Mark Scheme Summer 2008

CCE

GCE Chemistry (8080/ 9080)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information please call our Customer Services on 0870240 9800, or visit our website at www.edexcel.org.uk.

Summer 2008
Publications Code UA 020042
All the material in this publication is copyright
© Edexcel Ltd 2008

Contents

1. $6241 / 01$ 1
2. 6242/ 01 15
3. $6243 / 01 \mathrm{~A}$ 27
4. 6243/01A Materials 31
5. 6243/01B 33
6. 6243/01B Materials 38
7. $6243 / 01 \mathrm{C}$ 39
8. 6243/01C Materials 43
9. 6243/ 02 45
10. 6244/ 01 53
11. 6245/ 01 67
12. $6246 / 01 \mathrm{~A}$ 83
13. 6246/01A Materials 88
14. $6246 / 01 B$ 89
15. 6246/01B Materials 94
16. 6246/01C 95
17. 6246/01C Materials 100
18. 6246/ 02 101

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
5 OWTTE means or words to that effect
$6 \quad \mathrm{ecf/TE/cq}$ (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

6241/01

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 ~ (a) (i) ~}$	High energy/fast/gun electrons hit/strike OR bombarded by electrons (1)	Any suggestion that a negative ion is produced score zero overall	2	
	Removes/knocks out /causes loss of electron OR equation e.g. $\mathrm{X} \rightarrow \mathrm{X}^{+}+\mathrm{e}^{(-)}$	OR $\mathrm{X}+\mathrm{e} \rightarrow \mathrm{X}^{+}+2 \mathrm{e} \mathrm{(1)}$ IGNORE state symbols If knock out is mentioned, hit/strike is not required in $1^{\text {st }}$ mark	If just "forms a cation/ positive ion", not sufficient for second mark	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 ~ (a) (i i) ~}$	Mass (1)	Weight		2
	Charge (1) lgnore the following: speed kinetic energy size/ volume radius charge density density	Mass: charge ratio OR m/e (1) OR m/z (1)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)	$\mathbf{1}^{\text {st }}$ mark (stand alone) The mass of an atom (of the isotope) (1) $\mathbf{2}^{\text {nd }}$ mark (stand alone) Relative to ${ }^{1 /} / 2^{\text {th }}$ the mass of a ${ }^{12} \mathrm{C}$ (atom) OR Relative to ${ }^{12} \mathrm{C}=$ 12(exactly) OR On a scale where C^{12} has a mass of 12 (1) If 'atom' missing from $\mathbf{1}^{\text {st }}$ mark it can score if mentioned in $2^{\text {nd }}$ mark	$1^{\text {st }}$ mark The mass of a mole of the isotope (1) $2^{\text {nd }}$ mark Relative to ${ }^{1} / 12^{\text {th }}$ the mass of a mole of ${ }^{12} \mathrm{C}$ OR On a scale where a mole of C^{12} has a mass of 12 g (1) Must mention the word 'mole' at least once in these definitions Answer must be either consistently atoms or moles in order to be awarded both marks	Average mass/ weighted average/ Element instead of isotope	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)	$\begin{aligned} & {[(49.95 \times 4.345)+(51.94 \times} \\ & 83.79)+(52.94 \times 9.501)+(53.94 \times \\ & 2.364)] / 100(1) \\ & =51.9958 \\ & =52.00 \text { must be to } 4 \mathrm{SF}(1) \end{aligned}$ Correct answer to 4SF with no working (2) Should not have units but allow $\mathrm{g} \mathrm{mol}^{-1}$ Allow error carried forward only on transcription error of mass or percentage	$\begin{aligned} & 51.99 \text { scores (1) } \\ & \text { not (2) } \end{aligned}$	$\begin{aligned} & 52 \\ & 52.0 \\ & 52.00 \mathrm{~g} \end{aligned}$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)	The nuclear charge/ proton number increases/ becomes more positive (1) -The (inner shell) shielding is the same/ same number of inner shell electrons/ no or little increase in shielding (1) Either Outer electron closer to nucleus /atomic radius decreases / size of atom decreases Or electrons being removed are in same -shell Or - Outer electrons are in same shell (1)Atomic Number increasing	3		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)	In boron the extra electron is in a p orbital / new sub-shell (1) Either Which has extra shielding (by the s orbital electrons) OR Which is at a higher energy (level than the s orbital in Be) (1)	Reverse argument for beryllium	Shell for sub-shell Answers that refer to full shell being left do not score second mark Further from the nucleus	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 (a)}$	$\mathrm{Mg}^{+}(\mathrm{g}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{e}^{(-)}$ $\mathrm{Mg}^{+}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})$	$\mathrm{X}^{+}(\mathrm{g}) \rightarrow \mathrm{X}^{2+}(\mathrm{g})+\mathrm{e}$ Or any other symbol can score SS mark only	Any other equations score zero	2
	Species (1) State symbols (1)	Ignore (g) as state symbol for e^{-}		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b)(i)	Dative / dative covalent/ co-ordinate	"dative convalent"	J ust "covalent"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	Covalent	Polar covalent	Any reference to hydrogen bonding	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)	Please read complete answer first $\mathbf{1}^{\text {st }}$ mark Stand alone The $\mathrm{Mg}^{2+} /$ cation/ Mg ion has (the same charge but) smaller size OR $\mathrm{Mg}^{2+} /$ cation has larger charge density (1) $2^{\text {nd }}$ Mark $\mathrm{Mg}^{2+} /$ cation / Mg ion is more polarising OR Carbonate anion more polarised (1) $3^{\text {rd }}$ mark We are looking for some effect on the carbonate ion of the above Carbon to oxygen bond weakened OR Weakens (covalent) bonds in the carbonate OR electrons in anion pulled towards the cation OR Distorts the electron cloud (around the carbonate)	Reverse argument based on Ba^{2+} Mg^{2+} / cation / Mg ion has greater polarising power	Mention of molecules and atoms throughout answer scores (0) Penalise omission of ions only once Mention of covalency between metal and carbonate/ electronegativity/ vdW or other intermolecular forces / polarising power of the carbonate ion scores zero for last 2 marks Weakens IONIC BONDS	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	Diagram with Layer made of alternate identified Na^{+}/ sodium ion and $\mathrm{F} /$ iodide ion (1) Extended to more than one layer (1) Also allow (1) (1)	Correct structure with + for Na^{+}and - for I' scores (2) Correct unlabelled structure or with omission of charges scores (1)		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	Ionic radius / Size of ion (1)	Size and charge scores (2)	Any reference to size of element, atoms or molecules loses first mark	2
Charge (1)	Charge density scores (1)	Nuclear charge		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iii)	lodide (ion) larger than chloride (ion) (but has same charge) larger ionic radius (1) Note References to iodine and/ or chlorine loses 1 ${ }^{\text {st }}$ mark	Reverse argument	References to atoms, molecules or other forces such as vdW or covalent bonding scores zero overall	2
(So increase distance between centres of charge means forces of attraction are less/ weaker ionic bond OR Cl-has higher charge density so stronger attraction to Na ${ }^{+}$(1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4}$ (b)	In molten (Nal) the ions are free to move (1) (and carry the current)	Electron movement scores (0)	2	
In solid (Nal) the ions are in fixed lattice / fixed position / cannot move(1) Both stand alone	In the solid, there are no mobile charge carriers			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)	Strong attraction between ions (in liquid) OR Strong forces/ bonds/ ionic bonds (in liquid) Or Lots of energy needed to overcome the ionic attraction or Needs a lot of energy to break ionic bonds (in liquid) (1)	Any reference to lattice/ melting	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 ~ (a) (i) ~}$	$\mathrm{Cl}_{2}+2 \mathrm{NaBr} \rightarrow \mathrm{Br}_{2}+2 \mathrm{NaCl}$ OR $\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-}$ Ignore state symbols	multiples		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (a)(ii)	Disproportionation (1)	Redox Any reasonable spelling	(Bromine oxidised from 0) goes to +1 and (reduced from 0) goes to -1 (1) These could be shown as annotation on the equation	A general definition of disproportionation i.e. no reference to bromine
Answer must be in terms of change of oxidation number. Correct references to gain and loss of electrons are non- scoring points				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(iii)	SO_{2} +4 etc (1) $\mathrm{H}_{2} \mathrm{SO}_{4}$ +6 etc (1) If both S^{4+} and S^{6+} given award $\mathbf{1}$ (out of 2)	$\begin{aligned} & 4+\mathrm{IV}+\mathrm{HV} \text { Four } \\ & 6+\mathrm{VI}+\mathrm{VI} \text { six } \end{aligned}$	$\begin{aligned} & \mathrm{S}^{4+} \\ & \mathrm{S}^{6+} \end{aligned}$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 ~ (a) (i v) ~}$	The oxidation number of S is increasing (so bromine is acting as an oxidising agent) Or oxidation number of Br is decreasing so it must be acting as an oxidising agent (The oxidation number of) S goes from +4 to +6	If say oxidation number of bromine goes from 0 to -2 score zero	1	
ecf but do not award this mark if the ON of S in $\mathrm{H}_{2} \mathrm{SO}_{4}$ is shown as less than or equal to that in SO_{2} in (iii)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 (b) (i)}$	$\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{(-)}$ $\mathbf{O R}$ $\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}$	multiples		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(ii)	Correct balanced equation $\begin{equation*} 2 \mathrm{IO}_{3}+5 \mathrm{SO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{I}_{2}+5 \mathrm{SO}_{4}{ }^{2-}+8 \mathrm{H}^{+} \tag{2} \end{equation*}$ If candidate gives this equation with one omission in balancing numbers or one ionic charge, check rest of working to see if this is a transcription error in final answer. If so, award one mark Also allow 1 mark for: $\begin{array}{r} 2 \mathrm{IO}_{3}^{-}+12 \mathrm{H}^{+}+5 \mathrm{SO}_{2}+10 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{I}_{2}+5 \mathrm{SO}_{4}^{2-}+ \\ 20 \mathrm{H}^{+}+6 \mathrm{H}_{2} \mathrm{O}(1) \end{array}$ [There is no consequential marking from (i)]	multiples		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6}$ (a)(i)	(pale) green	apple green yellow(y) green	blue green	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6}$ (a)(ii)	Crimson	Red Scarlet Carmine Depth of red colour e.g.	Red with any other colour e.g. Brick-red Oark red Orange-red Yellow-red Deep red	1
Pale red	Magenta			
Light red				
Bright red				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)	$\begin{array}{cc} \hline \mathrm{Ba} & 0 \tag{1}\\ \frac{81.1}{137} & \frac{18.9}{16} \\ =0.592 & =1.18 \\ 1 & 2 \end{array}$ Correct working leading to answer BaO_{2} (1) Working must be shown and final formula given for 2 marks BaO_{2} without working 1 mark	Dividing by 32 scores (0) unless their table is headed by O_{2}, then answer BaO_{2} scores (1) but if this is the case BaO scores (0)	Any answer dividing by atomic number (0) This leads to $\mathrm{Ba}_{2} \mathrm{O}$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 (c) (i)}$	$\mathrm{Ba}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2}$ lgnore state symbols even if they are wrong	Multiples	Equations based on BaO	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 ~ (c) (i i) ~}$	- Gets warm - Effervescence/ fizzing/ bubbles/ mist - Ba sinks/ moves up and down / Does not float Give one mark for observation from each bullet point to max of 2	Bubbles of hydrogen	Reference to flame Melts Dashes about on surface are wrong answers	2
3 answers given, one wrong scores (1) 3 answers given, two wrong scores zero lgnore mention of Steam/ steamy fumes Ba gets smaller Ba disappears Goes cloudy / precipitate Gas/ hydrogen evolved is not an observation				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6}$ (c)(iii)	Red litmus (goes) blue/ "(\rightarrow) blue" and blue litmus unchanged/ stays blue/ no effect/ nothing			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
7 (a)(i)	8 electrons around each Cl (1) three shared pairs and one lone pair around P (1) If symbols omitted max 1	All dots or all crosses		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{7}$ (a)(ii)		Must be an attempt to draw as a pyramid. Wedge, dashes, both. If draw 3 lines must not look planar	Planar triangular even if no lone pair shown in part (i)	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
7 (a)(iii)	Mark consequentially on part (a)(ii) $1^{\text {st }}$ mark PCl_{3} has 4 pairs of electrons/ 3 bond and 1 lone pair (1) $2^{\text {nd }}$ mark The electron pairs repel to a position of maximum separation $/$ minimum repulsion OR lp-bp repulsion >bp-bp (1) $3^{\text {rd }}$ mark CH_{4} has 4 bonding pairs of electrons so angle less in PCl_{3} or more in CH_{4} OR CH_{4} has no lone pairs so angle less in PCl_{3} or more in CH_{4} (1) If in part (ii) they give a structure which is planar triangular they can score full marks for a correct description of why it is planar triangular i.e. PCl_{3} has 3 pairs of electrons (1) The electron pairs repel to a position of maximum separation / minimum repulsion (1) So the angles are 120° for PCl_{3} and CH_{4} has 4 bonding pairs of electrons, so $109(.5)^{\circ}$ for CH_{4} (1)	Phosphorus in PCl_{3} has a lone pair but carbon in CH_{4} has no lone pairs scores first mark	Repulsion of atoms or bonds	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
7 (b)(i)	Ignore sig figs unless they round to 1 sig.fig during calculation Incorrect / absent units in final answer penalise only once in part (i)/ (ii) 7.19 g of $\mathrm{PCl}_{5}=\frac{7.19}{208.5} \mathrm{~mol}$ (1) $(=0.03448)$ (1 mol of PCl_{5} from 1 mol of P) Mass of $P=0.03448 \times 31=$ 1.07 g (1) Penalise use of Atomic Number only once Answer with no working scores 2	$\begin{aligned} & 2 \times 31 \mathrm{~g} \text { of } \mathrm{P} \\ & \text { produce } 2 \times 208.5 \\ & \mathrm{~g} \text { of } \mathrm{PCl}_{5}(\mathbf{1}) \\ & 7.19 \mathrm{~g} \text { of } \mathrm{PCl}_{5} \text { from } \\ & \frac{2 \times 31 \times 7.19}{2 \times 208.5} \\ & =1.07 \mathrm{~g}(\mathbf{1}) \end{aligned}$ Allow 0.034 but NOT 0.035		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
7 (b)(ii)	Mark consequentially on part (i) Moles of chlorine needed $=$ 0.03448×2.5 (1) $\text { Volume }=24 \times 0.03448 \mathrm{x}$ $2.5=2.07 \mathrm{dm}^{3}(1)-$ Value and unit necessary Value consequential on their calculated/ stated moles of chorine x 24 Answer with no working scores 2	$2 \times 208.5 \mathrm{~g}$ of PCl_{5} produced from 5 x $24 \mathrm{dm}^{3}$ of $\mathrm{Cl}_{2}(1)$ $7.19 \mathrm{~g} \mathrm{PCl}_{5}$ produced from $\frac{5 \times 24 \times 7.19}{2 \times 208.5}=$ $2.07 \mathrm{dm}^{3}$ (1)	Just $24 \times 2.5=60 \mathrm{dm}^{3}$ scores zero	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 ~ (a) (i) ~}$	anode: titanium (1) cathode: steel/Nickel/Ni (1) If both correct but in wrong place max 1		graphite	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 ~ (a) (i i) ~}$	Anode $2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{(-)}$ $2 \mathrm{Cl}^{-}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{Cl}_{2}$ Cathode $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{(-)} \rightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{(-)}(1)$ If both correct but in wrong place max 1	Multiples		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 ~ (a) (i i i) ~}$	$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{H}_{2}+\mathrm{Cl}_{2}+2 \mathrm{OH}^{-}$	multiples	$2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{H}_{2}+\mathrm{Cl}_{2}$ Equation with $2 e^{(-)}$ on both sides	1

