii)	First mark: NaCl dissolves to give ions which do not react further with water/are only solvated OR NaCl(s) + aq \rightarrow Na ⁺ (aq) + Cl ⁻ (aq) (1)		Any reaction to give equal amounts of HCl and NaOH	3
	Second mark: $CH_3CH_2COO^- + H_2O \rightarrow CH_3CH_2COOH + OH^-$			
	OR			
	$CH_3CH_2COONa + H_2O \rightarrow CH_3CH_2COOH + NaOH$ (1)			
	OR			
	propanoate ions react with water to give propanoic acid and hydroxide ions			
	OR			
	sodium propanoate reacts with water to give propanoic acid and sodium hydroxide (1)			
	Third mark: (stand-alone) so $[H_3O^+] < [OH^-]$ as a result of reaction (and the solution is alkaline)			
	OR			
	hydroxide ions are formed/produced in the reaction which makes the solution alkaline (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	The activation energy for the reaction is high or to ensure that more molecules have $E \ge E_a$.	E > E _a	to overcome <i>E</i> _a alone reactants kinetically stable; reactants thermodynamically stable	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	protonates the alcohol (1)		'as a catalyst' alone	2
	providing H ₂ O as the leaving group which is more easily displaced by the bromide ion/is a better leaving group than hydroxide (1)			
	OR			
	reacts with NaBr (1)			
	to give HBr (which is the attacking reagent) (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iii)	H-bonding between water and the alcohol not strong enough to overcome hydrophobic interactions /effect of alkyl group (1) acid and alcohol form ionic species/ $C_4H_9OH_2^+$ which is more soluble (1)	butyl group		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iv)	Removes acid	neutralises HCl /HBr neutralises acid		1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
4 (a)(v)	Removes water	Absorbs water		1
		Dries the product		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(vi)	Electric heating mantle or sand bath or oil bath(1)	Water bath	heat under reflux no naked flame fume cupboard	2
	because the alcohol/reaction mixture/bromobutane is flammable or because the heating is uniform and less likely to crack the flask (1) This mark is conditional on the first being scored.		'volatile' for 'flammable'	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b) QWC	EITHER Intermediate (ion) in S _N 1 is planar (1) equal attack (by hydroxide ions) from either side (1) produces a racemic mixture (1) Note: Statement that the S _N 2 mechanism is consistent with the information cannot score any marks.	Intermediate carbocation is a planar molecule	intermediate molecule alone loses this mark attack by bromide ions	3
	OR $S_N 2$ involves attack from one side (1) so configuration of the product would be inverted (1) leading to retention of optical activity so must be $S_N 1$ (1) Statement that the reaction is $S_N 1$ alone scores zero.	forms one optical isomer only		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(i)	$Orange \rightarrow green$			1

Question Number	Correct Answer	Acceptable Answers	Reject	Ma rk
4 (c)(ii)	$\begin{array}{rcl} Cr_2O_7^{2-} + & 6e^- + & 14H^+ \rightarrow & 2Cr^{3+} + & 7H_2O & (1) \\ \\ \hline & (3CH_3CH(OH)CH_2CH_3 \rightarrow & 3CH_3COCH_2CH_3 + & 6H^+ + & 6e^-) \\ Cr_2O_7^{2-} + & 3CH_3CH(OH)CH_2CH_3 + & 8H^+ \rightarrow & 2Cr^{3+} + & 7H_2O + \\ & 3CH_3COCH_2CH_3 & (1) \\ \\ No \ consequential \ marking \ on \ incorrect \ equations. \end{array}$	C₄H9OH and C4H8O equation having non- cancelled H ⁺ ions	equation having non- cancelled	2
			electrons	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(iii)	The broad peak/absorption/trough around 3400 cm ⁻¹ due to -OH (1)	3230 - 3550	broad transmission	2
	has disappeared in the product to be replaced by C=O at 1700 cm ⁻¹ (1)	1680 - 1750		
	If no reference to both groups responsible for the peaks then max (1)			
	OR			
	If no reference to both wavenumbers responsible for the peaks then max (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(i)	Addition of barium ions pulls equilibrium to r.h.s. (1) increases [H ⁺] and so lower pH/the pH falls (1) stand-alone mark		'so gets more acidic'	2

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
4 (d)(ii)	lower pH/pH falls		'mixture is	1
			more	
			acidic' for	
			'lower pH'	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code UA 020042 Summer 2008

For more information on Edexcel qualifications, please visit <u>www.edexcel.org.uk/qualifications</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH