Mark Scheme (Final) Summer 2008

GCE

GCE Chemistry (6246/ 01B)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/ word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/ words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

In general, an inference should follow an observation.

Apparatus and Materials

Apparatus

Each candidate will require:

1. $50.0 \mathrm{~cm}^{3}$ burette, stand and clamp, with small funnel for filling, white tile and a small beaker for draining burette;
two $250 \mathrm{~cm}^{3}$ conical flasks;
$25.0 \mathrm{~cm}^{3}$ pipette and safety filler;
seven test tubes and one boiling tube in a test tube rack;
one $10 \mathrm{~cm}^{3}$ and two $25 \mathrm{~cm}^{3}$ measuring cylinders;
a supply of dropping pipettes;
a $250 \mathrm{~cm}^{3}$ beaker of hot water at about $70^{\circ} \mathrm{C}$ to be used as a water bath.

Materials

Each candidate will require:
(a) * $200 \mathrm{~cm}^{3}$ of aqueous sodium thiosulphate of concentration $0.110 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution \mathbf{F};
(b)* $200 \mathrm{~cm}^{3}$ of aqueous potassium manganate(VII) of concentration $0.020 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution G. The concentration of this solution is not to be disclosed to candidates;
(c)* $10 \mathrm{~cm}^{3}$ of approximately $0.25 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aqueous aluminium chloride labelled Solution of \mathbf{H}. The identity of this solution is not to be disclosed to candidates;
(d) * $5 \mathrm{~cm}^{3}$ of approximately $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous copper(II) chloride, labelled Solution of \mathbf{I}. The identity of this solution is not to be disclosed to candidates;
(e)* $5 \mathrm{~cm}^{3}$ of butanone labelled \mathbf{J}. The identity of this compound is not to be disclosed to candidates;
(f) $100 \mathrm{~cm}^{3}$ of dilute sulphuric acid of concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$, labelled Dilute sulphuric acid;
(g) $100 \mathrm{~cm}^{3}$ of aqueous potassium iodide of concentration approximately $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Aqueous potassium iodide;
(h) $10 \mathrm{~cm}^{3}$ of dilute sodium hydroxide; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(i) access to a small bottle of Universal Indicator solution;
(j) $20 \mathrm{~cm}^{3}$ of dilute aqueous ammonia; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(k) $5 \mathrm{~cm}^{3}$ of dilute nitric acid; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(l) $5 \mathrm{~cm}^{3}$ of aqueous silver nitrate; concentration approximately $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$;
(m) $5 \mathrm{~cm}^{3}$ of 2,4-dinitrophenylhydrazine solution. This may be made by adding 0.1 g of the solid reagent to $45 \mathrm{~cm}^{3}$ of water and $5 \mathrm{~cm}^{3}$ of concentrated hydrochloric acid, stirring and filtering if necessary. Alternatively centres may prepare this reagent using their own procedure providing the reagent gives a positive test with butanone;
(n) $5 \mathrm{~cm}^{3}$ dilute sulphuric acid; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ (for Question 3);
(o) $5 \mathrm{~cm}^{3}$ of aqueous potassium dichromate(VI); concentration approximately $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$;
(p) $10 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide; concentration approximately $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$. Label this solution $0.50 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ sodium hydroxide for $\mathrm{Q} 3(\mathrm{c}$);
(q) $10 \mathrm{~cm}^{3}$ of iodine/potassium iodide solution made by adding 2 g iodine to 6 g potassium iodide dissolved in $100 \mathrm{~cm}^{3}$ water and labelled aqueous iodine;
(r) $20 \mathrm{~cm}^{3}$ of freshly prepared aqueous starch; concentration approximately 1% labelled starch;
(s) a supply of distilled water.

For home centres (ONLY), the chemicals identified with an asterisk (*) will be sent by a firm of manufacturing chemists.