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Correct Answer } & \begin{array}{l}\text { Acceptable } \\ \text { Answers }\end{array} & \text { Reject } & \text { Mark } \\ \hline \mathbf{1} \text { (a)(iv) } & \begin{array}{l}\text { treatment of (drinking) water } \\ \text { Or } \\ \text { to kill bacteria in water/swimming } \\ \text { pools } \\ \text { Or } \\ \text { sterilisation of water } \\ \text { Or } \\ \text { as a disinfectant } \\ \text { Or } \\ \text { in production/manufacture/making } \\ \text { of any one of: } \\ \text { PVC } \\ \text { bleaches } \\ \text { herbicides } \\ \text { insecticides/pesticides } \\ \text { HCl/hydrochloric acid/hydrogen } \\ \text { chloride } \\ \text { named chlorinated solvents } \\ \text { bromine } \\ \text { in bleach } \\ \text { Or } \\ \text { blanium } \\ \text { paper } \\ \text { chloroethene } \\ \text { poly(chloroethene) } \\ \text { CFCs/HCFCs } \\ \text { Silicon }\end{array} & \begin{array}{l}\text { water purification } \\ \text { Or } \\ \text { swimming pools } \\ \text { Or } \\ \text { cleaning anything } \\ \text { Or } \\ \text { anything else }\end{array} & 1\end{array}\right\}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	species oxidised chlorine/ Cl_{2} oxidation product sodium chlorate(l) / NaOCl / OCl ${ }^{-}$ /chlorate(I) (ions) (1) both required for mark species reduced chlorine / Cl_{2} reduction product (sodium) chloride / $\mathrm{NaCl} /$ chloride ion $/ \mathrm{Cl}^{-}$(1) both required for mark	Species oxidised Cl (in Cl_{2}) ox. prod. sodium hypochlorite Species reduced Cl (in Cl_{2})	Just "chlorate" and "sodium chlorate"	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)	IGNORE SF unless rounded to 1SF moles $\mathrm{NaOCl}=\frac{100}{74.5}=$ $\left.1.342 \text { (1) (= moles } \mathrm{Cl}_{2}\right)$ volume $\mathrm{Cl}_{2}=1.342 \times 24=32.2 \mathrm{dm}^{3}$ - unit essential (1) $2^{\text {nd }}$ mark consequential on moles To get the $2^{\text {nd }}$ mark, must show attempt to calculate moles ie $100 \div x$ Correct answer with no working (2)	Method using mass: volume ratio 74.5 (g) gives $24\left(\mathrm{dm}^{3}\right)$ (1) $\therefore 100(\mathrm{~g})$ gives $32.2 \mathrm{dm}^{3}$ (1) Some common acceptable answers are: $32.16 / 32 / 31.2 / 31 \mathrm{dm}^{3}$		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\begin{array}{\|l} \hline 2(a) \\ \text { QWC } \end{array}$	enthalpy/heat/energy change when 1 mole (of a substance) (1) is completely burned in oxygen / burned in excess oxygen (1) (all species) at $1 \mathrm{~atm} / 100 \mathrm{kPa} / 10^{5} \mathrm{~Pa} /$ 1 Bar and "a specified temperature" (1)	"evolved" instead of "change" "sulphur" or "element" or "species" instead of "substance"	Heat/energy required "compound" instead of "substance" reacts completely with oxygen Any mention of specific products or specific amounts of products, other than SO_{2}, negates $2^{\text {nd }}$ mark Just " 273 K" Any mention of concentration negates third mark	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	Temperature 400 to $500\left({ }^{\circ} \mathrm{C}\right)$ or any value or range within this range inclusive (1) Pressure >1 to 5 atm or any value or range within this range inclusive (1) Catalyst Vanadium (V) oxide / $\mathrm{V}_{2} \mathrm{O}_{5}(\mathbf{1})$	673-773 K or any value or range within this range vanadium pentoxide	1 atm or any range that includes 1 atm Just "vanadium oxide"	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii) QWC	Temperature			4
	More molecules/collisions/ particles have $\mathrm{E} \geq \mathrm{E}_{\text {act }}$ /sufficient energy to react (1)	```E>E Eact "energy barrier" instead of "E Eact/activation energy"```	More atoms....	
	\therefore a greater proportion of collisions are successful Or	Collisions more likely to be successful	just "more successful collisions"	
	More of the collisions are successful (1)	Greater chance of successful...	"..fruitful collisions"	
		More successful collisions per second		
	IGNORE greater frequency of collision			
	$2^{\text {nd }}$ mark dependent on $1^{\text {st }}$ mark UNLESS $1^{\text {st }}$ mark is not awarded through use of "atoms"			
	Catalyst			
	EITHER: provides alternative route of lower activation energy (1)	"energy barrie"" instead of " $E_{\text {act }} /$ activation energy"		
	more molecules have $\mathrm{E}>\mathrm{E}_{\text {cat }} / \mathrm{a}$ greater proportion of collisions are successful (1)	Collisions more likely to be successful	just "more successful collisions"	
	$2^{\text {nd }}$ mark dependent on mention of lowered activation energy Do not penalise use of "atoms" again	Greater chance of successful... More successful collisions per second	N.B. Penalise "more collisions are successful" only once	
			"..fruitful collisions"	
	OR: provides (active) sites (1)			
	where reactant molecules can bond/be adsorbed (1)		Where reaction can take place	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
2 (b)(iii)	reaction exothermic (1)	Δ Hegative/reverse reaction is endothermic		2		
QWC	equilibrium shifts to the left decreasing the yield (1) $2^{\text {nd }}$ mark is dependent on the 1		Just "equilibrium and is not consequential.	left" the		
IGNORE Le Chatelier explanations					\quad	Just "yield
:---						
decreases"	\quad					
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iv) QWC	fewer (gaseous) molecules /particles/moles on the right (1) equilibrium shifts to the right increasing the yield (1) $2^{\text {nd }}$ mark is dependent on the 1 st and is not consequential.	Just "equilibrium shifts to the right"	Just "yield increases"	Arguments based on volume
IGNORE Le Chatelier explanations N.B do not penalise omission of either 'equilibrium shifts' or change of yield if already penalised in (iii)		2		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)	$\begin{aligned} & \Delta \mathrm{H}=\Delta \mathrm{H}_{\mathrm{f}} \text { (products) }-\Delta \mathrm{H}_{\mathrm{f}} \\ & \text { (reactants) } \\ & \text { Or }(-814 \times 2)-(-286 \times 2)(\mathbf{1}) \\ & \left.=-1056 \text { (kJ mol }^{-1}\right) \quad(\mathbf{1}) \\ & \text { IGNORE units } \end{aligned}$ Correct answer with no working (2) Omission of either or both of $\times 2$ max 1. Hence -242 with some working (1) -1342 with some working (1) -528 with some working (1) (+)1056 with some working (1)		$\Delta \mathrm{H}_{\mathrm{f}}$ vaues added scores zero overall	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
2 (d)	any one of: making fertiliser/ detergents/ paint/ pigment inc $\mathrm{TiO}_{2} /$ dyes/ fibres/ plastics/ pharmaceuticals/ explosives	Making soap			\quad	
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(i)	Any two of - (same) general formula - (successive) members differ by CH_{2} - (same) functional group/ (similar/same) chemical properties/reactions - regular trend in physical properties IGNORE "same properties"	(Same) general molecular formula	(Same) molecular formula Same physical properties Reference to a specific reaction e.g. same reaction with chlorine	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(ii)	alkene(s)	C=C alkane	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(iii)	electrophilic addition (1) both needed IGNORE heterolytic and penalise homolytic hydrogen chloride/HCl (1)		2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (b) (i) ~}$	Classification nucleophilic substitution (1) Reagent potassium cyanide/KCN Or sodium cyanide/NaCN (1) Condition	Cyanide ions/CN ${ }^{-}$	Cyanide	3
(Heat under reflux in) aqueous ethanol/ethanol / alcohol (solvent) (1) 3rd mark dependent on (a) cyanide as reagent $3^{\text {rd mark can be awarded in }}$reagent line	Aqueous alone			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (b) (i i) ~}$	same molecular formula (1)	Same numbers of each atom different structural formulae/ displayed formulae/ arrangement of atoms (1)	different structure	different arrangement in space

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(iii)	There are many possibilities e.g. Or structures including rings / multiple bonds /isonitriles	Accept CH_{3} and/or CN e.g.		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (c) ~}$	1-bromopropane faster (1) Stand alone	Reverse statement	Any answer which gives 1-chloropropane as faster scores zero overall	3
because C-Br bond weaker (than C-Cl) (1) IGNORE attempted explanations of why C-Br bond weaker therefore lower activation energy/E [Lower Eact must be related to C-X bond]	Reverse argument	If no reference to carbon-halogen bond		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)	 2 carbon chain with continuation bonds in repeat unit (1) All other atoms correct (1) IGNORE subscript n IGNORE where the bond to the CH_{3} goes e.g. CH_{3} is fine	If more than one repeat unit given and number of repeat units stated or the repeat unit identified (2) If repeat unit not stated or identified can score $2^{\text {nd }}$ mark only	3 carbon chain Or Any repeat unit containing a double bond scores zero	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (e)	Restricted rotation around double bond (1)	No rotation/double bond cannot rotate (at room temperature)		2
	1-chloropropene has two different groups on both carbons/each carbon (in the double bond)(but propene does not) (1)	Propene has two identical groups on one carbon (of the double bond) (but 1- chloropropene does not)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	$\mathrm{KMnO}_{4} /$ potassium manganate(VII) / potassium permanganate	Sodium analogues	Just "Potassium manganate"	1
IGNORE any acid or alkali	Or O_{2} followed by aqueous acid			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	1,2(-)dibromoethane			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iii)	EITHER: sodium bromide $/ \mathrm{NaBr} /$ potassium bromide $/ \mathrm{KBr}$ (1) (50\%) sulphuric acid $/ \mathrm{H}_{2} \mathrm{SO}_{4}$ / phosphoric acid $/ \mathrm{H}_{3} \mathrm{PO}_{4}$ (1) OR: (Moist) red phosphorus/P (1) Bromine $/ \mathrm{Br}_{2}$ (1) $2^{\text {nd }}$ mark is conditional on the $1^{\text {st }}$	HBr with concentrated/50 \% sulphuric (1 only) concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ PBr_{3} alone (1 only)	Dilute/aqueous sulphuric $\mathrm{acid} / \mathrm{H}_{2} \mathrm{SO}_{4}$ PBr_{3} plus any other reagent (0)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iv)	Colour change			3
	from orange to green/blue (1)		...to brown	
	$\frac{\text { Oxidation products }}{\text { any } 2 \text { of: }}$			
		OH instead of $\mathrm{O}-\mathrm{H}$		
		If any two of the following given (1 out 2)		
	$\mathrm{O}-\mathrm{H}$	$\mathrm{CH}_{2} \mathrm{OHCHO}$	$\mathrm{CH}_{2} \mathrm{OHCOH}$	
	$\mathrm{H}-\mathrm{C}-\mathrm{C}$	$\mathrm{CH}_{2} \mathrm{OHCOOH}$		
	$\mathrm{O} \quad \mathrm{O}$	CHOCHO Or OHCCHO	$\begin{aligned} & \text { CHOCOH Or } \\ & \text { OHCCOH } \end{aligned}$	
		$\begin{aligned} & \text { CHOCOOH Or } \\ & \text { OHCCOOH } \end{aligned}$		
	$\mathrm{H}-\mathrm{O}^{\prime} \quad \mathrm{O}-\mathrm{H}$	$\mathrm{COOHCOOH} \mathrm{Or}(\mathrm{COOH})_{2}$ Or HOOCCOOH		
	Bonding from C must be to O of OH groups - penalise once only	Allow $\mathrm{CO}_{2} \mathrm{H}$ for COOH in the above		
	IGNORE any names			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(v)	$\mathrm{C}_{2} \mathrm{H}_{2} / \mathrm{CH} \equiv \mathrm{CH} /$ ethyne			1
Or				
$\mathrm{CH}_{2}=\mathrm{CHBr} / \mathrm{CH}_{2} \mathrm{CHBr} /$ bromoethene	1-bromoethene 2-bromoethene	$\mathrm{CH}_{2} \mathrm{BrCH}$ $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Br}$		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(i)	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br} /$ bromoethane (1) (only) monosubstitution occurs (1) Or 1,1-dibromoethane $/ \mathrm{CH}_{3} \mathrm{CHBr}_{2}$ isomer of $\mathbf{B} /$ substitutes onto same carbon $/ \mathrm{Br}$ (radical) can remove H from either carbon Or 1,1,2-tribromoethane etc. (1) substitution continues/ polysubstitution/reaction continues (1) Or Butane $/ \mathrm{C}_{4} \mathrm{H}_{10}$ (1) Combination of two $\mathrm{C}_{2} \mathrm{H}_{5}$ radicals (1) The $1^{\text {st }}$ mark is stand alone in each case.		Side reactions Reaction reaches equilibrium	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 (b) (\text { ii) }}$	$\mathrm{C}_{2} \mathrm{H}_{6}+31 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ Species (1) Balancing (1) IGNORE state symbolsMultiples $\mathrm{CH}_{3} \mathrm{CH}_{3}$ instead of $\mathrm{C}_{2} \mathrm{H}_{6}$	If incorrect hydrocarbon e.g. ethene scores zero	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iii)	simplest (whole number) ratio of the different atoms in a compound/moleculeratio of moles of atoms....	"elements" for "atoms"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iv)	CH_{3}			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 (b) (v)}$	Any alkane formula with odd no. of C atoms other than CH_{4}		1	
	This can be a structural, full structural or molecular formula IGNORE names even if incorrect			

6243/01A

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)	Obs: Lilac (1) Inf: Potassium/ K			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(i)	Obs: White precipitate (1) Inf: sulphate/ $\mathrm{SO}_{4}^{2-}(1)$	Cloudy/milky hydrogen sulphate $/ \mathrm{HSO}_{4}-$	Goes misty $\mathrm{SO}_{4} / \mathrm{HSO}_{4}$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(ii)	To prevent the precipitation with other ions (1) Any correct ion specified	Destroy any ion which would interfere with the test. Any correct ion specified So that only sulphate will precipitate	Dissolve precipitate of ions or compounds	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)	$\mathrm{K}_{2} \mathrm{SO}_{4}$ Conditional on correct (a) and (b)	$\mathrm{K}\left(\mathrm{HSO}_{4}\right)_{2}$	Potassium sulphate No charges allowed	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)(i)	Grey brown precipitate [observation only requested]		Brown solid Not "just" brown without precipitate	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)(ii)	Obs: Litmus turns blue (1) Inf: Ammonia/ $\mathrm{NH}_{3}(1)$ Nitrate/ $\mathrm{NO}_{3}{ }^{-}$	Nitrite/ $\mathrm{NO}_{2}{ }^{-}$	3	

| Question
 Number | Correct Answer | Rejeptable Answers | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 1.(e) | Obs: (Pale) yellow precipitate (1)
 Inf: $\mathrm{Ag}^{+}(1)$
 $\mathrm{AgI}(1)$Silver $/ \mathrm{Pb}^{2+} / \mathrm{lead}$
 PbI_{2} | Cream
 $\mathrm{Ag} / \mathrm{Pb}$ | 3 |

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	Check subtractions and averaging arithmetic, correcting if necessary	Allow 1 slip but withhold this mark if any readings are in the wrong boxes. Accept 0; 0.0 ; 0.00 as initial reading	Reject 50 as initial reading	12
	All volumes read to $0.05 \mathrm{~cm}^{3}$ (1)			
	All subtractions complete (1) $\checkmark \checkmark$ top RHS of Table 1			
	Mean Titre			
	For correct averaging of chosen values/ choosing identical values and			
	for recording the average correct to 2 or 3 dps or to the nearest $0.05 \mathrm{~cm}^{3}$ [unless already penalised]			
	\checkmark by the mean titre (1)			
	Accuracy			
	If the candidate has made an arithmetical error in Table 1 volumes			
	used in the mean or in averaging, the examiner must calculate a new			
	average. - For an averaging error simply			
	Calculate the difference between the candidate's mean titre and that of the examiner or supervisor Record the difference on the scripts as $d=$ **			
	Examiner's titre $22.80 \mathrm{~cm}^{3}$			
	Award marks for accuracy as follows:			
	Difference ± 0.20 (6)			
	Difference ± 0.30			
	Difference ± 0.40			
	Difference ± 0.60			
	Difference ± 0.80 (2)			
	Difference ± 1.00			
	Difference >1.00 (0)			

Range Award a mark on the range of titres used by the candidate to calculate the mean. The range (r) is the difference between the outermost titres used to calculate the mean. If the examiner has corrected titres because of incorrect subtraction then award the range mark on the corrected titres used by the examiner to calculate the mean. $\begin{aligned} & \text { Range } \pm 0.20 \\ & \text { Range } \pm 0.30 \\ & \text { Range } \pm 0.50 \\ & \text { (2) } \\ & \text { Range }>0.50 \end{aligned}$ Examiner to show the marks awarded for the accuracy and range as $d=\checkmark 6$ max $r=\checkmark 3 \max$ then the mark out of 12 written in the margin			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(i)	$\frac{0.150 \times \text { titre }}{1000}$			1
	S.F. i) ii) iii) Penalise rounding to 2 s.f. once unless trailing zero iv) Ignore s.f.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(ii)	answer (i)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(iii)	answer (ii) $\times 40$			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(iv)	$13.5 /$ answer (iii)	Ignore unit		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 . (b) (v) ~}$	Titre would be too low/smaller/lower/too small (1) Because some alkali remains in the flask (1) Stand alone marks	No difference because quantity of excess alkali is within experimental error.	Just "small" Just "low" Stops too quickly or too soon	$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Table 2 Weighings in correct spaces to at least 2 dp (1) Correct subtractions (1)			8
	Table 3			
Two temps recorded in correct spaces				
	(1)			
	BOTH to 0.5 ${ }^{\circ} \mathrm{C}$ or better (1)			
	ET correct with neg. sign (1)			
EXECTED VALUE TO BE -6.2 for [4.95 -				
	$5.05] \mathrm{g}$			
$\pm 0.8^{\circ} \mathrm{C}(3)$				
	$\pm 1.2^{\circ} \mathrm{C}(2)$			
	$\pm 1.6^{\circ} \mathrm{C}(1)$			
$>1.6^{\circ} \mathrm{C}(0)$				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(i)	For correct substitution and evaluation (1) positive sign (1) Answer to 2 sig figs (1)		3	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(ii)	No because it has the same systematic errors/same errors with measuring cylinder/thermometer/heat loss/impure sample (1)	Same error in balance	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.	Weigh crucible (1) $\checkmark \mathrm{m} 1$ Weigh with sample (1) $\checkmark \mathrm{m} 2$ Heat (1) $\checkmark \mathrm{m} 3$ to constant weight (1) $\checkmark \mathrm{m} 4$ Either Calculate mass (of gas) lost (1) $\checkmark \mathrm{cc}$ Moles $\mathrm{CO}_{2}=\frac{\text { mass lost }}{44 / \mathrm{Mr}}$moles MgCO_{3} (1) $\mathrm{cc2}$ Mass $\mathrm{MgCO}_{3}=$ moles $\times 84 \mathrm{Mr}$ (hence \%) $(1) \checkmark \mathrm{c3}$	Take known mass/stated mass (1)		7

6243/01A - Materials

Apparatus and Materials

Apparatus

Each candidate will require:

1. apparatus for a flame test;
2. spatula;
3. $\quad 10 \mathrm{~cm}^{3}$ measuring cylinder;
4. $50 \mathrm{~cm}^{3}$ measuring cylinder;
5. 5 test tubes and 1 boiling tube in a rack;
6. $\quad 1$ stopper to fit a test tube;
7. supply of dropping pipettes;
8. test tube holder;
9. Bunsen burner;
10. $50 \mathrm{~cm}^{3}$ burette, stand and clamp, with small funnel for filling, white tile and a small beaker for draining burette;
11. $2 \times 250 \mathrm{~cm}^{3}$ conical flasks;
12. $25 \mathrm{~cm}^{3}$ pipette with safety filler;
13. expanded polystyrene cup held securely in a $250 \mathrm{~cm}^{3}$ beaker;
14. a thermometer of range from at least room temperature to $50^{\circ} \mathrm{C}$ (e.g. 0 to $50^{\circ} \mathrm{C}$ or -10 to $+110^{\circ} \mathrm{C}$), able to be read to $\pm 0.5^{\circ} \mathrm{C}$ or better;
15. access to a balance reading to at least 2 decimal places.

