Mark Scheme (Final)
Summer 2008

GCE

GCE Chemistry (6246/02)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (a)}$	Heat/enthalpy/energy change (for a reaction) is independent of the path/route taken (depending only on the initial and final states) OR Heat/enthalpy/energy change (for a reaction) depends only on the initial and final states.	Enthalpy change for a direct path is the same as that of an indirect path.	enthalpy change for the reaction is the same as the sum of the values for each step.	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)	$\begin{aligned} & \text { heat change }(=\mathrm{mC} \Delta \theta) \\ & =30 \mathrm{~g} \times 4.18 \mathrm{~J}^{\circ} \mathrm{C}^{-1} \mathrm{~g}^{-1} \times(30.1-23.7){ }^{\circ} \mathrm{C} \end{aligned}$ for this expression or the answer $=(+) 803$ (J). (1) Units do not have to be in the calculation. If candidate believes that 803 or -803 is the value of $\Delta \mathrm{H}$ next two marks are lost. $\Delta \mathrm{H}_{1}=-803 \mathrm{~J} \div 0.0187 \mathrm{~mol}$ $=-43$ for sign and value (rounded or unrounded) (1) to 2 sf only and $\mathrm{kJ} \mathrm{mol}^{-1}(1)$ if value and units do not agree loses both second and third marks Correct answer plus some working (3)	$(+) 802.56 \text { or }-803$ $\text { or }-802.56$ $\begin{aligned} & -802.56 \div 0.0187 \\ & -43000 \mathrm{~J} \mathrm{~mol}^{-1} \\ & \mathbf{(2)} \end{aligned}$		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
$\mathbf{1 (c) (\text { (ii) }}$QWC	reaction in solution produces $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ whereas thermal decomposition produces $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	heat required to vapourise OR water produced in the decomposition is gaseous which is not the standard state must be OR energy is required to vapourise (liquid) water		1		
account					\quad	
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (d)	First mark: K_{c} is smaller as forward reaction is endothermic (1) Second mark: The second mark can only be awarded if the amount of reactant/product changes because of a change in K_{c}. Increases the amount of KHCO_{3} /reactants OR decreases amount $\mathrm{K}_{2} \mathrm{CO}_{3}$ /products (1). If K_{c} is said to be larger, then the second mark can be awarded consequentially for saying that the amount of KHCO_{3} decreases, etc.	equilibrium shifts to the left	Equilibrium moves to left and so K falls scores (0) more KHCO_{3} than $\mathrm{K}_{2} \mathrm{CO}_{3}$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(ii)	Nucleophile/nucleophilic reagent (1)		2	
attack by $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{\delta-}$ of the Grignard on $\mathrm{C}^{\delta+}$ (of $\mathrm{C}=\mathrm{O})(\mathbf{1})$	$\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{-}$ $\mathrm{C}_{2} \mathrm{H}_{5}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2}$			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{HCl}(\mathbf{1}) \\ & \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightleftharpoons \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}(\mathbf{1}) \end{aligned}$ Allow $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCOCH}_{2} \mathrm{CH}_{3}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{3}$ for the ester since it is symmetrical.	$\mathrm{C}_{2} \mathrm{H}_{5}$ instead of $\mathrm{CH}_{3} \mathrm{CH}_{2}$ $-\mathrm{CO}_{2}-$ instead of -COO- \rightarrow instead of \rightleftharpoons or vice versa		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) (i i) ~}$	Reaction with the acid chloride since it is not an equilibrium/not reversible/goes to completion (so the yield is higher)	loss of HCl as a gas pulls equilibrium to the r.h.s.	Reaction faster HCl is a gas alone	1
	There must be a reason as to why the acid chloride reaction is better for the mark.	Just 'HCl pulls eqm to the right'		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	Solution maintaining an almost constant pH (1)	resists change in pH	resists small changes in pH withstands changes in pH	2 maintains pH