Materials

Each candidate will require:
(a) ${ }^{*}$ approximately 0.5 g of potassium sulphate, labelled \mathbf{X}. The identity of this must not be revealed to candidates;
(b) * $3 \mathrm{~cm}^{3}$ of aqueous silver nitrate: concentration approximately $0.05 \mathrm{~mol} \mathrm{dm}{ }^{-3}$, labelled \mathbf{Y}. The identity of this must not be revealed to candidates;
(c) $2 \mathrm{~cm}^{3}$ of dilute hydrochloric acid: concentration approximately $2 \mathrm{~mol} \mathrm{dm}^{-3}$;
(d) $1 \mathrm{~cm}^{3}$ of aqueous barium chloride: concentration approximately $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$;
(e) $2 \mathrm{~cm}^{3}$ of dilute aqueous sodium hydroxide: concentration approximately $2 \mathrm{~mol} \mathrm{dm}^{-3}$;
(f) aluminium foil, approximately $2 \times 2 \mathrm{~cm}$;
(g) red litmus paper;
(h) $1 \mathrm{~cm}^{3}$ of aqueous potassium iodide: concentration approximately $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$;
(i)* $200 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide: concentration $0.150 \mathrm{~mol} \mathrm{dm}^{-3}$, labelled \mathbf{B};
(j) ${ }^{*} 200 \mathrm{~cm}^{3}$ of aqueous sulphamic acid $\left(\mathrm{NH}_{2} \mathrm{SO}_{3} \mathrm{H}\right)$: concentration $13.5 \mathrm{~g} \mathrm{dm}{ }^{-3}$, labelled \mathbf{C}. The identity of the solute must not be revealed to candidates;
(k) phenolphthalein indicator;
(1)* specimen tube containing $5.0 \pm 0.05 \mathrm{~g}$ of sodium nitrate, labelled \mathbf{D}. The identity of this must not be revealed to candidates;
(m) distilled water.

For home centres (ONLY), the materials identified with an asterisk (*) will be sent by a firm of manufacturing chemists.

6243/01B

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)	Obs: yellow (1) Inf: sodium/ $\mathrm{Na}^{+}(1)$	Orange/Golden		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	Obs: (effervescence and) white ppt (1) Inf: carbon dioxide $/ \mathrm{CO}_{2}(1)$	Milky; cloudy	misty	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)	$\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}(1)$ Conditional on correct (a) and (b)		Just name	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)(i)	(Grey)-Brown precipitate [observation only requested] (1)		Brown solid Not just "brown"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)(ii)	Obs: Litmus turns blue (1) Inf: Ammonia/ NH_{3} (1) Nitrate/ $\mathrm{NO}_{3}{ }^{-}(1)$	Nitrite/ NO_{2}^{-},		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)	Obs:White ppt (1) soluble in ammonia (1) Inf: Ag^{+}(1)	Goes clear/precipitate disappears silver	Ag	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)	White or brown/precipitate [observation only requested] (1)	Cream coloured ppt	Misty/cloudy	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	Check subtractions and averaging arithmetic, correcting if necessary All volumes read to $0.05 \mathrm{~cm}^{3}$ (1) All subtractions complete (1) $\checkmark \checkmark$ top RHS of Table 1 Mean Titre For correct averaging of chosen values and for recording the average correct to 2 or 3 dps or to the nearest $0.05 \mathrm{~cm}^{3}$ [unless already penalised] \checkmark by the mean titre (1) Accuracy If the candidate has made an arithmetical error in Table 1 volumes used in the mean or in averaging, the examiner must calculate a new average. - For an averaging error simply calculate a new value using the candidate's chosen values - If a wrongly subtracted titre has been used in the mean then choose any two identical titres or take an average of the closest two titres Calculate the difference between the candidate's mean trite and that of the examiner or supervisor Record the difference on the scripts as $d=$ ** Examiner's titre $23.55 \mathrm{~cm}^{3}$ Award marks for accuracy as follows:	Allow 1 slip but withhold this mark if any readings are in the wrong boxes. Accept 0 ; $0.0 ; 0.00$ as initial readings	Reject 50 as initial reading	12

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(i)	$\frac{0.150 \times \text { titre }}{1000}$		1	
S.F. i) ii) iii) Penalise rounding to 2 s.f. once uless trailing zero iv) Ignore s.f. ignore unit				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(ii)	$\frac{\text { answer (i) }}{2}$			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(iii)	answer (ii) $\times 40$			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(iv)	$6.43 /$ answer (iii)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(v)	titre would be too large/larger/too big/ bigger (1) Because some alkali is neutralised with acid remaining in burette (1) Stand alone marks	Conc of alkali reduced (1)	Just "big" Just "large" Reject just "wrong" Takes too long	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Table 2 Weighings in correct spaces to at least 2 dp (1) Correct subtractions (1) Table 3 Two temps recorded (1) BOTH to $0.5^{\circ} \mathrm{C}$ or better (1) ΔT correct with negative sign (1) EXPECTED VALUE -7.6º For [4.955.05] $\pm 1.0^{\circ} \mathrm{C}(3)$ $\pm 1.5^{\circ} \mathrm{C}$ (2) $\pm 2.0^{\circ} \mathrm{C}$ (1) $>2.0^{\circ} \mathrm{C}(0)$			8

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(i)	For correct substitution and evaluation (1) positive sign (1) Answer to 2 sig figs (1)		3	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(ii)	($\Delta \mathrm{T}$ more negative) Either More accurate because \% of error in $\Delta \mathrm{T}$ smaller (1) OR: Less accurate because error due to heat gain is more (1)	(bigger)		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.	Weigh crucible (1) $\checkmark \mathrm{m} 1$ Weigh with sample (1) $\checkmark \mathrm{m} 2$	Take known mass/ stated mass $(1) \checkmark \mathrm{m} 2$		7
Heat (1) $\checkmark \mathrm{m} 3$ to constant weight (1) $\checkmark \mathrm{m} 4$ Either Calculate mass (of gas) lost (1) $\checkmark \mathrm{c} 1$ Moles $\mathrm{O}_{2}=\frac{\text { mass lost }}{32 / \mathrm{Mr}}=1 / 2$ moles NaNO (1) $\checkmark \mathrm{c} 2$ Mass $\mathrm{NaNO}_{3}=$ moles $\times 85 \mathrm{Mr}$ [hence \%] (1) $\checkmark \mathrm{c} 3$				

6243/01B - Materials

Apparatus and Materials

Apparatus

Each candidate will require:

1. apparatus for a flame test;
2. spatula;
3. $10 \mathrm{~cm}^{3}$ measuring cylinder;
4. $50 \mathrm{~cm}^{3}$ measuring cylinder;
5. 5 test tubes and 1 boiling tube in a rack;
6. $\quad 1$ stopper to fit a test tube;
7. supply of dropping pipettes;
8. test tube holder;
9. Bunsen burner;
10. $50 \mathrm{~cm}^{3}$ burette, stand and clamp, with small funnel for filling, white tile and a small beaker for draining burette;
11. $2 \times 250 \mathrm{~cm}^{3}$ conical flasks;
12. $25 \mathrm{~cm}^{3}$ pipette with safety filler;
13. expanded polystyrene cup held securely in a $250 \mathrm{~cm}^{3}$ beaker;
14. a thermometer of range from at least room temperature to $50^{\circ} \mathrm{C}$ (e.g. 0 to $50^{\circ} \mathrm{C}$ or -10 to $+110^{\circ} \mathrm{C}$), able to be read to $\pm 0.5^{\circ} \mathrm{C}$ or better;
15. access to a balance reading to at least 2 decimal places;
16. apparatus for testing gas with limewater e.g. delivery tube or dropper pipette.

Materials

Each candidate will require:
(a) ${ }^{*}$ approximately 0.5 g of sodium carbonate, anhydrous, labelled J . The identity of this must not be revealed to candidates;
(b)* $3 \mathrm{~cm}^{3}$ of aqueous silver nitrate: concentration approximately $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$, labelled K . The identity of this must not be revealed to candidates;
(c) $2 \mathrm{~cm}^{3}$ of dilute hydrochloric acid: concentration approximately $2 \mathrm{~mol} \mathrm{dm}^{-3}$;
(d) $10 \mathrm{~cm}^{3}$ of limewater;
(e) $2 \mathrm{~cm}^{3}$ of dilute aqueous sodium hydroxide: concentration approximately $2 \mathrm{~mol} \mathrm{dm}^{-3}$;
(f) aluminium foil, approximately $2 \times 2 \mathrm{~cm}$;
(g) red litmus paper;
(h) $1 \mathrm{~cm}^{3}$ of aqueous sodium chloride: concentration approximately $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$;
(i)* $200 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide: concentration $0.150 \mathrm{~mol} \mathrm{dm}^{-3}$, labelled \mathbf{L};
(j)* $200 \mathrm{~cm}^{3}$ of aqueous ethanedioic acid: concentration $9.00 \mathrm{~g} \mathrm{dm}^{-3}$ of $(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, labelled \mathbf{M}. The identity of the solute and this concentration must not be revealed to candidates;
(k) phenolphthalein indicator;
(1) ${ }^{*}$ specimen tube containing $5.0 \pm 0.05 \mathrm{~g}$ of potassium nitrate, labelled \mathbf{E}. The identity of this must not be revealed to candidates;
(m) distilled water;
(n) $5 \mathrm{~cm}^{3}$ of aqueous ammonia: concentration approximately $2 \mathrm{~mol} \mathrm{dm}^{-3}$.

For home centres (ONLY), the materials identified with an asterisk (*) will be sent by a firm of manufacturing chemists.

6243/01C (overseas practical test)

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)	Obs: yellow (1) Inf: sodium/ $\mathrm{Na}^{+}(1)$	Orange/golden		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	Obs: (Effervescence and) white ppt (1) Inf: Carbon dioxide $/ \mathrm{CO}_{2}(1)$ Carbonate $/ \mathrm{CO}_{3}^{2-}(1)$ hydrogen carbonate $/ \mathrm{HCO}_{3}{ }^{-}$(1) ions are conditional on CO_{2}	Goes milky/cloudy		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)	$\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}$ Conditional on correct (a) and observation in (b)		1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)(i)	Obs: white precipitate (1) Inf: any two of	Cloudy/milky		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1. (d)(ii)	Conditional on two ions in (i) Substances: dilute hydrochloric acid/ HCl (aq) (1) Observations: consequential two from (Barium)Carbonate: effervescence (and ppt dissolves) (1) (Barium)Sulphate: Ppt insoluble/Stays/no change (1) (Barium)Sulphite: ppt dissolves (without effervescence) (1) Hydrogensulphate: Add blue litmus $\mathrm{HSO}_{4}{ }^{-}$goes red $\mathrm{SO}_{4}{ }^{2-}$ stays blue	$\mathrm{HCl} / \mathrm{HNO}_{3}$		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	Check subtractions and averaging arithmetic, correcting if necessary All volumes read to $0.05 \mathrm{~cm}^{3}$ (1) All subtractions correct (1) $\checkmark \checkmark$ top RHS of table 1 Mean titre For correct averaging of chosen values/choosing identical values and for recording the average correct to 2 or 3 dps or to the nearest $0.05 \mathrm{~cm}^{3}$ [unless already penalised] \checkmark by the mean titre (1) Accuracy If the candidate has made an arithmetical error in table 1 volumes used in the mean or in averaging, the examiner must calculate a new average. - For an averaging error simply calculate a new value using the candidate's chosen values - If a wrongly subtracted titre has been used in the mean then choose any two identical titres or take an average of the closest two titres Calculate the difference between the candidate's mean titre and that of the examiner or supervisor Record the difference on the script as $d=$ ** Examiner's titre $22.00 \mathrm{~cm}^{3}$ or s / v value Award marks for accuracy as follows: Difference ± 0.20 (6) Difference ± 0.30 Difference ± 0.40 Difference ± 0.60 Difference ± 0.80 Difference ± 1.00 Difference > 1.00	Allow 1 slip but withhold this mark if any readings are in the wrong boxes. Accept 0 ; 0.0 ; 0.00 as initial readings	Reject 50 as initial reading	12

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(i)	$\frac{0.150 \times \text { titre }}{1000}$			1
	S.F. i) ii) iii) Penalise rounding to 2 s.f. once unless trailing zero iv) Ignore s.f. ignore unit			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(ii)	answer (i) / 2			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(iii)	answer (ii) $\times 40$			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(iv)	$5.94 /$ answer (iii)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
2.(b)(v)	titre would be too big/bigger/too large/larger (1) Because some alkali is neutralised with acid remaining in burette (1) Stand alone marks	Reject just "wrong"	2			
[Conc of alkali reduced						
(1)]					\quad	
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Table 2 Weighings in correct spaces to at least $2 \mathrm{dp}(1)$ Correct subtractions (1)			8
	Table 3			
	Two temps recorded (1)			
	BOTH to 0.5 ${ }^{\circ} \mathrm{C}$ or better (1)			
	$\Delta \mathrm{T}$ correct with negative sign (1)			
	EXPECTED VALUE $-7.6^{\circ} \mathrm{C}$ or s/v value			
	$\pm 1.0^{\circ} \mathrm{C}(3)$			
	$\pm 1.5^{\circ} \mathrm{C}(2)$			
	$\pm 2.0^{\circ} \mathrm{C}(1)$			
$>2.0^{\circ} \mathrm{C}(0)$				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(i)	For correct substitution and evaluation(1) positive sign (1) Answer to 2 sig figs (1)		3	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(ii)	Either less accurate because \% of error (in $\Delta \mathrm{T}$) greater (1) OR: More accurate because error due to heat gain is less (1)		1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.	Weigh crucible (1) $\checkmark \mathrm{m} 1$ Known mass/stated mass (1) $\checkmark \mathrm{m} 2$ Heat in crucible(1) $\checkmark \mathrm{m} 3$ To constant weight (1) $\checkmark \mathrm{m} 4$ Calculate mass (of gas) lost (1) $\checkmark \mathrm{c} 1$ Moles $\mathrm{CO}_{2}=\frac{\text { mass lost }}{44 / \mathrm{Mr}}=$ moles $\mathrm{CaCO}_{\checkmark \mathrm{c} 2}(1)$ Mass $\mathrm{CaCO}_{3}=$ moles $\times 100 \mathrm{Mr}$ (hence \%) (1) $\checkmark \mathrm{c} 3$	If gas collection method Moles $\mathrm{CO}_{2}=$ vol/molar volume \checkmark C1		7

6243/01C - Materials

Apparatus and Materials

Apparatus

Each candidate will require:

1. apparatus for a flame test;
2. spatula;
3. $10 \mathrm{~cm}^{3}$ measuring cylinder;
4. $50 \mathrm{~cm}^{3}$ measuring cylinder;
5. 3 test tubes in a rack;
6. supply of dropping pipettes;
7. Bunsen burner;
8. $50 \mathrm{~cm}^{3}$ burette, stand and clamp, with small funnel for filling, white tile and a small beaker for draining burette;
9. $2 \times 250 \mathrm{~cm}^{3}$ conical flasks;
10. $25 \mathrm{~cm}^{3}$ pipette with safety filler;
11. expanded polystyrene cup held securely in a $250 \mathrm{~cm}^{3}$ beaker;
12. a thermometer of range from at least room temperature to $50^{\circ} \mathrm{C}$ (e.g. 0 to $50^{\circ} \mathrm{C}$ or -10 to $+110^{\circ} \mathrm{C}$), able to be read to $\pm 0.5^{\circ} \mathrm{C}$ or better;
13. access to a balance reading to at least 2 decimal places;
14. apparatus for testing gas with limewater e.g. delivery tube or dropper pipette.

Materials

Each candidate will require:
(a) approximately 0.5 g of anhydrous sodium carbonate, labelled F . The identity of this must not be revealed to candidates;
(b) $3 \mathrm{~cm}^{3}$ of aqueous potassium sulphate: concentration approximately $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$, labelled G . The identity of this must not be revealed to candidates;
(c) $2 \mathrm{~cm}^{3}$ of aqueous barium chloride: concentration approximately $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$;
(d) $10 \mathrm{~cm}^{3}$ of limewater;
(e) $2 \mathrm{~cm}^{3}$ of dilute hydrochloric acid, concentration approximately $2 \mathrm{~mol} \mathrm{dm}^{-3}$;
(f) $200 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide: concentration $0.150 \mathrm{~mol} \mathrm{dm}^{-3}$, labelled \mathbf{T};
(g) $200 \mathrm{~cm}^{3}$ of aqueous ethanedioic acid: concentration $8.32 \mathrm{~g} \mathrm{dm}^{-3}$ of $(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, labelled \mathbf{U}. The identity of the solute and this concentration must not be revealed to candidates;
(h) phenolphthalein indicator;
(i) specimen tube containing $5.0 \pm 0.05 \mathrm{~g}$ of potassium nitrate, labelled \mathbf{B}. The identity of this must not be revealed to candidates;
(j) distilled water.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 ~ (a) (i) ~}$	Lighted/burning splint (1)	Lit/flaming flint/spill flame	Near misses do not score 1 st mark Just 'splint'	2
Pops/explodes/squeaky pop (1) $2^{\text {nd }}$ mark conditional on 1 being correct (see above) or a near miss (glowing splint, smouldering splint, burn, ignite are near misses)	scores zear miss			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (a)(ii)	Glowing splint (1) Reignites/relights (1) $2^{\text {nd }}$ mark conditional on 1 st Burning splint burns more brightly (2)	Smouldering Burning splint relights scores 1	Splint alone No test	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i)}$	White precipitate / solid (1) Insoluble in (hydrochloric) acid / HCl (1)	Solution turns cloudy/milky ppt or ppte for precipitate No change/ reaction with HCl or acid	Just 'No reaction with HCl' 'Precipitate'	2

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Correct Answer } & \begin{array}{l}\text { Acceptable } \\ \text { Answers }\end{array} & \text { Reject } & \text { Mark } \\ \hline \mathbf{1 ~ (b) (i i) ~} & \begin{array}{l}\text { Precipitate dissolves/ } \\ \text { disappears in } \\ \text { (hydrochloric) acid }\end{array} & \begin{array}{l}\text { effervescence with } \\ \text { (hydrochloric) acid } \\ \text { or } \\ \text { Pungent gas } \\ \text { evolved with acid } \\ \text { or } \\ \text { Gas evolved with } \\ \text { acid which turns }\end{array} & \begin{array}{l}\text { Just } \\ \text { (precipitate dissolves' } \\ \text { or 'Effervescence' } \\ \text { or 'Gas evolved' } \\ \text { or (blue) litmus/pH } \\ \text { paper turns red }\end{array} & 1 \\ \text { (potassium) } \\ \text { dichromate }\end{array}\right]$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(iii)	Add sodium hydroxide (solution), (warm) (1) Gas evolved turns red litmus blue (1) $2^{\text {nd }}$ mark conditional on $1^{\text {st }}$ being correct (see above) or a near miss (alkali, hydroxide (ions) or just 'warm' or 'heat', alkali with Zn / Al/ Devarda's alloy are near misses)	Potassium hydroxide White fumes with HCl Universal indicator /pH paper turns blue	Near misses do not score $1^{\text {st }}$ mark Alkaline gas/gas Incorrect chemistry for test scores zero (e.g. 'add acid' or add NaOH followed by acid	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(i)	Lilac	Purple		1
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(ii)	Potassium flame masked (by strong sodium flame colour)	Sodium (yellow) flame persistent /strong Yellow flame seen instead of lilac Potassium flame not seen (clearly)	Both colours seen Colours mix Flame is yellow	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(i)	Moles of 2-methylpropan- $2-\mathrm{ol}=\frac{7.9}{74}(1)=0.10676$ Either Theoretical mass of 2-chloro-2-methylpropane $\begin{aligned} & =92.5 \times \frac{7.9}{74}(1)=9.875(\mathrm{~g}) \\ & 100 \times \frac{5.8}{9.875}=58.7 \%(1) \end{aligned}$ Or actual moles of 2-chloro-2methylpropane $\begin{aligned} & =\frac{5.8}{92.5}(1)=0.0627 \\ & 100 \times \frac{0.0627}{0.10676(1)}=58.7 / 59 \% \end{aligned}$ [ignore s.f. except 1 s.f.]	Correct answer some working scores 3 Correct answer, no working (1) Ecf on moles $\begin{aligned} & =92.5 \times \frac{7.9}{74}(1)=9.9 \mathrm{~g} \\ & 100 \times \frac{5.8}{9.9}=58.6 \% \\ & (1) \end{aligned}$ Or actual moles of 2-chloro-2methylpropane $\begin{aligned} & =\frac{5.8}{92.5}(1) \\ & =0.0627 \end{aligned}$ $\begin{aligned} & 100 \times \frac{0.0627}{0.107} \\ & =58.6 \%(1) \end{aligned}$	$\begin{aligned} & 100 \times \frac{5.8}{7.9} \\ & =73.4 \% \text { scores zero } \end{aligned}$	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (a) (i i) ~}$	Transfer / handling losses, or specific examples of these eg 'product left in aqueous layer', or 'other products formed'	Side reactions occur Or reaction incomplete Or by-products	experimental error or spillages or evaporation or equilibrium	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) (i) ~}$	Sensible separating funnel with tap (1) Organic layer on top (1) - stand alone	Conical/filter or Buchner funnel with tap	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) (i i) ~}$	To prevent pressure building up due to formation of carbon dioxide or gas	To release the carbon dioxide/gas formed/pressure	To release vapour	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 (c)}$	$50-52\left({ }^{\circ} \mathrm{C}\right)$	49 or $50-52$ or 53		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (d) ~}$	Add $\mathrm{PCl}_{5}(1)$ (or $\left.\mathrm{SOCl}_{2}\right)$ Any one of No steamy/misty/white fumes(1) no gas turns (damp) blue litmus / UI / pH paper red (1) no white smoke with ammonia (1)	Any one of No bubbles (1) No pop with a lit splint (1) Positive result if alcohol present	White smoke with PCl_{5} Any physical test Any oxidant No reaction	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(i)	(glass/volumetric/ graduated $/ 25 \mathrm{~cm}^{3}$) pipette	Burette / measuring cylinder/teat pipette	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(ii)	With (the) sodium hydroxide (solution) lgnore initial rinsing with (distilled) water	Solution to be used in the burette Alkali	Solution to be used / final rinsing with (distilled) water	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(iii)	Colourless (1) to Pink (1) Pink to colourless (1)	..to permanent pink/pale pink	Red or purple or magenta	$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 (b) (i)}$	Titres agree to within 0.2 $\left(\mathrm{~cm}^{3}\right)$	$0.05-0.20\left(\mathrm{~cm}^{3}\right)$		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (b) (i i) ~}$	$\frac{(26.35+26.45)=26.40(1)}{2}$	26.4 correct answer with no working (1)		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b)(iii)	$\frac{0.205 \times 26.40=5.41 \times 10^{-3}}{1000}$	Ecf from (ii) 5.412×10^{-3}	If the factor of 1000 is omitted penalise on each occasion	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (b) (i v) ~}$	$\frac{5.41 \times 10^{-3} \times 1000(1)}{25}=0.216\left(\right.$ mol dm $\left.{ }^{-3}\right)(1)$ Ignore s.f. except 1 s.f. If 26.40 \& 25 transposed in 3 (b)(iii) and 3 (b)(iv) penalise once	If the factor of 1000 is omitted penalise on each occasion	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 (b) (v)}$	$100 \times \frac{0.216}{2.25}=9.6 \%$	Ecf from (iv) 9.62% (if left on calculator)	10% values $>100 \%$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (c)	(Indicator) colour change cannot be seen/is masked (because of the colour of the wine)	Just 'end-point cannot be seen'	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 ~ (a) ~}$	Bromine (water/solution) (1) Orange/yellow/red-brown solution decolourised/goes colourless (1)	brown solution goes......	Discoloured Goes clear Initial colour omitted	2
	OR Acidified potassium manganate(VII) (1) Purple/pink solution decolourised/goes colourless (1)	Potassium permanganate		
OR alkaline/neutral potassium manganate(VII) (1) Purple/pink solution to green or brown (ppt)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)	Compare measured boiling point/boiling temperature to (data) book value Compare IR/mass spectrum/NMR spectrum to reference data	IR/mass spectrum/NMR spectrum (Measure) boiling point /boiling temperature Melting point /melting temperature		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 (a)}$	Initially CuSO amount of reaction depends on amount of Zn or More CuSO_{4} reacts (as more Zn added) (1) Graph levels off because all CuSO	More Zn reacts	Zn now in excess	Reaction is exothermic

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (b)(i)	Heat capacity (of metal) low (compared with that of solution)	Metal has negligible/low specific heat capacity Metal absorbs (much) less heat (than solution/ water)		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 ~ (b) (i i) ~}$	q = 50 x 63.5 $\times 4.18=$ $13271.5 ~ J$ Units, if given, must be correct lgnore signs	$13300 / 13270 / 13272$ Answer in kJ only if units stated	13271	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(iii)	$\begin{aligned} \text { Moles } \mathrm{CuSO}_{4} & =50 \times \frac{1.25}{1000} \\ & =0.0625(1) \end{aligned}$ $\begin{aligned} \Delta H & =(-) \frac{13271.5}{0.0625 \times 1000} \\ & =-212\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ 1 mark for negative sign 1 mark for answer to 3 SF Units, if given, must be correct	Correct answer with some working scores full marks Ecf from moles Ecf from (ii) gives $\begin{aligned} & -213 /-212 / \\ & -212 \end{aligned}$		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 (c) (i)}$	Extra precision negligible compared with approximations in calculations/heat loss	Measuring cylinder is least accurate measuring instrument		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (c)(ii)	Use a lid on the cup (to reduce heat loss)	Extra insulation for cup	Repeat experiments	1
		Weigh CuSO 4	OR use more accurate solution	
		Use burette/ pipette to measure volumes	OR Smaller mass intervals	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6	Strategy:	Shorter time or faster rate = less stable (1)	Equal mass	5
	Statement or diagram of method (1)			
	Measurement (1)			
Same for all methods	Deduction (1)			
	Equal moles (1)	Equal amounts		
	One other measure to ensure consistent results (1)	Consistent heating (e.g. position of crucible/tube or same Bunsen setting (stating 'blue flame' or same height flame can gain this mark)) Or same volume or concentration of lime water.	Use of water bath to control temperature	
	Examples of method and measurement			
	Heating and detecting CO_{2} with limewater (any valid method) (1) Time for lime water to turn milky (1)	Valid methods include - bubbling into limewater - transferring CO_{2} to limewater using a teat pipette		
	Heating and measuring volume of CO_{2} (any valid method) (1) Volume in a fixed time or time for a fixed volume (1)	Amount of CO_{2} provided a valid volume-measurement method used		
	Heating and measuring mass loss (any valid method) (1) Mass loss in a fixed time (1)		time for a fixed mass loss	
	Heating to constant mass or complete decomposition can only score equal moles and measure to ensure consistent results marks (max 2)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)	Can be given in either order $1^{\text {st }}$ functional group alkene or $\mathrm{C}=\mathrm{C}$ or carboncarbon double bond (1) bromine water/ Br_{2} turns (from orange/ brown etc. to) colourless/ decolorised (1) INITIAL COLOUR NOT REQUIRED $2^{\text {nd }}$ functional group carboxylic (acid) (1) on addition of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ or NaHCO_{3} or CaCO_{3} or Mg , fizzing occurs (1) OR (warm with) a named alcohol plus conc. acid (as catalyst), pleasant/ fruity smell Ignore references to testing with PCl_{5}	KMnO_{4} Acidified decolorised Alkaline green carboxyl gas evolved which turns limewater milky OR or universal indicator/ blue litmus turns red	Just 'double bond' or just 'carbon double bond' 'clear' instead of 'colourless' "carbonyl" J ust "a gas/ $\mathrm{CO}_{2} / \mathrm{H}_{2}$ evolved" for fizzing	4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (b)(i)	W as it contains an aldehyde group / -CHO group OR		W with no reason or an incorrect reason $\mathbf{(0)}$ Contains C=0	1
W can be oxidised (whereas X cannot) OR X cannot be oxidised OR W as X is a ketone (which cannot be oxidised)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)	$\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH}$ OR OR Ethan(e)-1-2-diol	$\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark			
$\mathbf{1}$ (b)(iii)	(COOH $)_{2}$						1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(i)	 OR (2) for a correct structure IF STRUCTURE IS INCORRECT, BUT A CORRECT ESTER LINKAGE IS FULLY DRAWN (1) the correct repeat unit must contain only 4 carbon and 4 oxygen atoms	CQ polyester on basis of monomers in 1(b)(ii) and (iii) in relevant part of structure only (1) if STRUCTURE IS CORRECT, BUT the ester linkage has been written as $\mathrm{COO} / \mathrm{CO}_{2}$		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (c)(ii)	Condensation			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (a) ~}$	$\mathrm{Na}_{2} \mathrm{O}$ (1)	$\mathrm{Na}_{2} \mathrm{O}_{2}$ (1)		3
$\mathrm{P}_{4} \mathrm{O}_{10}$ or $\mathrm{P}_{2} \mathrm{O}_{5}$ or $\mathrm{P}_{4} \mathrm{O}_{6}$				
or $\mathrm{P}_{2} \mathrm{O}_{3}$ (1)				
SO_{2} or SO_{3} (1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	$\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$ Ignore state symbols $2 \mathrm{Na}^{+} \mathrm{OH}^{-}$ OR $\ldots2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-}$ OR $\mathrm{Na}_{2} \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}_{2}$ OR $\begin{aligned} \mathrm{Na}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}= & 2 \mathrm{NaOH} \\ & +1 / 2 \mathrm{O}_{2} \end{aligned}$		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii)	$\mathrm{P}_{4} \mathrm{O}_{6}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{3}$		$\mathrm{P}(\mathrm{OH})_{3}$ instead of	1
	OR		$\mathrm{H}_{3} \mathrm{PO}_{3}$	
$\mathrm{P}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{3}$				
OR				
$\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$				
OR				
$\mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4}$				
Ignore state symbols				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) (i i i) ~}$	$\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$ OR $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ Ignore state symbols		1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)	First mark:			2
	EITHER			
	Tin more stable at +4 (than at +2) whereas lead more stable at +2 (than at +4)		" Sn^{2+} less stable than Pb^{2+} ions"	
	(than at +4)		" $\mathrm{Pb}(\mathrm{II})$ is more	
	OR		stable than Sn (II)"	
	+2 (oxidation state) becomes more stable relative to +4 down the group (OWTTE)			
	Second mark:-			
	(so) Fe^{3+} reduced to Fe^{2+} (by Sn^{2+})			
	$\text { (2) } \mathrm{Fe}^{3+}+\mathrm{Sn}^{2+} \rightarrow \mathrm{Sn}^{4+}+\text { (2) } \mathrm{Fe}^{2+}$			
	tin(II) stronger reducing agent (than lead(II))			
	redox reaction between Sn^{2+} and			
	Fe^{3+}			
	OR			
	Sn^{2+} oxidised to Sn^{4+} /			
	$\mathrm{Sn}^{2+} \rightarrow \mathrm{Sn}^{4+}+2 \mathrm{e}^{-}$			
	OR			
	tin(II) acts as a (strong) reducing agent			
	OR			
	tin(II) reduces Fe^{3+} (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 (d)}$	$\mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl}$ Species (1) Balancing (1) Ignore state symbols $\ldots \rightarrow \mathrm{SiO}_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$ $\mathbf{0 R} \ldots \rightarrow \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $\mathbf{O R . . . + \mathbf { 4 H } _ { 2 } \mathbf { 0 }}$ $\ldots \rightarrow \mathrm{Si}(\mathrm{OH})_{4}+4 \mathrm{HCl}$		2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (a)}$	$K_{p}=\frac{p_{\mathrm{NO}_{2}}}{p_{N_{2} \mathrm{O}_{4}}}$ IGNORE UNITS HERE	$[\quad]$	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	$\begin{aligned} p_{\mathrm{NO}_{2}}= & 0.8 \times 1.1 \\ & =0.88(\mathrm{~atm}) \end{aligned}$ and $\begin{align*} p_{N_{2} O_{4}}= & 0.2 \times 1.1 \\ & =0.22(\mathrm{~atm}) \tag{1} \end{align*}$ $\begin{aligned} & K_{p}= \frac{(0.88)^{2}}{(0.22)} \\ & K_{p}=3.52 \text { (1) } \\ & \quad \operatorname{atm} \end{aligned}$ SECOND MARK IS CQ ON PARTIAL PRESSURES AS CALCULATED			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	First mark: $\begin{align*} & X_{\mathrm{N}_{2} \mathrm{O}_{4}}=0.10 \\ & X_{\mathrm{NO}_{2}}=0.90 \tag{1} \end{align*}$ Second mark: K_{p} constant or use of $K_{p}=3.52$ or use of K_{p} calculated in 3(b)(i) Third mark: Value of P_{T} with some working e.g. $\begin{align*} & 3.52=\frac{\left(X_{\mathrm{NO}_{2}} \times \mathrm{P}_{\mathrm{T}}\right)^{2}}{X_{\mathrm{N}_{2} \mathrm{O}_{4}} \times \mathrm{P}_{\mathrm{T}}} \\ & 3.52=\frac{0.81}{0.10} \times \mathrm{P}_{\mathrm{T}} \\ & \mathrm{P}_{\mathrm{T}}=0.435(\mathrm{~atm}) \tag{1} \end{align*}$ THIRD MARK NOT AVAILABLE IF K_{p} EXPRESSION DOES NOT CONTAIN A p^{2} TERM	Mark CQ on first and second answers to 3(b)(ii) in range 0.43 to 0.44	B	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(i)	Increases / gets larger/ gets bigger/ goes up/ greater		more	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)(ii)	First mark: Fraction/quotient/ $\frac{p_{\mathrm{NO}_{2}}^{2}}{p_{\mathrm{N}_{2} \mathrm{O}_{4}}} /$ numerator has to increase (to equal new K_{p}) (1) Second mark (can only be awarded for an answer that refers to the fraction/quotient above): EITHER so shifts to RIGHT hand side (as $p_{\mathrm{NO}_{2}} \uparrow$ and $p_{N_{2} O_{4}} \downarrow$) / goes in forward direction (as $p_{\mathrm{NO}_{2}} \uparrow$ and $p_{\mathrm{N}_{2} \mathrm{O}_{4}} \downarrow$) OR so (more) $\mathrm{N}_{2} \mathrm{O}_{4}$ changes to NO_{2} OR so (equilibrium) yield of NO_{2} increases (1)	Mark consequentially on "decreases" in (i)	Le Chatelier argument scores (0)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 ~ (a) (i)}$	BOX A $\mathrm{Ag}_{(\mathrm{g})}$ (1) BOX B $\mathrm{F}_{(\mathrm{g})}$ (1) C: enthalpy (change) of formation (of AgF)/ $\Delta \mathrm{H}_{\mathrm{f}} / \Delta \mathrm{H}_{\text {formation (1) }}$ IGNORE reference to 'standard'	'heat of formation'		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	EITHER $-205=(+285)+(+731)+(+79)+\text { EA }+(-958)$ OR $\begin{equation*} \text { EA }=(-205)-(+285)-(+731)-(+79)-(-958) \tag{1} \end{equation*}$ $=-342\left(\mathrm{~kJ} \mathrm{~mol}{ }^{-1}\right)$ (1) CORRECT ANSWER ALONE (2)		Any algebraic expression for EA that would give an incorrect value (0). Any algebraic expression for EA that would give a +ve value for EA scores (0).	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	Theoretical value (assumes) 100\%ionic OR no covalent character (1)			2
	(Experimental value is different) due to covalency OR covalent character OR polarisation of anion(1)	Mention of "Ag-X" OR "molecules" scores (0)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iii)	(as) size of anion increases (down group) (1)	"atomic radius of halide ion/ X lanion increases (down group)"	Mention of "Ag-X" OR "molecules" scores (0) unless already penalised in 4 (b)(ii)	2
	(anions) more easily polarised (down group) OR more distortion of anion (down group) (1)	"more covalent character"/ umore covalent" for second mark	"more covalent bonding" (0)	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4}$ (c)(i)	$\Delta H_{\text {SOLN }}=-\Delta H_{\text {LATT }}+\Delta H_{\text {HYD }}$ OR $=-(-958)+(-464)+(-506)(\mathbf{1)}$ $=-12\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \quad(\mathbf{1)}$ CORRECT ANSWER ALONE SCORES 2	+12 scores $\mathbf{(0)}$	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(ii)	AgF soluble / AgF slightly soluble (1) as $\Delta H_{\text {soln exothermic / negative }}$ (1) MARK INDEPENDENTLY Mark CQ on sign and magnitude of answer in (c)(i)	If $+12(\mathrm{~kJ} \mathrm{~mol}$ AgF insoluble (1) (c)(i), because endothermic / positive (1)	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 (a) (i)}$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ OR $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ IGNORE STATE SYMBOLS		if a full arrow is shown in the equation	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(ii)	$K_{W}=\left[{H^{+}}_{(a q)}\right]\left[\mathrm{OH}_{(a q)}^{-}\right]$ OR $\mathrm{K}_{W}=\left[\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}\right]\left[\mathrm{OH}^{-}{ }_{(a q)}\right]$ IGNORE STATE SYMBOLS		If $\left[\mathrm{H}_{2} \mathrm{O}\right.$] included (0). $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]^{2}$	1