	for a small addition of acid or alkali/base (1) Ignore any reference to the composition of the buffer, whether correct or not. lgnore references to 'contaminated with' acid or alkali.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(ii)	Correct answer with unit and some working scores (4). Correct answer with unit but no working scores (3). $\left[\mathrm{H}^{+}\right]=10^{-5.06}=8.71 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}(1)$ $[\mathrm{HA}]=0.10 \mathrm{~mol} \mathrm{dm}^{-3}$, so $\begin{gather*} {\left[\mathrm{A}^{-}\right]=\frac{1.3 \times 10^{-5} \times 0.10}{8.71 \times 10^{-6}}} \tag{1}\\ \left(=0.149 \mathrm{~mol} \mathrm{dm}^{-3}\right) \end{gather*}$ amount of $\mathrm{A}^{-}=0.149 \times 0.125(=0.0187 \mathrm{~mol})(1)$ mass $\mathrm{NaA}=0.0187 \mathrm{~mol} \times 96 \mathrm{~g} \mathrm{~mol}^{-1}=1.79 \mathrm{~g}(1)$ MUST INCLUDE UNIT BUT IGNORE SF UNLESS ROUNDED TO 1 SF IN WORKING OR ANSWER. OR $\mathrm{pH}-\mathrm{pK}_{\mathrm{a}}=\log \left(\left[\mathrm{A}^{-}\right] \div[\mathrm{HA}]\right)=5.06-4.886=0.174$ (1) $\left(\left[\mathrm{A}^{-}\right] \div[\mathrm{HA}]\right)=1.49$ so $\left[\mathrm{A}^{-}\right]=0.149 \times 0.0125=$ $0.0187 \mathrm{~mol}(1)$ mass $\mathrm{NaA}=0.0187 \mathrm{~mol}^{2} 96 \mathrm{~g} \mathrm{~mol}^{-1}=1.79 \mathbf{g}$ (1) MUST INCLUDE UNIT BUT IGNORE SF OR Candidates who round the value of pK_{a} will get: $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\left[\mathrm{A}^{-}\right] \div[\mathrm{HA}]\right)(\mathbf{1})$ $\mathrm{pH}-\mathrm{pK}_{\mathrm{a}}=\log \left(\left[\mathrm{A}^{-}\right] \div[\mathrm{HA}]\right)=5.06-4.89=0.17$ (1) $\left(\left[\mathrm{A}^{-}\right] \div[\mathrm{HA}]\right)=1.48$ so $\left[\mathrm{A}^{-}\right]=0.148 \times 0.0125=$ $0.0185 \mathrm{~mol}(1)$ mass $\mathrm{NaA}=0.0185 \mathrm{~mol} \mathrm{x}^{26} \mathrm{~g} \mathrm{~mol}^{-1}=1.77 / 1.78 \mathrm{~g}$ (1) MUST INCLUDE UNIT BUT IGNORE SF	$1.8 \mathbf{g}$ $1.8 \mathbf{g}$ $1.8 \mathbf{g}$	$2 g$ $2 g$ 	4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(iii)	$\left(\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]\right)$ (=) $1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6} \div 8.71 \times 10^{-6}$ mol dm ${ }^{-3}$ (1) no need for units in calculation $=1.15 \times 10^{-9}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1)$ Ignore units even if wrong The answer is consequential on their value of [H^{+}] in (ii) provided that the final answer is smaller than $10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$, i.e. the solution must be acidic. OR $\mathrm{pOH}=14-\mathrm{pH}=8.94(1)$ $\left[\mathrm{OH}^{-}\right]=1.15 \times 10^{-9}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1)$ Ignore units even if wrong	1.148×10^{-9}	1.14×10^{-9}	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$2 \text { (c)(iv) }$ QWC	H^{+}and OH^{-}can be removed by reaction with HA or with A^{-}(1) but since $\left[\mathrm{A}^{-}\right]$is small the ratio $[\mathrm{A}] \div[\mathrm{HA}]$ changes significantly and so does the pH (1) OR $\left[\mathrm{A}^{-}\right] \div[\mathrm{HA}]$ must remain nearly constant on addition of H^{+}or OH^{-}(1) but this is possibly only if large reserves of both are present (1) For (1) only: If H^{+}is added no/very little A^{-}available to react so the pH will alter (1)			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(i)	V-shape drawn (1) Ignore the bond angle (except for linear) and ignore the number of lone pairs. (justified on the basis of) 2 bond pairs and 2 lone pairs repelling as far apart as possible/to minimum repulsion/to maximum separation (1) Note: The numbers of electron pairs can come from the diagram, the drawing of the bond being equivalent to the bond pair. If the diagram shows one lone pair but two are mentioned here ignore the diagram.		linear structure any double bonds $\mathrm{O}-\mathrm{H}-\mathrm{O}$ any argument based on three pairs of electrons maximum repulsion lp-lp>bpbp alone	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (a) (i i) ~}$	For the first two marks: $\mathbf{H}^{\delta+}$ attracted to lone pair on (small) \mathbf{O} on different molecule (1) but S atom is too large/not sufficiently electronegative for H-bonding (1) stand alone For third mark: boiling temperature of $\mathrm{H}_{2} \mathrm{O}$ higher than that of $\mathrm{H}_{2} \mathrm{~S}$ or melting temperature of $\mathrm{H}_{2} \mathrm{O}$ higher than that of $\mathrm{H}_{2} \mathrm{~S}$ or heat capacity of $\mathrm{H}_{2} \mathrm{O}$ higher than that of $\mathrm{H}_{2} \mathrm{~S}$ or density of ice less than that of liquid water but solid $\mathrm{H}_{2} \mathrm{~S}$ denser than liquid $\mathrm{H}_{2} \mathrm{~S}$ (must give the states) or water is a liquid but $\mathrm{H}_{2} \mathrm{~S}$ a gas (at room temperature) (1)	3		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (b) (i) ~}$	Ligand (water) lost from the copper(II) ions or no ligands in the product (1)		3	