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array}
$$ \& Correct Answer \& Acceptable Answers \& Reject \& Mark

\hline \mathbf{5} (a)(iii) \& p H=-\log _{10}\left[\mathrm{H}^{+}\right]

\mathbf{O R}

p H=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]

\mathbf{O R}

in words\end{array} \quad \mathrm{pH=} \mathrm{\lg 1 /[H}^{+}\right]\)| |
| :--- |

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(iv)	$\begin{aligned} & K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\ & 5.48 \times 10^{-14}=\left[\mathrm{H}^{+}\right]^{2} \quad \text { (1) } \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{5.48 \times 10^{-14}}} \\ & {\left[\mathrm{H}^{+}\right]=2.34 \times 10^{-7}(\mathrm{~mol} \mathrm{dm})} \\ & p H=6.6(3) \quad \text { (1) } \end{aligned}$ correct answer with no working (2)		$\begin{aligned} & \mathrm{pH}=13.3 \\ & / 13.6 \\ & \text { scores (0) } \end{aligned}$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 (a) (v)}$	(In pure water) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$ $\mathbf{O R}$ equal concentrations of H^{+}and OH^{-}			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 ~ (b) (i) ~}$	12.5			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (b)(ii)	$4.8 / 4.9$ [no consequential marking from (i)]		5 or 5.0	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (b)(iii)	$\mathrm{K}_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$		expressions containing $\left[\mathrm{H}_{2} \mathrm{O}\right]$	1
	$\mathbf{O R}$	OR		
	$\mathrm{K}_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$		"HA" generic equations	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(iv)	(at half-neutralised point so) $\mathrm{pK}_{\mathrm{a}}=4.8$ OR $\begin{equation*} \mathrm{pH}=\mathrm{pK}_{\mathrm{a}} \tag{1} \end{equation*}$ $\begin{aligned} & \mathrm{Ka}=\operatorname{antilog}_{10}(-4.8) \\ & \mathrm{Ka}=1.6 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & (\mathbf{1}) \end{aligned}$ Must be to two sig figs WITHOUT WORKING (2)	Mark CQ on (ii) Mark CQ on pKa If $\mathrm{pKa}=4.9, \mathrm{Ka}=1.3 \times 10^{-5}$	Just pH = 4.8 as already credited in 5 (b)(ii) Answers to other than 2 s.f. 2.5×10^{-9} scores (0)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 ~ (c) ~}$	Phenolphthalein: changes colour (OWTTE) in vertical part of the graph OR changes colour within a stated range anywhere from 7 to 11		If colour change "pink to colourless"	2
Methyl orange changes colour at a low(er) pH OR has already changed colour OR changes colour before the vertical (section) [NB There must be a statement about methyl orange for second mark]	Allow range for methyl orange of 3 to 6 or colour change takes place below pH = 7	Just ‘methyl orange changes colour outside the vertical range'		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (d)(i)	$\mathrm{H}_{(a q)}^{+}+\mathrm{OH}^{-}{ }_{(\text {aq) }} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}$ for both (acids)	State symbols not essential.	Equations shown as equilibria	1
OR $\mathrm{H}_{3} \mathrm{O}_{(\text {(aq) }}+\mathrm{OH}^{-}{ }_{(a q)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}$ for both (acids) OR Both (acids) fully ionised/fully dissociated (1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (d)(ii)	EITHER HCN weak (acid) OR HCN ionises to (only) a small extent OR HCN equilibrium lies to the left Energy taken in OR energy required for dissociation / ionisation (of HCN) (1) MARK INDEPENDENTLY	"HCN not fully ionised" or "HCN partially dissociates / ionises" "endothermic dissociation of HCN"	Any idea that only partial neutralisation occurs negates first mark	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6}$ (a)(ii)	$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$	$\mathrm{CH}_{3} \mathrm{CHOHCH}_{2} \mathrm{CH}_{3}$ $\mathbf{O R}$ $\mathrm{CH}_{3} \mathrm{CHOHC}_{2} \mathrm{H}_{5}$		1
	$\mathbf{O R}$ $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{2} \mathrm{H}_{5}$	OR OR Full structural formula of the above	-O-H can be represented as -OH	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 ~ (b) (i) ~}$	W: ethanamide (1)	acetamide	Formulae	3
	X: methylamine (1)	(1-)aminomethane	methanamine	
	Y: ethanenitrile (1)	'methyl cyanide'	'ethanitrile'	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)(ii)	Reaction 1 Bromine/ Br_{2} and sodium hydroxide/ NaOH / potassium hydroxide/ KOH (1) IGNORE CONC OR DILUTE OR AQUEOUS BEFORE $\mathrm{NaOH} / \mathrm{KOH}$ Reaction 2 phosphorus(V) oxide OR phosphorus pentoxide OR $\mathrm{P}_{4} \mathrm{O}_{10}$ (1) Reaction 3 lithium aluminium hydride (in dry ethoxyethane) OR LiAlH_{4} (in dry ethoxyethane) OR lithium tetrahydridoaluminate((III)) (in dry ethoxyethane) (1) MARK INDEPENDENTLY	$\mathrm{P}_{2} \mathrm{O}_{5}$ LiAlH_{4} followed by water or acid OR H_{2} and $\mathrm{Ni} / \mathrm{Pt} / \mathrm{Pd}$ (catalyst) OR Na and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	'bromine water' OR 'aqueous bromine' phosphorus oxide LiAlH_{4} in water (0) NaBH_{4}	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 ~ (b) (i i i) ~}$	Reaction 2 (1) dehydration (1) Reaction 3 reduction/redox (1) 'hydrogenation'	'elimination (of water)'	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)	e.m.f. of a half cell relative/ compared to a (standard) hydrogen electrode OR voltage produced from a half cell joined to a hydrogen electrode (1) (solutions at) $1 \mathrm{~mol} \mathrm{dm}^{-3}$ concentration, (gases at) 1 atm/ $100 \mathrm{kPa} / 10^{5} \mathrm{~Pa} / 1 \mathrm{Bar}$ pressure and stated temperature (1) all 3 conditions needed STAND ALONE	Potential (difference) / voltage for emf emf of a cell with standard hydrogen as the left electrode A description of the half cell e.g. a metal dipping into a solution of its ions 101 kPa 298 K or $25^{\circ} \mathrm{C}$ If any other temperature is quoted it must be as an example of a stated temperature	SHE 'constant' pressure "STP" Room temperature Just " 273 K"	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (b)	Can only measure a potential difference/ emf (if a reference electrode is present)	OR voltmeter needs 2 connections "electron source and sink"	1	
OR Cannot measure the potential difference between a metal and a solution of its ions	to make comparisons between half cells			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(i)	$1^{\text {st }}$ mark (simultaneous) oxidation and reduction of a (single) species/ substance/ reactant/ compound/ chemical Or the oxidation state/ number is both increased and decreased of a (single) species/ substance/ reactant/ compound/ chemical Or a (single) species/ substance/ reactant/ compound/ chemical both loses and gains electrons (1) $2^{\text {nd }}$ mark For a given type of atom within an ion/ molecule Or Illustrated by a suitable example in which the individual atom is identified (1)		oxidation and reduction occur at the same time oxidation states are ...	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (c)(ii)	$2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ (1)	$2 \mathrm{H}^{+}$on both sides of equation	3	
$\mathrm{E}_{\text {cell }}=(+) 1.09$ (V) (1)	E	Greater than any reaction is feasible (1) $3^{\text {rd }}$ mark must be cq on sign of $\mathrm{E}_{\text {cell }}$	other stated number	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (c)(iii)	activation energy of the reaction may be high	OR ust "Not enough energy to overcome the activation energy"	1	
reaction too slow to be observed	Conditions are non- standard Just "kinetically stable"			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (a) (i) ~}$	second order (1)		2	
rate proportional to the square of the (partial) pressure of NO OR the rate doubles as the square of the (partial) pressure of NO doubles (1) Conditional on correct order				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (a) (i i) ~}$	as (partial) pressure (of O_{2}) doubles rate doubles, so first order	Concentration of O_{2} instead of (partial) pressure		
OR				
gradient of line is $\left.\mathrm{k} \mathrm{p(O}_{2}\right)^{\mathrm{x}}$ so if thisdoubles the order (w.r.t. O_{2}) must be 1	1			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (a) (i i i) ~}$	rate $=\mathrm{k} \mathrm{p(NO})^{2} \mathrm{p}\left(\mathrm{O}_{2}\right)$	rate $=$ $\mathrm{k}\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.$	Any equation without k	1
"R" for "rate"				
Cq on orders in (i) and (ii)	rate $=\mathrm{k}$ $\mathrm{p}[\mathrm{NO}]^{2} \mathrm{p}\left[\mathrm{O}_{2}\right]$			
		"K" for lower case "k"		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (a) (i v) ~}$	$\mathrm{atm}^{-2} \mathrm{~s}^{-1}$ ALLOW this mark, even if p[] used in (iii) Cq on (iii) [if overall second order, unit is atm If overall first order unit is s s^{-1}]$\mathrm{mol}^{-2} \mathrm{~s}^{-1}$ if (iii) used in	1		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
$\mathbf{2 (a) (v)}$	partial pressure/ concentration of NO is very small (so the collision frequency with O_{2} molecules is very low)	chance of a 3-body collision is slight	Equilibrium reaction	1		
Temp is too						
low					\quad	
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	plot In k vs 1/T (1) giving straight line of gradient $-E_{a} / R$ OR $\mathrm{E}_{\mathrm{a}}=$-gradient $\times \mathrm{R}(\mathbf{1})$ STAND ALONE MARKS [2 ${ }^{\text {nd }}$ mark could be scored from (ii) if no reference to gradient here in (i) provided a clear expression is stated]	If plot $1 / \mathrm{T}$ vs $\ln \mathrm{k}$ and gradient is $-R / E_{a}$ (2) If plot In k vs 1/ RT and gradient - E_{a} (2)	"log"	2

Question Number	Correct Answer	Acceptable Answers	Reject	$\begin{array}{\|l} \hline \text { Mark } \\ 2 \\ \hline \end{array}$
2 (b)(ii)	$\begin{aligned} & \mathrm{E}_{\mathrm{a}}=2.95 \times 10^{4} \times 8.314(1) \\ & \left(=245,145 \mathrm{~J} \mathrm{~mol}^{-1}\right) \\ & =245\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1) \end{aligned}$ Correct answer with no working (2) Answers not to 3 SF can only score the $1^{\text {st }}$ mark Note: $-245\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (1) but must be 3SF $245,000 \mathrm{~kJ}^{\left(\mathrm{mol}^{-1}\right)}$ (1) but must be 3SF $-245,000 \mathrm{~kJ} \mathrm{~mol}^{-1}(\mathbf{0})$ If 245 or -245 is given, units are not needed If 245,000 is given, units are essential DO NOT PENALISE K^{-2} OR K $^{-1}$ in any unit	245,000 J (mol^{-1}) (2) [Note to examiners: give credit if candidate uses 2.95×10^{-4} or $1 / 2.95 \times 10^{4}$]		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) (\text { iii) }}$	B			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (a) ~}$	(aqueous) ethanol / ethanolic solution	ethanol alcohol propanone		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	$1^{\text {st }}$ Mark $\mathrm{S}_{\mathrm{N}} 1$ Or must be (at least) two steps (1) $2^{\text {nd }}$ Mark only the halogenoalkane is involved in the r.d.s. OR CN^{-}is not involved in rds (1)			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	first arrow must start from bond, not the carbon atom and not end past the bromine atom (1) structure of carbocation (1) Br^{-}not essential attack by cyanide, arrow must start from C or -ve charge on C not N and -ve charge must be present somewhere on ion; Ione pair not essential (1) IGNORE any references to rates of the steps	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br}$ completely correct $\mathrm{S}_{\mathrm{N}} 2$ version scores (1) See below		3

Acceptable $\mathrm{S}_{\mathrm{N}} 2$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (c) ~}$	yes, because the CN group will cause a different chemical shift (1)	no, because the proton/ H atom environment has not changed (so the nmr spectra will be the same)	Just 'No' any mention one peak	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\begin{aligned} & 3 \text { (d) } \\ & \text { QWC } \end{aligned}$	$1^{\text {st }}$ mark (heat with) $\mathrm{NaOH} /$ sodium hydroxide (solution) OR heat to red heat with sodium and drop into water (1) $2^{\text {nd }}$ mark acidify / add excess / neutralise with nitric acid/ HNO_{3} (1) If HCl is added here, only the $1^{\text {st }}$ mark can score $3^{\text {rd }}$ mark add silver nitrate (solution) / AgNO_{3} (1) $4^{\text {th }}$ mark cream ppt (1) IGNORE reference to ammonia unless incorrect (e.g. soluble in dilute ammonia) Note: If no NaOH used only the $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ marks can score If no acid is added, or if it is added before NaOH , only $3^{\text {rd }}$ and $4^{\text {th }}$ marks can score If order of addition is $\mathrm{NaOH}, \mathrm{AgNO}_{3}$, excess HNO_{3}, can score all marks If no NaOH and no HNO_{3}, can score $3^{\text {rd }}$ and $4^{\text {th }}$ marks If any reagent other than AgNO_{3}, including ammoniacal AgNO_{3}, is used, only $1^{\text {st }}$ and $2^{\text {nd }}$ marks can score. OR Mass spectroscopy (1) A doublet (1) of equal heights (1) in molecular ion peak (1) OR Mass spectroscopy (1) loss of m / e of 79 (1) and 81 (1) from molecular ion (1) OR Infrared spectroscopy (1) Measure/ record wavenumber (1) Absorption due to $\mathrm{C}-\mathrm{Br}$ stretch (1) Compare wavenumber with data book (1)	Names or formulae can be used, but if both used both must be correct Dilute sulphuric acid for nitric	add HNO_{3} concentrated HNO_{3} Yellow / offwhite ppt	4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (e) (i) ~}$	dilute acid/ (dilute) hydrochloric acid/ dilute sulphuric acid / dilute nitric acid OR aqueous NaOH followed by dilute acid $\mathbf{(1)}$	$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) / \mathrm{H}^{+}(\mathrm{aq})$	concentrated acid OR Just "water"	2
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}$ (1) STAND ALONE	(CH3) $\mathrm{CCO}_{2} \mathrm{H} ;$ displayed formulae	$\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{O}_{2}$		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (e)(ii)	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$ (1) for ethanol provided it is reacting with a carboxylic acid or acid chloride (1) for remainder of equation correct ALLOW $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOCl}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOCH}_{2} \mathrm{CH}_{3}+\mathrm{HCl}$ (2) if acid chloride is produced in first step	"- CO_{2}-" for "-COO-"; " \rightarrow " for " \rightleftharpoons " full structural formulae " $\mathrm{C}_{2} \mathrm{H}_{5}$ " for " $\mathrm{CH}_{3} \mathrm{CH}_{2}$ "	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{HO}$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	(anhydrous) aluminium chloride [Name or formulae]	$\begin{aligned} & \mathrm{Al}_{2} \mathrm{Cl}_{6} \\ & \mathrm{AlBr}_{3} \mathrm{FeBr}_{3} \\ & \mathrm{FeCl}_{3} \end{aligned}$	Fe	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 ~ (b) (i) ~}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}_{2}{ }^{+}$	$\mathrm{C}_{3} \mathrm{H}_{7}{ }^{+}$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	secondary carbocation is more stable than primary (1) primary carbocation $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+}\right)$rearranges to produce a secondary carbocation OR primary carbocation $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+}\right)$turns into a secondary carbocation OR a description of the rearrangement e.g. a hydrogen atom moves from the middle to the end (1)		any reference to stability of intermediate / product	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 ~ (c) (i) ~}$	First mark sodium nitrite / sodium nitrate(III)/ NaNO_{2} (1) Second mark hydrochloric acid / HCl(aq) (1) IGNORE concentration of acid $2^{\text {nd }}$ mark is conditional on NaNO_{2} or HNO_{2}	HNO_{2}	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 ~ (c) (i i) ~}$	below $0{ }^{\circ} \mathrm{C}$ reaction is too slow (1)		2	
	above $10^{\circ} \mathrm{C}$ the product/ benzenediazonium ions decomposes / hydrolysed (1)	HNO_{2} decomposes		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 ~ (c) (i i i) ~}$		IGNORE position of OH group. ONa or O^{-} instead of OH	$-\mathrm{N}=\mathrm{N}-\mathrm{O}-$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(iv)	the bonds around the $-\mathrm{N}=\mathrm{N}-$ bond are not linear (because of lone pairs) (1) Note: this could be shown on the diagram restricted rotation/ no (free) rotation around the $-\mathrm{N}=\mathrm{N}-(1)$	different groups on each N atom	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$4 \text { (d)(i) }$ QWC	First two marks add 2,4-dinitrophenylhydrazine/ Brady's reagent (1) orange/ yellow ppt (1) Allow this second mark if the name of the reagent is slightly incorrect e.g. 2,4-diphenylhydrazine OR IR absorption due to $\mathrm{C}=0$ stretch (1) at $1700 \mathrm{~cm}^{-1}$ (1) Third mark Does not give a silver mirror with ammoniacal silver nitrate (or Tollens' reagent) OR no red ppt/ stays blue with Fehling's or Benedict's solution OR $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ does not change from orange to green/ stays orange OR $\mathrm{H}^{+} / \mathrm{MnO}_{4}^{-}$does not change from purple to colourless/ stays purple	2,4-dnp(h) Any combination of yellow and orange Must be ppt Tollens'	Just "Red ppt" "solid" for "ppt" Iodoform	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(ii)	the $C=0$ group is polar and the nucleophile attacks the δ^{+}carbon (1) whereas $\mathrm{C}=\mathrm{C}$ is non-polar/ electron-rich, the double bond/ π-bond is attacked by electrophiles (1) OR $C=O$ is polar and $C=C$ is non-polar (1) Nucleophile attacks the δ^{+}carbon in $\mathrm{C}=0$ and electrophiles attack the π /double bond in $\mathrm{C}=\mathrm{C}$, which is electron rich/ non-polar (1)			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(iii)	both curly arrows in $1^{\text {st }}$ diagram, attack by cyanide, arrow must start from C or -ve charge on C not N and -ve charge must be present somewhere on ion; Ione pair not essential. Arrow must start from bond between C and O and point towards the 0 (1) Intermediate - Ione pair not essential but negative charge is essential (1) Arrow from O (lone pair not needed) or negative charge to HCN or H^{+}, this can be shown on the diagram of the intermediate (1) If HCN is used the arrow from $\mathrm{H}-\mathrm{CN}$ bond is required Any other ketone or aldehyde, max (2)	curly arrow from 0 to H^{+}		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (a)(i)	Cr: [Ar] 3d Cu: $[$ Ar] 3d Both needed for the mark	$4 s^{1} 3 d^{5}$ $4 s^{1} 3 d^{10}$ $[A r]$ written in full		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 ~ (a) (i i) ~}$	all the others are $4 s^{2} /$ have full 4s orbital (1)	Cr and Cu/ they do not have a full 4s orbital	Just 'only have one electron in $4 s^{\prime}$ OR Have incomplete 4s orbital	2
	The d subshell is more stable when either half or fully filled OR A specific example of chromium having half-filled or copper having filled d sub-shell/ set of d orbitals which is more stable (1)	sub-energy levels d shell	Half-filled or filled d- orbital(s)	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (b)(i)	Octahedral drawn must be 3-D IGNORE any or no charge	$-\mathrm{H}_{2} \mathrm{O}$ (bond to H) except on water molecules on left of Cr	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (b)(ii)	Dative bond formed from electron pair/ lone pair on oxygen (of the water molecule) to the ion	A clear description of the dative bond	'dative' alone or from water	1
	This could be shown on a diagram		Just "dative bond formed from oxygen"	

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Correct Answer } & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline \text { 5 (b)(iii) } & {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}+\mathrm{H}_{2} \mathrm{O}} \\ \mathrm{OR} \\ {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]^{+}+2 \mathrm{H}_{2} \mathrm{O}} \\ \mathrm{OR} \\ {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}+6 \mathrm{H}_{2} \mathrm{O}}\end{array}\right)$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (b)(iv)	Forms a green precipitate (1) IGNORE initial colour of solution (which reacts or dissolves or changes to) a green solution (with excess reagent) (1) $2^{\text {nd }}$ mark is conditional on an initial ppt	any shade of green		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (b)(v)	acid/ acidic	Amphoteric/ able to be deprotonated	Coloured ions/ ligand exchange/ deprotonation /partially filled d orbitals	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(i)	Check working - correct answer can be obtained by not dividing by 2 for $2^{\text {nd }}$ mark and not multiplying by 2 for $4^{\text {th }}$ mark amount thiosulphate in titre $=0.0372 \mathrm{dm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}$ $=3.72 \times 10^{-3} \mathrm{~mol}$ (1) amount $I_{2}=\frac{3.72 \times 10^{-3}}{2}(1)=1.86 \times 10^{-3} \mathrm{~mol}$ $2^{\text {nd }}$ mark cq on amount thiosulphate amount dichromate in $25 \mathrm{~cm}^{3}$ $=\frac{1.86 \times 10^{-3}}{3}(1)=6.2 \times 10^{-4} \mathrm{~mol}$ $3^{\text {rd }}$ mark Cq on amount I_{2} Total mass Cr $\begin{aligned} & =6.2 \times 10^{-4} \mathrm{~mol} \times 2 \times 10 \times 52 \mathrm{~g} \mathrm{~mol}^{-1}(\mathbf{1}) \\ & =0.645 \mathrm{~g} \\ & 4^{\text {th }} \text { mark cq on amount dichromate } \end{aligned}$ $\%$ of $\mathrm{Cr}=64.5 \%(\mathbf{1})$ IGNORE SF unless rounded to 1 SF cq on mass Cr , provided less than 1 g OR amount thiosulphate for whole sample $=0.0372 \mathrm{dm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3} \times 10$ $=3.72 \times 10^{-2} \mathrm{~mol}$ (1) amount $\mathrm{I}_{2}=1.86 \times 10^{-2} \mathrm{~mol}$ (1) amount dichromate $=6.2 \times 10^{-3} \mathrm{~mol}$ (1) $\begin{aligned} & \operatorname{mass} \mathrm{Cr}=6.2 \times 10^{-3} \mathrm{~mol} \times 2 \times 52 \mathrm{~g} \mathrm{~mol}^{-1}(\mathbf{1}) \\ & =0.645 \mathrm{~g} \end{aligned}$ \% of $\mathrm{Cr}=64.5 \%$ (1) IGNORE SF unless rounded to 1 sf Mark consequentially, as above Note: Correct answer with no working (3)	64.48 \%		5

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(ii)	Colour at the end point would be green which would prevent the loss of iodine colour being seen OR colour change at end point would be disguised by the colour of Cr^{3+}	Chromium instead of Cr^{3+}	end point disguised by colour of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ / orange	1

Question Number	Correct Answer					Acceptable Answers	Reject	Mark
1. (a)								10
	Check subtractions and averaging arithmetic, correcting if necessary. All volumes recorded to $0.05 \mathrm{~cm}^{3}$ (1)							
	ALLOW one slip but withhold this mark if any readings are in the wrong boxes.							
	ALLOW 0 as initial volume NOT 50 as initial volume All subtractions correct (1)							
	[$\checkmark \checkmark$ top RHS of Table 1]							
	Mean titre							
	For correct averaging of chosen values / choosing identical values and for recording the average correct to 2 or 3 dps or to nearest $0.05 \mathrm{~cm}^{3}$ (1)							
	Do not penalise missing $2 / 3^{\text {rd }} \mathrm{dp}$ if already penalised in Table 1.							
	[\checkmark by the mean in space or near the dotted line in paragraph below]							
	Accuracy							
	If the candidate has made an arithmetical error in the Table 1 volumes used in the mean							
	or in averaging the examiner must calculate a new average.							
	- For an averaging error simply calculate a new value using the candidate's chosen							
	titres. - If a wrongly subtracted titre has been used in the mean then choose any two							
	closest two titres.							
	Calculate the difference(d) between the candidate's mean titre and that of the examiner or supervisor.							
	Examiner's titre $=22.70 \mathrm{~cm}^{3}$ (to be confirmed at standardisation)							
	Award marks for accuracy as follows.							
	Difference	± 0.20	± 0.30	± 0.40	± 0.50			
	Mark	4	3	2	1			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	Moles $\mathrm{MnO}_{4}{ }^{-}$in $25.0 \mathrm{~cm}^{3}=\frac{25 \times 0.020}{1000}$ (1) moles $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ in mean titre $=$ moles $\mathrm{MnO}_{4}^{-} \times 5$ (1) concentration $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=$ moles $\mathrm{S}_{2} \underline{\mathrm{O}}_{3}{ }^{2-}$ in mean titre to 3 sf (1) mean titre $\div 1000$ Ignore units. Do not penalise loss of trailing zeros.	Correct answer from any method for (3) Ignore sf except on final conc.	Final conc ${ }^{n}$ if not to 3 sf. $\therefore \max (2)$	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 . (c)}$	Yellow to colourless	Straw (colour) to colourless	Colourless alone Any purple/ brown	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	Observations White precipitate (1) Dissolves / disappears (in excess NaOH) / colourless solution (1) Inference Zinc $/ \mathrm{Zn}^{2+}$ aluminium / Al^{3+} lead(II) / Pb^{2+}			
Ignore $\mathrm{Cd}^{2+} / \mathrm{Sn}^{2+} / \mathrm{Sn}^{4+} / \mathrm{Sb}^{3+}$	Soluble in excess/ goes clear	3		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	Observations White precipitate (1) Dissolves / disappears (in excess $\left.\mathrm{NH}_{3}\right) /$ colourless solution (1) Inferences Zinc (ions) / $\mathrm{Zn}{ }^{2+}(1)$ $\mathrm{Zn}(\mathrm{OH})_{2} /\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right](1)$ $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(1)$	Soluble in excess/ goes clear	Allow equivalent Cd species if Cd given in (a) $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark	
2.(c)	Observation	White precipitate (1)			2
	Inference	Sulphate $/ \mathrm{SO}_{4}{ }^{2-}(1)$	hydrogensulphate/ $\mathrm{HSO}_{4}{ }^{-}$	Barium sulphate	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)	ZnSO_{4}	CdSO_{4}		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(e)	Observations (any) green precipitate (1) Dissolves/ disappears (in excess) / green solution (1) Any yellow / any brown solution (1) Inferences $\begin{aligned} & \mathrm{Cr}(\mathrm{OH})_{3} /\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right](1) \\ & {\left[\mathrm{Cr}(\mathrm{OH})_{66}\right]^{3-}(1)} \\ & \mathrm{CrO}_{4}^{2-}(1) \end{aligned}$	Soluble in excess/ goes clear		6

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(f)	$\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Observation Yellow / orange precipitate (1) Inference Carbonyl / C=O/ $>C=0 /$ both of aldehyde or ketone	Yellow-orange		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)	Observation Stays orange / no change (1)	No reaction	Just "nothing"	3
Inferences Ketone / not aldehyde if follows A or K in (a) (1)	Not oxidised / no redox / does not reduce $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(1)$	Reject cq on wrong colour		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
3.(c)	Observation (pale) Yellow precipitate (1) Inferences	Cream ppte	3			
Triiodomethane / lodoform / $\mathrm{CHI}_{3}(1)$						
Methyl ketone / $\mathrm{CH}_{3} \mathrm{CO}(1)$					\quad	CH Methyl secondary alcohol / ethanol / ethanal
:---						

Question Number	Correct Answer		Acceptable Answers	Reject	Mark
3.(d)(i)	m/e	58 (1)			2
	Structure	 Ignore positive charge		$\begin{equation*} \mathrm{CH}_{3} \mathrm{COCH}_{3} \tag{1} \end{equation*}$ Species with negative charge	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(d)(ii)	$\mathrm{CH}_{3} \mathrm{CO}^{+}$		Formula with no positive charge $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{+}$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.	1v (Add NaCl to all five); the one that gives white ppte is AgNO_{3} $2 \checkmark \mathrm{Add}_{\mathrm{AgNO}}^{3}$ to new samples of remaining four. 3 $\sqrt{\checkmark}$ Solution that gives yellow ppte is KI . $4 \checkmark$ Solution that gives brown ppte or no ppte is NH_{3}. 5^{\checkmark} Solution that give white ppts are KCl and AlCl_{3}. $6 \checkmark$ Add NH_{3} to remaining two unknown solutions. $7 \checkmark$ Solution that gives white ppte is AlCl_{3}.	No white ppte with NH_{3}		7

OR

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number \& Correct Answer \& Acceptable Answers \& Reject \& Mark

\hline 4. \& | 1` (Add NaCl to all five); the one that gives white ppte is AgNO_{3} |
| :--- |
| $2 \checkmark$ Add four solutions to (AgCl) ppte. |
| $3 \checkmark$ Ppte dissolves in NH_{3}. |
| $4 \vee \quad$ Add NH_{3} to remaining three solutions. |
| 5 ${ }^{\checkmark}$ White ppts AlCl_{3}. |
| $6 \checkmark \quad \mathrm{Add} \mathrm{AgNO}_{3}$ to remaining solutions. |
| 7~ Yellow ppte with KI and white ppte with KCl . | \& \& \& 7

\hline
\end{tabular}

OR

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.	1^ (Add NaCl to all five); the one that gives white ppte is AgNO_{3} 2v Add four solutions to (AgCl) ppte. 3 $\sqrt{\checkmark}$ Ppte dissolves in NH_{3} $4 \checkmark \quad \mathrm{Add} \mathrm{AgNO}_{3}$ to remaining three solutions. 5 White ppts with $\mathrm{AICl}_{3}+\mathrm{KCl}$ and yellow ppte with KI . $6 \checkmark \quad$ Add NH_{3} to solutions of $\mathrm{AlCl}_{3}+\mathrm{KCl}$ $7 \checkmark$ White ppte with AlCl_{3}.			7

6246/01A - Materials

Apparatus and Materials

Apparatus

Each candidate will require:

1. $50.0 \mathrm{~cm}^{3}$ burette, stand and clamp, with small funnel for filling, white tile and a small beaker for draining burette;
2. two $250 \mathrm{~cm}^{3}$ conical flasks;
3. $\quad 25.0 \mathrm{~cm}^{3}$ pipette and safety filler;
4. six test tubes and one boiling tube in a test tube rack;
5. one $10 \mathrm{~cm}^{3}$ and two $25 \mathrm{~cm}^{3}$ measuring cylinders;
6. a supply of dropping pipettes;
7. a $250 \mathrm{~cm}^{3}$ beaker of hot water at about $70^{\circ} \mathrm{C}$ to be used as a water bath.

Materials

Each candidate will require:
(a) ${ }^{*} 200 \mathrm{~cm}^{3}$ of aqueous sodium thiosulphate of concentration $0.110 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ labelled Solution \mathbf{A}. The concentration of this solution is not to be disclosed to candidates;
(b)* $200 \mathrm{~cm}^{3}$ of aqueous potassium manganate(VII) of concentration $0.020 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution B;
(c)* $10 \mathrm{~cm}^{3}$ of approximately $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous zinc sulphate labelled Solution of C . The identity of this solution is not to be disclosed to candidates;
(d) * $5 \mathrm{~cm}^{3}$ of approximately $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous potassium chromium(III) sulphate, labelled Solution of \mathbf{D}. The identity of this solution is not to be disclosed to candidates;
$(\mathrm{e})^{*} 5 \mathrm{~cm}^{3}$ of propanone labelled \mathbf{E}. The identity of this compound is not to be disclosed to candidates;
(f) $100 \mathrm{~cm}^{3}$ of dilute sulphuric acid of concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$, labelled Dilute sulphuric acid;
(g) $100 \mathrm{~cm}^{3}$ of aqueous potassium iodide of concentration approximately $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Aqueous potassium iodide;
(h) $15 \mathrm{~cm}^{3}$ of dilute sodium hydroxide; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(i) $15 \mathrm{~cm}^{3}$ of dilute aqueous ammonia; concentration approximately $2.0 \mathrm{~mol} \mathrm{~mm}^{-3}$;
(j) $5 \mathrm{~cm}^{3}$ of dilute hydrochloric acid; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$;
(k) $5 \mathrm{~cm}^{3}$ of aqueous barium chloride; concentration approximately $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$;
(l) $10 \mathrm{~cm}^{3}$ of freshly-prepared aqueous hydrogen peroxide; concentration approximately 10 vol ;
(m) $5 \mathrm{~cm}^{3}$ of 2,4-dinitrophenylhydrazine solution. This may be made by adding 0.1 g of the solid reagent to $45 \mathrm{~cm}^{3}$ of water and $5 \mathrm{~cm}^{3}$ of concentrated hydrochloric acid, stirring and filtering if necessary. Alternatively centres may prepare this reagent using their own procedure providing the reagent gives a positive test with propanone;
(n) $5 \mathrm{~cm}^{3}$ dilute sulphuric acid; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ (for Question 3);
(o) $5 \mathrm{~cm}^{3}$ of aqueous potassium dichromate(VI); concentration approximately $0.20 \mathrm{~mol} \mathrm{dm}{ }^{-3}$;
(p) $10 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide; concentration approximately $0.50 \mathrm{~mol} \mathrm{dm}{ }^{-3}$. Label this solution $0.50 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ sodium hydroxide for Q3(c);
(q) $10 \mathrm{~cm}^{3}$ of iodine/potassium iodide solution made by adding 2 g iodine to 6 g potassium iodide dissolved in $100 \mathrm{~cm}^{3}$ water and labelled aqueous iodine;
(r) $20 \mathrm{~cm}^{3}$ of freshly prepared aqueous starch; concentration approximately 1% labelled starch;
(s) a supply of distilled water.

For home centres (ONLY), the chemicals identified with an asterisk (*) will be sent by a firm of manufacturing chemists.