so no splitting of d-subshell/d-orbitals or all d-orbitals are degenerate (1) so no electron transitions/d-d transitions (and so no colour) (1) Any mention of emission loses this mark.	no electrons promoted Any suggestion that copper has full d-subshell or changes its oxidation state after heating loses the last two marks.	no light absorbed alone		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
$\mathbf{3}$ (b)(ii)	Bonds formed between ligand/water and the copper(II) ion/copper/copper sulphate (1) There is no need to mention the nature of this bond. and bond formation is exothermic/gives out heat/gives out energy (1)		2			
reaction is						
exothermic					\quad	
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$3 \text { (c) }$ QWC	Solubility increases from Be to Ba because: hydration enthalpy (of the cation) becomes less exothermic (from Be^{2+} to Ba^{2+}) (1) lattice energy becomes less exothermic (from $\mathrm{Be}(\mathrm{OH})_{2}$ to $\left.\mathrm{Ba}(\mathrm{OH})_{2}\right)$ (1) but the change in lattice energy is dominant so the enthalpy of solution is more exothermic (and the compound is more soluble) (1) OR Hydration enthalpy (of cation) and lattice energy both exothermic (1) both decrease but lattice energy decreases more (1) enthalpy of solution is more exothermic (so compound is more soluble) (1) OR lattice energy and the hydration enthalpy (of the cation) both decrease/fall (1) but lattice energy decreases/falls more (than hydration enthalpy) (1) enthalpy of solution is more exothermic (so compound is more soluble) (1)	lattice enthalpy for lattice energy	'more endothermic' for 'less exothermic' atom or molecule for cation loses first mark only	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$3 \text { (d)(i) }$ QWC	silicon has (energetically available) 3dorbitals (1) for the lone pair on water to attack (1) whereas carbon has no energetically accessible/available d-orbitals or has no 2d orbitals (1) so a strong $\mathrm{C}-\mathrm{Cl}$ bond would need to break first/ the small C atom is obstructed by the large Cl atoms so the water cannot get close enough to form a bond (1) OR (small) C atom surrounded by large Cl atoms (1) leads to obstruction/steric hindrance (1) so the water cannot get close enough to form a bond via its lone pairs (1) whereas the larger silicon atom will allow attack since the chlorine atoms are further apart (1) The marks are for four ideas that are relevant to the steric hindrance argument, the d-orbital argument, or a mixture of these.	converse for CCl_{4} converse for SiCl_{4}	no dorbitals/CCl 4 has no dorbitals anything based on $\mathrm{C}-\mathrm{Cl}$ bond being stronger than $\mathrm{Si}-\mathrm{Cl}$ Cl^{-}ions for Cl atoms Cl^{-}ions for Cl atoms	4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(ii)	First mark:		Any	3
	NaCl dissolves to give ions which do not react further with water/are only solvated		reaction to give	
			amounts	
	$\mathrm{NaCl}(\mathrm{s})+\mathrm{aq} \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})(\mathbf{1})$		and	
			NaOH	
	Second mark:			
	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{OH}^{-}$			
	OR			
	$\begin{equation*} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NaOH} \tag{1} \end{equation*}$			
	OR			
	propanoate ions react with water to give propanoic acid and hydroxide ions			
	sodium propanoate reacts with water to give propanoic acid and sodium hydroxide (1)			
	Third mark: (stand-alone) so $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$as a result of reaction (and the solution is alkaline)			
	OR			