Question Number	Correct Answer					Acceptable Answers	Reject	Mark
1.(a)	Table 1							10
	Check subtractions and averaging arithmetic, correcting if necessary.							
	All volumes recorded to $0.05 \mathrm{~cm}^{3}$ (1)							
	ALLOW one slip but withhold this mark if any readings are in the wrong boxes.							
	ALLOW 0 as initial volume NOT 50 as initial volume All subtractions correct (1)							
	[$\checkmark \vee$ top RHS of Table 1]							
	Mean titre							
	For correct averaging of chosen values / choosing identical values and for recording the average correct to 2 or 3 dps or to nearest $0.05 \mathrm{~cm}^{3}$ (1)							
	Do not penalise missing $2 / 3^{\text {rd }} \mathrm{dp}$ if already penalised in Table 1.							
	[\checkmark by the mean in space or near the dotted line in paragraph below]							
	Accuracy							
	If the candidate has made an arithmetical error in the Table 1 volumes used in the mean							
	or in averaging the examiner must calculate a new average.							
	- For an averaging error simply calculate anew value using the candidate's chosen							
	titres. - If a wrongly subtracted titre has been							
	used in the mean then choose any two identical titres or take an average of t closest two titres. Calculate the difference(d) between the candidate's mean titre and that of the examiner or supervisor.							
	Examiner's titre $=22.70 \mathrm{~cm}^{3}$ (to be confirmed at standardisation)							
	Award marks for accuracy as follows.							
	Difference	± 0.20	± 0.30	± 0.40	± 0.50			
	$\text { (d) }=$							
	Mark	4	3	2	1			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	```Moles \(\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\) in mean titre \(=\frac{\text { mean titre } \times 0.110}{1000}\) (1) moles \(\mathrm{MnO}_{4}^{-}\)in \(25.0 \mathrm{~cm}^{3}=\frac{\text { moles } \mathrm{S}_{2} \underline{\mathrm{O}}_{3}{ }^{2-}(1)}{5}\) concentration \(\mathrm{MnO}_{4}{ }^{-}=\frac{\text { moles } \mathrm{MnO}_{4}^{-}}{} \frac{\text { in } 25.0 \mathrm{~cm}^{3}}{0.0250\left(\mathrm{dm}^{3}\right)}\) to 3 sf (1) Ignore units Do not penalise loss of trailing zeros```	Correct answer from any method for (3) Ignore sf except on final conc ${ }^{n}$.	Final conc ${ }^{n}$ if not to 3 sf . $\therefore \max (2)$	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 . (c)}$	Yellow to colourless	Straw (colour) to colourless	Colourless alone Any purple / brown	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	Observations			3
	White precipitate (1)			
	Dissolves / disappears (in excess NaOH) / colourless solution (1)	Soluble in excess/ goes		
	Inference 		Symbols Zn, Al, Pb.	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	Observation Any red (1) Inferences Aluminium / A1 Aci (1) Acidic (since only 3+ ion of AI, Zn, Pb) Acidic - Stand alone mark (1)		3	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)	Observations White precipitate (1) Insoluble in excess $\mathrm{NH}_{3}(1)$ Inference $\mathrm{Al}(\mathrm{OH})_{3} /\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right] /$ aluminium hydroxide (1)		3	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)	Observation White precipitate (1) Inference chloride $/ \mathrm{Cl}^{-}$(1) $\mathrm{Chlorine/Cl}$	2		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 . (e)}$	AlCl_{3}	$\mathrm{Al}_{2} \mathrm{Cl}_{6}$		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(f)	Observations (any) blue precipitate (1) Dissolves/ disappears in excess (1) Deep(er) blue solution (1) Inferences $\mathrm{Cu}(\mathrm{OH})_{2} /\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right](1)$ $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{++}(1)$	Soluble in excess/ goes clear $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$	5 $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 . (g)}$	CuCl_{2}			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Observation Yellow / orange precipitate (1) Inference Carbonyl / C=O/ $>\mathrm{C}=0 /$ both of aldehyde or ketone (1)	Yellow-orange		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)	Observation Stays orange / no change (1) Inferences Ketone / not aldehyde if follows A or K in (a) (1) Not oxidised / no redox / does not reduce $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(1)$	No reaction	Just "nothing"	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
3.(c)	Observation (pale) Yellow precipitate (1) Inferences triiodomethane / lodoform / $\mathrm{CHI}_{3}(1)$ Methyl ketone / $\mathrm{CH}_{3} \mathrm{CO}(1)$	Cream ppte	$\mathrm{CH}_{3} \mathrm{l}$	3		
Methyl secondary						
alcohol / ethanol /						
ethanal					\quad	
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(d)(i)			$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$ Species with negative charge	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(d)(ii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{+} \quad / \quad \mathrm{CH}_{2} \mathrm{COCH}_{3}^{+}$		Formula with no positive charge $\mathrm{C}_{3} \mathrm{H}_{5} 0^{+}$	1

Question Number		Correct Answer	Acceptable Answers	Reject	Mark
4.	$\begin{aligned} & \hline 1 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	(Add $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to all five): the one that gives white ppte is BaCl_{2} Add BaCl_{2} to other four solutions. White ppte with AgNO_{3} Add AgNO_{3} to remaining three solutions White ppts with NaCl and ZnCl_{2} Brown ppte with $\mathrm{NH}_{3} /$ remaining one is NH_{3} Add NH_{3} to NaCl and ZnCl_{2} White ppte with ZnCl_{2}	No white ppte with NH_{3}		7

OR

Question Number		Correct Answer	Acceptable Answers	Reject	Mark
4.	$\begin{aligned} & 1 \checkmark \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 7 \end{aligned}$	(Add $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to all five): the one that gives white ppte is BaCl_{2} Add BaCl_{2} to other four solutions. White ppte with AgNO_{3} Add remaining three solutions to AgCl ppte AgCl dissolves in NH_{3} Add AgNO_{3} to remaining two solutions White ppte with both ZnCl_{2} and NaCl Add excess $\mathrm{NH}_{3}: \mathrm{ZnCl}_{2}$ ppt disolves			7

OR

Question Number		Correct Answer	Acceptable Answers	Reject	Mark
4.	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 7 \end{aligned}$	(Add $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to all five): the one that gives white ppte is BaCl_{2} Add BaCl_{2} to other four solutions. White ppte with AgNO_{3} Add remaining three solutions to AgCl ppte AgCl dissolves in NH_{3} Add NH_{3} to NaCl and ZnCl_{2} White ppte with ZnCl_{2} No ppte with $\mathrm{NaCl} / \mathrm{NaCl}$ remaining			7

OR

Question Number		Correct Answer	Acceptable Answers	Reject	Mark
4.	$\begin{aligned} & \hline 1 \\ & \hline 2 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 7 \\ & \hline \end{aligned}$	(Add $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to all five): two white ppts - BaCl_{2} and AgNO_{3} Distinguish between ppts Add AgNO_{3} to remaining three solutions White ppts with NaCl and ZnCl_{2} Brown ppte with $\mathrm{NH}_{3} /$ remaining one is NH_{3} Add NH_{3} to NaCl and ZnCl_{2} White ppte with ZnCl_{2}	No white ppte with NH_{3}		7

Apparatus and Materials

Apparatus

Each candidate will require:

1. $50.0 \mathrm{~cm}^{3}$ burette, stand and clamp, with small funnel for filling, white tile and a small beaker for draining burette;
2. two $250 \mathrm{~cm}^{3}$ conical flasks;
3. $\quad 25.0 \mathrm{~cm}^{3}$ pipette and safety filler;
4. seven test tubes and one boiling tube in a test tube rack;
5. one $10 \mathrm{~cm}^{3}$ and two $25 \mathrm{~cm}^{3}$ measuring cylinders;
6. a supply of dropping pipettes;
7. a $250 \mathrm{~cm}^{3}$ beaker of hot water at about $70^{\circ} \mathrm{C}$ to be used as a water bath.

Materials

Each candidate will require:
(a)* $200 \mathrm{~cm}^{3}$ of aqueous sodium thiosulphate of concentration $0.110 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution \mathbf{F};
(b) ${ }^{*} 200 \mathrm{~cm}^{3}$ of aqueous potassium manganate(VII) of concentration $0.020 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution G. The concentration of this solution is not to be disclosed to candidates;
(c)* $10 \mathrm{~cm}^{3}$ of approximately $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous aluminium chloride labelled Solution of \mathbf{H}. The identity of this solution is not to be disclosed to candidates;
(d) * $5 \mathrm{~cm}^{3}$ of approximately $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous copper(II) chloride, labelled Solution of I. The identity of this solution is not to be disclosed to candidates;
(e) ${ }^{*} 5 \mathrm{~cm}^{3}$ of butanone labelled \mathbf{J}. The identity of this compound is not to be disclosed to candidates;
(f) $100 \mathrm{~cm}^{3}$ of dilute sulphuric acid of concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$, labelled Dilute sulphuric acid;
(g) $100 \mathrm{~cm}^{3}$ of aqueous potassium iodide of concentration approximately $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Aqueous potassium iodide;
(h) $10 \mathrm{~cm}^{3}$ of dilute sodium hydroxide; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(i) access to a small bottle of Universal Indicator solution;
(j) $20 \mathrm{~cm}^{3}$ of dilute aqueous ammonia; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(k) $5 \mathrm{~cm}^{3}$ of dilute nitric acid; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(l) $5 \mathrm{~cm}^{3}$ of aqueous silver nitrate; concentration approximately $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$;
(m) $5 \mathrm{~cm}^{3}$ of 2,4-dinitrophenylhydrazine solution. This may be made by adding 0.1 g of the solid reagent to $45 \mathrm{~cm}^{3}$ of water and $5 \mathrm{~cm}^{3}$ of concentrated hydrochloric acid, stirring and filtering if necessary. Alternatively centres may prepare this reagent using their own procedure providing the reagent gives a positive test with butanone;
(n) $5 \mathrm{~cm}^{3}$ dilute sulphuric acid; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ (for Question 3);
(o) $5 \mathrm{~cm}^{3}$ of aqueous potassium dichromate(VI); concentration approximately $0.20 \mathrm{~mol} \mathrm{dm}{ }^{-3}$;
(p) $10 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide; concentration approximately $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$. Label this solution $0.50 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ sodium hydroxide for $\mathrm{Q} 3(\mathrm{c})$;
(q) $10 \mathrm{~cm}^{3}$ of iodine/potassium iodide solution made by adding 2 g iodine to 6 g potassium iodide dissolved in $100 \mathrm{~cm}^{3}$ water and labelled aqueous iodine;
(r) $20 \mathrm{~cm}^{3}$ of freshly prepared aqueous starch; concentration approximately 1% labelled starch;
(s) a supply of distilled water.

For home centres (ONLY), the chemicals identified with an asterisk (*) will be sent by a firm of manufacturing chemists.

6246/01C (overseas practical test)

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(i)	$\begin{aligned} & \text { Moles } \mathrm{MnO}_{4}{ }^{-} \text {in mean titre }= \\ & \frac{\text { mean titre } \times 0.020(1)}{1000} \\ & \text { moles } \mathrm{Fe}^{2+} \text { in } 25 \mathrm{~cm}^{3}=\text { moles } \mathrm{MnO}_{4}^{-} \text {in mean } \\ & \text { titre } \times 5(1) \\ & \text { concentration } \mathrm{Fe}^{2+}=\frac{\text { moles } \mathrm{Fe}^{2+} \text { in } 25 \mathrm{~cm}^{3}}{0.0250\left(\mathrm{dm}^{3}\right) \text { to } 3 \mathrm{sf}(1)} \end{aligned}$ Ignore units. Do not penalise loss of trailing zeros.	Correct answer from any method for (3) Ignore sf except on final conc ${ }^{\text {. }}$.	Final conc ${ }^{n}$ if not to 3 sf. $\therefore \max (2)$	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(ii)	$\begin{align*} & \begin{array}{l} \text { Either mass } \mathrm{Fe}^{2+} \text { in } 1 \mathrm{dm}^{3} \\ =\text { conc }^{\mathrm{n}} \mathrm{Fe}^{2+}(\text { from (i)) } \times 56.0 \text { (1) } \end{array}=14.1 \%(1) \\ & \%=\frac{\text { mass } \times 100}{38.0} \\ & \text { OR } \\ & \text { Mass of } \mathrm{Fe}^{2+}=\text { moles of } \mathrm{Fe}^{2+} \text { in } 25 \mathrm{~cm}^{3} \times 56.0 \\ & \quad \%=\frac{\text { mass } \times 100}{38.0 \div 40}=14.1 \%(1) \tag{1} \end{align*}$			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2. (a)	Observations			3
	White precipitate (1)			
	Dissolves / disappears (in excess NaOH) / colourless solution (1)	Soluble in excess/ goes		
			Symbols Zn, AI, Pb.	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2. (b)	Observations White precipitate (1) Dissolves / disappears (in excess NH_{3}) / colourless solution (1) Inferences Zinc (ions) / $\mathrm{Zn}^{2+}(1)$ $\mathrm{Zn}(\mathrm{OH})_{2} /\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right](1)$ $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(1)$	Soluble in excess/ goes clear Allow equivalent Cd species if Cd given in (a) $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$		5

| Question
 Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: | :---: | :---: |
| 2.(c) | Observation
 Inference White precipitate (1) | | | 2 |

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)	ZnSO_{4}			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(e)	Observations (any) blue precipitate (1) Dissolves/ disappears in excess (1) Deep(er) blue solution (1) Inferences $\mathrm{Cu}(\mathrm{OH})_{2} /\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right](1)$ $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(1)$	Soluble in excess/ goes clear	5	
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$	$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(f)	CuSO_{4}			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Observation Yellow / orange precipitate (1) Inference Carbonyl / C=O/ $>\mathrm{C}=0 /$ both of aldehyde or ketone (1)	Yellow-orange		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)	Observation Stays orange / no change (1)	No reaction	Just "nothing"	3
Inferences Ketone / not aldehyde if follows A or K in (a) (1) Not oxidised / no redox / does not reduce $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(1)$ Reject cq on wrong alcohol colour				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)	Observation (pale) Yellow precipitate (1) Inferences Triiodomethane / lodoform / $\mathrm{CHI}_{3}(1)$ Methyl ketone / $\mathrm{CH}_{3} \mathrm{CO}(1)$	Cream ppte	3	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(d)(ii)	$\mathrm{CH}_{3}{ }^{+}$		Formula with no positive charge	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.	1~ Add NaCl to all five; the one that gives white ppte is AgNO_{3}. $2 \checkmark \quad$ Add AgNO_{3} to remaining four. $3 \checkmark$ Solution that gives yellow ppte is KI . 4 ${ }^{\text {r }}$ Solutions that give white ppts are KCl and BaCl_{2}. $5 \checkmark$ No ppte with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. $6 \checkmark$ Add $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to remaining solutions of KCl and BaCl_{2}. $7 \vee$ Solution that gives white ppte is BaCl_{2}.			7

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.	$1 \checkmark$ Add NaCl to all five; the one that gives white ppte is AgNO_{3}. $2 \checkmark \quad \mathrm{Add} \mathrm{AgNO}_{3}$ to remaining four. $3 \checkmark$ Solution that gives yellow ppte is KI . 4 ${ }^{\text {- }}$ Solutions that give white ppts are KCl , BaCl_{2} and $\mathrm{Na}_{2} \mathrm{SO}_{4}$. $5 \checkmark$ Distinguish $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ ppte by appearance so identify $\mathrm{Na}_{2} \mathrm{SO}_{4}$. $6 \checkmark$ Add $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to KCl and BaCl_{2}. $7 \vee$ Solution that gives white ppte is BaCl_{2}.			7

6246/01C - Materials

Apparatus and Materials

Apparatus

Each candidate will require:

1. $50.0 \mathrm{~cm}^{3}$ burette, stand and clamp, with small funnel for filling, white tile and a small beaker for draining burette;
2. two $250 \mathrm{~cm}^{3}$ conical flasks;
3. $\quad 25.0 \mathrm{~cm}^{3}$ pipette and safety filler;
4. six test tubes and one boiling tube in a test tube rack;
5. one $10 \mathrm{~cm}^{3}$ and one $25 \mathrm{~cm}^{3}$ measuring cylinder;
6. a supply of dropping pipettes;
7. a $250 \mathrm{~cm}^{3}$ beaker of hot water at about $70^{\circ} \mathrm{C}$ to be used as a water bath.

Materials

Each candidate will require:
(a) $200 \mathrm{~cm}^{3}$ of aqueous potassium manganate(VII) of concentration between 0.019 and $0.021 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution P. Candidates will be told that this solution has a concentration of $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$;
(b) $200 \mathrm{~cm}^{3}$ of aqueous ammonium iron(II) sulphate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{FeSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, of concentration $38.0 \mathrm{~g} \mathrm{dm}^{-3}$, made up by dissolving the solid in about $500 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sulphuric acid then making up to exactly $1.00 \mathrm{dm}^{3}$ with distilled water labelled Solution \mathbf{Q}. The identity of this solution is not to be disclosed to candidates;
(c) $100 \mathrm{~cm}^{3}$ of dilute sulphuric acid of concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$, labelled Dilute sulphuric acid;
(d) $10 \mathrm{~cm}^{3}$ of approximately $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous zinc sulphate in a stoppered container labelled Solution of R. The identity of this solution is not to be disclosed to candidates;
(e) $10 \mathrm{~cm}^{3}$ of approximately $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous copper(II) sulphate in a stoppered container labelled Solution of S. The identity of this solution is not to be disclosed to candidates;
(f) $5 \mathrm{~cm}^{3}$ of propanone in a stoppered container labelled \mathbf{T}. The identity of this compound is not to be disclosed to candidates;
(g) $15 \mathrm{~cm}^{3}$ of dilute sodium hydroxide; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(h) $15 \mathrm{~cm}^{3}$ of dilute aqueous ammonia; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(i) $5 \mathrm{~cm}^{3}$ of dilute hydrochloric acid; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(j) $5 \mathrm{~cm}^{3}$ of aqueous barium chloride; concentration approximately $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$;
(k) $5 \mathrm{~cm}^{3}$ of 2,4-dinitrophenylhydrazine solution. This may be made by adding 0.1 g of the solid reagent to $45 \mathrm{~cm}^{3}$ of water and $5 \mathrm{~cm}^{3}$ of concentrated hydrochloric acid, stirring and filtering if necessary. Alternatively centres may prepare this reagent using their own procedure providing the reagent gives a positive test with propanone;
(1) $5 \mathrm{~cm}^{3}$ dilute sulphuric acid; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(m) $5 \mathrm{~cm}^{3}$ of aqueous potassium dichromate(VI); concentration approximately $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$;
(n) $10 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide; concentration approximately $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$. Label this solution $0.50 \mathbf{~ m o l ~ d m}^{-3}$ sodium hydroxide for $\mathrm{Q} 3(c)$;
(o) $10 \mathrm{~cm}^{3}$ of iodine/potassium iodide solution made by adding 2 g iodine to 6 g potassium iodide dissolved in $100 \mathrm{~cm}^{3}$ water and labelled aqueous iodine;
(p) a supply of distilled water.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (a)	Heat/enthalpy/energy change (for a reaction) is independent of the path/route taken (depending only on the initial and final states) OR Heat/enthalpy/energy change (for a reaction) depends only on the initial and final states.	Enthalpy change for a direct path is the same as that of an indirect path.	enthalpy change for the reaction is the same as the sum of the values for each step.	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)	$\begin{aligned} & \text { heat change }(=\mathrm{mC} \Delta \theta) \\ & =30 \mathrm{~g} \times 4.18 \mathrm{~J}^{\circ} \mathrm{C}^{-1} \mathrm{~g}^{-1} \times(30.1-23.7){ }^{\circ} \mathrm{C} \end{aligned}$ for this expression or the answer $=(+) 803$ (J). (1) Units do not have to be in the calculation. If candidate believes that 803 or - 803 is the value of $\Delta \mathrm{H}$ next two marks are lost. $\Delta H_{1}=-803 \mathrm{~J} \div 0.0187 \mathrm{~mol}$ $=-43$ for sign and value (rounded or unrounded) (1) to 2 sf only and $\mathrm{kJ} \mathrm{mol}^{-1}(1)$ if value and units do not agree loses both second and third marks Correct answer plus some working (3)	$\text { (+) } 802.56 \text { or }-803$ $\text { or }-802.56$ $\begin{aligned} & -802.56 \div 0.0187 \\ & -43000 \mathrm{~J} \mathrm{~mol}^{-1} \end{aligned}$ (2)		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
$\mathbf{1 (c) (\text { (ii) }}$QWC	reaction in solution produces $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ whereas thermal decomposition produces $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	heat required to vapourise OR water produced in the decomposition is gaseous which is not the standard state must be OR energy is required to vapourise (liquid) water		1		
account					\quad	
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (d)	First mark: K_{c} is smaller as forward reaction is endothermic (1) Second mark: The second mark can only be awarded if the amount of reactant/product changes because of a change in K_{c}. Increases the amount of KHCO_{3} /reactants OR decreases amount $\mathrm{K}_{2} \mathrm{CO}_{3}$ /products (1). If K_{c} is said to be larger, then the second mark can be awarded consequentially for saying that the amount of KHCO_{3} decreases, etc.	equilibrium shifts to the left	Equilibrium moves to left and so K falls scores (0) more KHCO_{3} than $\mathrm{K}_{2} \mathrm{CO}_{3}$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(i)	Ignore any conditions (other than the need for aqueous acid) and ignore mechanisms whether correct or not. $\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{HBr} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$ (1) mark being for whole equation;	HCl or HI in place of HBr to give the appropriate product $\mathrm{C}_{2} \mathrm{H}_{5}$ instead of $\mathrm{CH}_{3} \mathrm{CH}_{2}$		5
	OR			
	$\begin{aligned} & \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{3} \text { and } \\ & \mathrm{CH}_{3} \mathrm{CH}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}(+\mathrm{HCl})(\mathbf{1}) \end{aligned}$	$+\mathrm{Br}_{2}$ to give bromoethane	$+\mathrm{I}_{2}$	
	Then Mg (1)			
	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$ (1) mark for the Grignard structure. Halogen must agree with the halogenoalkane used. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}\right)+\mathrm{CO}_{2}(\mathbf{1})$	$\mathrm{C}_{2} \mathrm{H}_{5}$ instead of $\mathrm{CH}_{3} \mathrm{CH}_{2}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{BrMg}$	
	followed by $\mathrm{H}^{+}(\mathrm{aq})$ (1) Any acid acceptable but it must be clear that it is dilute or aqueous. Note: $\mathrm{CO}_{2}+\mathrm{H}^{+}(\mathrm{aq})$ scores (1) only.	dry ice for CO_{2} hydrochloric acid	e.g. HCl , conc HCl	
	An equivalent answer in words can score full marks but the halogenoalkane must be identified and the formula of the Grignard reagent must be included			
	OR for the last two marks: Grignard + HCHO and hydrolysis (to give propan-1-ol) (1) followed by oxidation of product with dichromate (VI) + acid or manganate(VII) + acid (1)			
	This last mark can be awarded however the propan- 1 -ol is obtained.	permanganate	MnO_{4}^{-}	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(ii)	Nucleophile/nucleophilic reagent (1)		2	
attack by $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{\delta-}$ of the Grignard on $\mathrm{C}^{\delta+}$ (of $\mathrm{C}=\mathrm{O})(\mathbf{1})$	$\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{-}$ $\mathrm{C}_{2} \mathrm{H}_{5}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2}$			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH} \mathrm{CO}_{2} \mathrm{CH}_{3}+\mathrm{HCl} \text { (1) } \\ & \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}= \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}(\mathbf{1}) \\ & \mathrm{Allow}^{2} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCOCH}_{2} \mathrm{CH}_{3} \text { or } \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OC}(0) \mathrm{CH}_{2} \mathrm{CH}_{3} \text { for the ester since it is } \\ & \text { symmetrical. } \end{aligned}$	$\mathrm{C}_{2} \mathrm{H}_{5}$ instead of $\mathrm{CH}_{3} \mathrm{CH}_{2}$ $-\mathrm{CO}_{2^{-}}$ instead of -COO- \rightarrow instead of \rightleftharpoons or vice versa		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) (i i) ~}$	Reaction with the acid chloride since it is not an equilibrium/not reversible/goes to completion (so the yield is higher)	loss of HCl as a gas pulls equilibrium to the r.h.s.	Reaction faster HCl is a gas alone	1
	There must be a reason as to why the acid chloride reaction is better for the mark.	Just 'HCl pulls eqm to the right'		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	Solution maintaining an almost constant pH (1) for a small addition of acid or alkali/base (1) Ignore any reference to the composition of the buffer, whether correct or not. Ignore references to 'contaminated with' acid or alkali.	resists change in pH withstands changes in pH	resists small changes in pH maintains pH	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(ii)	Correct answer with unit and some working scores (4). Correct answer with unit but no working scores (3). $\left[\mathrm{H}^{+}\right]=10^{-5.06}=8.71 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}(1)$ $[\mathrm{HA}]=0.10 \mathrm{~mol} \mathrm{dm}^{-3}$, so $\begin{equation*} \left[\mathrm{A}^{-}\right]=\frac{1.3 \times 10^{-5} \times 0.10}{8.71 \times 10^{-6}} \tag{1} \end{equation*}$ $\left(=0.149 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ amount of $\mathrm{A}^{-}=0.149 \times 0.125(=0.0187 \mathrm{~mol})(1)$ mass $\mathrm{NaA}=0.0187 \mathrm{~mol} \times 96 \mathrm{~g} \mathrm{~mol}^{-1}=1.79 \mathbf{g}(1)$ MUST INCLUDE UNIT BUT IGNORE SF UNLESS ROUNDED TO 1 SF IN WORKING OR ANSWER. OR $\mathrm{pH}-\mathrm{pK}_{\mathrm{a}}=\log \left(\left[\mathrm{A}^{-}\right] \div[\mathrm{HA}]\right)=5.06-4.886=0.174$ (1) $\left(\left[\mathrm{A}^{-}\right] \div[\mathrm{HA}]\right)=1.49$ so $\left[\mathrm{A}^{-}\right]=0.149 \times 0.0125=$ 0.0187 mol (1) mass $\mathrm{NaA}=0.0187 \mathrm{~mol}^{2} 96 \mathrm{~g} \mathrm{~mol}^{-1}=1.79 \mathrm{~g}$ (1) MUST INCLUDE UNIT BUT IGNORE SF OR Candidates who round the value of pK_{a} will get: $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\left[\mathrm{A}^{-}\right] \div[\mathrm{HA}]\right)(1)$ $\mathrm{pH}-\mathrm{pK}_{\mathrm{a}}=\log \left(\left[\mathrm{A}^{-}\right] \div[\mathrm{HA}]\right)=5.06-4.89=0.17$ (1) $\left(\left[\mathrm{A}^{-}\right] \div[\mathrm{HA}]\right)=1.48$ so $\left[\mathrm{A}^{-}\right]=0.148 \times 0.0125=$ 0.0185 mol (1) mass $\mathrm{NaA}=0.0185 \mathrm{~mol}^{2} 96 \mathrm{~g} \mathrm{~mol}^{-1}=1.77 / 1.78 \mathrm{~g}$ (1) MUST INCLUDE UNIT BUT IGNORE SF	$1.8 \mathbf{g}$ 1.8 g 1.8 g		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(iii)	$\left(\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]\right)$ (=) $1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6} \div 8.71 \times 10^{-6}$ mol dm ${ }^{-3}$ (1) no need for units in calculation $=1.15 \times 10^{-9}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1)$ Ignore units even if wrong The answer is consequential on their value of [H^{+}] in (ii) provided that the final answer is smaller than $10^{-7} \mathrm{~mol} \mathrm{dm}{ }^{-3}$, i.e. the solution must be acidic. OR $\mathrm{pOH}=14-\mathrm{pH}=8.94$ (1) $\left[\mathrm{OH}^{-}\right]=1.15 \times 10^{-9}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1)$ lgnore units even if wrong	1.148×10^{-9}	1.14×10^{-9}	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$2 \text { (c)(iv) }$ QWC	H^{+}and OH^{-}can be removed by reaction with HA or with A^{-}(1) but since $\left[\mathrm{A}^{-}\right.$] is small the ratio $[\mathrm{A}] \div[\mathrm{HA}]$ changes significantly and so does the pH (1) OR $\left[\mathrm{A}^{-}\right] \div[\mathrm{HA}]$ must remain nearly constant on addition of H^{+}or OH^{-}(1) but this is possibly only if large reserves of both are present (1) For (1) only: If H^{+}is added no/very little A^{-}available to react so the pH will alter (1)			2

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array} & \text { Correct Answer } & \begin{array}{l}\text { Acceptable } \\
\text { Answers }\end{array} & \text { Reject } & \text { Mark } \\
\hline \mathbf{3} \text { (a)(i) } & \begin{array}{l}\text { V-shape drawn (1) Ignore the bond angle } \\
\text { (except for linear) and ignore the number of } \\
\text { lone pairs. }\end{array} & \begin{array}{l}\text { linear } \\
\text { structure }\end{array}
$$ \& 2

any

double

bonds\end{array}\right]\) O-H-0 | (justified on the basis of) 2 bond pairs and 2 |
| :--- |
| lone pairs repelling as far apart as possible/to |
| minimum repulsion/to maximum separation |
| (1) |
| Note: The numbers of electron pairs can come
 from the diagram, the drawing of the bond
 being equivalent to the bond pair.
 If the diagram shows one lone pair but two
 are mentioned here ignore the diagram. |

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (a) (i i) ~}$	For the first two marks: $\mathbf{H}^{\delta+}$ attracted to lone pair on (small) \mathbf{O} on different molecule (1) but S atom is too large/not sufficiently electronegative for H-bonding (1) stand alone For third mark: boiling temperature of $\mathrm{H}_{2} \mathrm{O}$ higher than that of $\mathrm{H}_{2} \mathrm{~S}$ or melting temperature of $\mathrm{H}_{2} \mathrm{O}$ higher than that of $\mathrm{H}_{2} \mathrm{~S}$ or heat capacity of $\mathrm{H}_{2} \mathrm{O}$ higher than that of $\mathrm{H}_{2} \mathrm{~S}$ or density of ice less than that of liquid water but solid $\mathrm{H}_{2} \mathrm{~S}$ denser than liquid $\mathrm{H}_{2} \mathrm{~S}$ (must give the states) or water is a liquid but $\mathrm{H}_{2} \mathrm{~S}$ a gas (at room temperature) (1)	3		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (b) (i) ~}$	Ligand (water) lost from the copper(II) ions or no ligands in the product (1)		3	
so no splitting of d-subshell/d-orbitals or all d-orbitals are degenerate (1) so no electron transitions/d-d transitions (and so no colour) (1) Any mention of emission loses this mark.	no electrons promoted Any suggestion that copper has full d-subshell or changes its oxidation state after heating loses the last two marks.	no light absorbed alone		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b)(ii)	Bonds formed between ligand/water and the copper(II) ion/copper/copper sulphate (1) There is no need to mention the nature of this bond. and bond formation is exothermic/gives out heat/gives out energy (1)	reaction is exothermic	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c) QWC	Solubility increases from Be to Ba because: hydration enthalpy (of the cation) becomes less exothermic (from Be^{2+} to Ba^{2+}) (1) lattice energy becomes less exothermic (from $\mathrm{Be}(\mathrm{OH})_{2}$ to $\left.\mathrm{Ba}(\mathrm{OH})_{2}\right)(1)$ but the change in lattice energy is dominant so the enthalpy of solution is more exothermic (and the compound is more soluble) (1) OR Hydration enthalpy (of cation) and lattice energy both exothermic (1) both decrease but lattice energy decreases more (1) enthalpy of solution is more exothermic (so compound is more soluble) (1) OR lattice energy and the hydration enthalpy (of the cation) both decrease/fall (1) but lattice energy decreases/falls more (than hydration enthalpy) (1) enthalpy of solution is more exothermic (so compound is more soluble) (1)	lattice enthalpy for lattice energy	'more endothermic' for 'less exothermic' atom or molecule for cation loses first mark only	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$3 \text { (d)(i) }$ QWC	silicon has (energetically available) 3dorbitals (1) for the lone pair on water to attack (1) whereas carbon has no energetically accessible/available d-orbitals or has no 2d orbitals (1) so a strong $\mathrm{C}-\mathrm{Cl}$ bond would need to break first/ the small C atom is obstructed by the large Cl atoms so the water cannot get close enough to form a bond (1) OR (small) C atom surrounded by large Cl atoms (1) leads to obstruction/steric hindrance (1) so the water cannot get close enough to form a bond via its lone pairs (1) whereas the larger silicon atom will allow attack since the chlorine atoms are further apart (1) The marks are for four ideas that are relevant to the steric hindrance argument, the d-orbital argument, or a mixture of these.	converse for CCl_{4} converse for SiCl_{4}	no dorbitals $/ \mathrm{CCl}_{4}$ has no dorbitals anything based on $\mathrm{C}-\mathrm{Cl}$ bond being stronger than $\mathrm{Si}-\mathrm{Cl}$ Cl^{-}ions for Cl atoms Cl^{-}ions for Cl atoms	4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(ii)	First mark: NaCl dissolves to give ions which do not react further with water/are only solvated OR $\mathrm{NaCl}(\mathrm{~s})+\mathrm{aq} \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$ Second mark: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{OH}^{-}$ OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NaOH}$ (1) OR propanoate ions react with water to give propanoic acid and hydroxide ions OR sodium propanoate reacts with water to give propanoic acid and sodium hydroxide (1) Third mark: (stand-alone) so $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$as a result of reaction (and the solution is alkaline) OR hydroxide ions are formed/produced in the reaction which makes the solution alkaline (1)		Any reaction to give equal amounts of HCl and NaOH	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	The activation energy for the reaction is high or to ensure that more molecules have $\mathrm{E} \geq \mathrm{E}_{\mathrm{a}}$.	$\mathrm{E}>\mathrm{E}_{\mathrm{a}}$	to overcome E_{a} alone	1
reactants kinetically stable; reactants thermodynamically stable				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	protonates the alcohol (1)	'as a catalyst' alone	2	
providing $\mathrm{H}_{2} \mathrm{O}$ as the leaving group which is more easily displaced by the bromide ion/is a better leaving group than hydroxide (1) OR reacts with NaBr (1) to give HBr (which is the attacking reagent) (1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
4 (a)(iii)	H-bonding between water and the alcohol not strong enough to overcome hydrophobic interactions /effect of alkyl group (1) acid and alcohol form ionic species $/ \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}_{2}{ }^{+}$which is more soluble (1)	butyl group			$\quad 2$	
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iv)	Removes acid	neutralises HCl $/ \mathrm{HBr}$ neutralises acid	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 (a) (v)}$	Removes water	Absorbs water Dries the product		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
$\mathbf{4 ~ (a) (v i) ~}$	Electric heating mantle or sand bath or oil bath(1)	Water bath	heat under reflux	2		
no naked						
flame						
fume						
cupboard						
because the alcohol/reaction						
mixture/bromobutane is flammable						
or because the heating is uniform						
and less likely to crack the flask (1)						
This mark is conditional on the first						
being scored.					\quad	'volatile'
:---						
for						
'flammable'	\quad					
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4}$ (c)(i)	Orange \rightarrow green			1

Question Number	Correct Answer	Acceptable Answers	Reject	$\begin{aligned} & \hline \mathrm{Ma} \\ & \mathrm{rk} \end{aligned}$
4 (c)(ii)	$\begin{aligned} & \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{e}^{-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \\ & \left(1 \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{OH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow 3 \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-}\right) \\ & \frac{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{OH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}+8 \mathrm{H}^{+} \rightarrow}{2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+} \\ & 3 \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}(1) \end{aligned}$ No consequential marking on incorrect equations.	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ and $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ equation having noncancelled H^{+} ions	equation having non- cancelled electrons	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4}$ (c)(iii)	The broad peak/absorption/trough around $3400 \mathrm{~cm}^{-1}$ due to -OH (1) has disappeared in the product to be replaced by C=O at $1700 \mathrm{~cm}^{-1}$ (1) If no reference to both groups responsible for the peaks then max (1)	$3230-3550$	broad transmission	2
OR				
If no reference to both wavenumbers responsible for the peaks then max (1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(i)	Addition of barium ions pulls equilibrium to r.h.s. (1) increases [H $\left.{ }^{+}\right]$and so lower pH/the pH falls (1) stand-alone mark		2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(ii)	lower pH/pH falls	'mixture is more acidic' for 'lower pH'	1	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA 020042 Summer 2008

For more information on Edexcel qualifications, please visit www.edexcel.org.uk/qualifications

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