	hydroxide ions are formed/produced in the reaction which makes the solution alkaline (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	The activation energy for the reaction is high or to ensure that more molecules have $\mathrm{E} \geq \mathrm{E}_{\mathrm{a}}$.	$\mathrm{E}>\mathrm{E}_{\mathrm{a}}$	to overcome E_{a} alone	1
reactants kinetically stable; reactants thermodynamically stable				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	protonates the alcohol (1)	'as a catalyst' alone	2	
providing $\mathrm{H}_{2} \mathrm{O}$ as the leaving group which is more easily displaced by the bromide ion/is a better leaving group than hydroxide (1)	OR reacts with NaBr (1) to give HBr (which is the attacking reagent) (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
4 (a)(iii)	H-bonding between water and the alcohol not strong enough to overcome hydrophobic interactions /effect of alkyl group (1) acid and alcohol form ionic species $/ \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}_{2}{ }^{+}$which is more soluble (1)	butyl group			$\quad 2$	
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4}$ (a)(iv)	Removes acid	neutralises HCl $/ \mathrm{HBr}$ neutralises acid		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 ~ (a) (v) ~}$	Removes water	Absorbs water Dries the product		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(vi)	Electric heating mantle or sand bath or oil bath(1)	Water bath	heat under reflux	2
	no naked flame because the alcohol/reaction mixture/bromobutane is flammable or because the heating is uniform and less likely to crack the flask (1) This mark is conditional on the first being scored.	fume cupboard	'volatile'	
for				
'flammable'				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\begin{aligned} & 4 \text { (b) } \\ & \text { QWC } \end{aligned}$	EITHER Intermediate (ion) in $\mathrm{S}_{\mathrm{N}} 1$ is planar (1) equal attack (by hydroxide ions) from either side (1) produces a racemic mixture (1) Note: Statement that the $\mathrm{S}_{\mathrm{N}} 2$ mechanism is consistent with the information cannot score any marks. OR $\mathrm{S}_{\mathrm{N}} 2$ involves attack from one side (1) so configuration of the product would be inverted (1) leading to retention of optical activity so must be $\mathbf{S}_{\mathbf{N}} \mathbf{1}$ (1) Statement that the reaction is $\mathrm{S}_{\mathrm{N}} 1$ alone scores zero.	Intermediate carbocation is a planar molecule forms one optical isomer only	intermediate molecule alone loses this mark attack by bromide ions	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(i)	Orange \rightarrow green			1

Question Number	Correct Answer	Acceptable Answers	Reject	Ma rk
4 (c)(ii)	$\begin{align*} & \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{e}^{-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \text { (1) } \tag{1}\\ & \left(3 \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{OH}^{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow 3 \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-}\right) \\ & \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{OH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}+8 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+ \\ & 3 \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}(\mathbf{1}) \end{align*}$ No consequential marking on incorrect equations.	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ and $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ equation having noncancelled H^{+} ions	equation having noncancelled electrons	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 \text { (c)(iii) }}$	The broad peak/absorption/trough around $3400 \mathrm{~cm}^{-1}$ due to -OH (1) has disappeared in the product to be replaced by C=0 at $1700 \mathrm{~cm}^{-1}$ (1) If no reference to both groups responsible for the peaks then max (1)	$3230-3550$	broad transmission	2
OR	I750 If no reference to both wavenumbers responsible for the peaks then max (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4}$ (d)(i)	Addition of barium ions pulls equilibrium to r.h.s. (1)	increases [H ${ }^{+}$] and so lower pH/the pH falls (1) stand-alone mark	'..so gets more acidic'	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4}$ (d)(ii)	lower pH/pH falls	'mixture is more acidic' for 'lower pH'	1	