Question Number	Correct Answer					Acceptable Answers	Reject	Mark
1.(a)	Table 1							10
	Check subtractions and averaging arithmetic, correcting if necessary.							
	correcting if necessary. All volumes recorded to $0.05 \mathrm{~cm}^{3}$ (1)							
	ALLOW one slip but withhold this mark if any readings are in the wrong boxes.							
	ALLOW 0 as initial volume NOT 50 as initial volume All subtractions correct (1)							
	[$\checkmark \vee$ top RHS of Table 1]							
	Mean titre							
	For correct averaging of chosen values / choosing identical values and for recording the average correct to 2 or 3 dps or to nearest $0.05 \mathrm{~cm}^{3}$ (1)							
	Do not penalise missing $2 / 3^{\text {rd }} \mathrm{dp}$ if already penalised in Table 1.							
	[\checkmark by the mean in space or near the dotted line in paragraph below]							
	Accuracy							
	If the candidate has made an arithmetical error in the Table 1 volumes used in the mean							
	or in averaging the examiner must calculate a new average.							
	titres. - If a wrongly subtracted titre has been							
	identical titres or take an average of the closest two titres.							
	Calculate the difference(d) between the candidate's mean titre and that of the examiner or supervisor.							
	Examiner's titre $=22.70 \mathrm{~cm}^{3}$ (to be confirmed at standardisation)							
	Award marks for accuracy as follows.							
	Difference	± 0.20	± 0.30	± 0.40	± 0.50			
	Mark	4	3	2	1			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	```Moles \(\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\) in mean titre \(=\frac{\text { mean titre } \times 0.110}{1000}\) (1) moles \(\mathrm{MnO}_{4}^{-}\)in \(25.0 \mathrm{~cm}^{3}=\frac{\text { moles } \mathrm{S}_{2} \underline{\mathrm{O}}_{3}{ }^{2-}(1)}{5}\) concentration \(\mathrm{MnO}_{4}{ }^{-}=\frac{\text { moles } \mathrm{MnO}_{4}^{-}}{} \frac{\text { in } 25.0 \mathrm{~cm}^{3}}{0.0250\left(\mathrm{dm}^{3}\right)}\) to 3 sf (1) Ignore units Do not penalise loss of trailing zeros```	Correct answer from any method for (3) Ignore sf except on final conc ${ }^{n}$.	Final conc ${ }^{n}$ if not to 3 sf . $\therefore \max (2)$	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)	Yellow to colourless	Straw (colour) to colourless	Colourless alone Any purple / brown	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	Observations			3
	White precipitate (1)			
	Dissolves / disappears (in excess NaOH) / colourless solution (1)	Soluble in excess/ goes		
	Inference 		Symbols Zn, Al, Pb.	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	Observation Any red (1) Inferences Aluminium / A1 Aci (1) Acidic (since only 3+ ion of AI, Zn, Pb) Acidic - Stand alone mark (1)		3	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)	Observations White precipitate (1) Insoluble in excess $\mathrm{NH}_{3}(1)$ Inference $\mathrm{Al}(\mathrm{OH})_{3} /\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right] /$ aluminium hydroxide (1)		3	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)	Observation White precipitate (1) Inference chloride $/ \mathrm{Cl}^{-}$(1) $\mathrm{Chlorine/Cl}$	2		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 . (e)}$	AlCl_{3}	$\mathrm{Al}_{2} \mathrm{Cl}_{6}$		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
2.(f)	Observations (any) blue precipitate (1) Dissolves/ disappears in excess (1) Deep(er) blue solution (1) Inferences $\mathrm{Cu}(\mathrm{OH})_{2} /\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right](1)$ $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(1)$	Soluble in excess/ goes clear	5			
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$					$\quad\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$	
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 . (g)}$	CuCl_{2}			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Observation Yellow / orange precipitate (1) Inference Carbonyl / C=O/ $>\mathrm{C}=0 /$ both of aldehyde or ketone (1)	Yellow-orange		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)	Observation Stays orange / no change (1) Inferences Ketone / not aldehyde if follows A or K in (a) (1) Not oxidised / no redox / does not reduce $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(1)$	No reaction	Just "nothing"	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
3.(c)	Observation (pale) Yellow precipitate (1) Inferences triiodomethane / lodoform / $\mathrm{CHI}_{3}(1)$ Methyl ketone / $\mathrm{CH}_{3} \mathrm{CO}(1)$	Cream ppte	$\mathrm{CH}_{3} \mathrm{l}$	3		
Methyl secondary						
alcohol / ethanol /						
ethanal					\quad	
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(d)(i)			$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$ Species with negative charge	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(d)(ii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{+} \quad / \quad \mathrm{CH}_{2} \mathrm{COCH}_{3}^{+}$		Formula with no positive charge $\mathrm{C}_{3} \mathrm{H}_{5} 0^{+}$	1

Question Number		Correct Answer	Acceptable Answers	Reject	Mark
4.	$\begin{aligned} & \hline 1 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	(Add $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to all five): the one that gives white ppte is BaCl_{2} Add BaCl_{2} to other four solutions. White ppte with AgNO_{3} Add AgNO_{3} to remaining three solutions White ppts with NaCl and ZnCl_{2} Brown ppte with $\mathrm{NH}_{3} /$ remaining one is NH_{3} Add NH_{3} to NaCl and ZnCl_{2} White ppte with ZnCl_{2}	No white ppte with NH_{3}		7

OR

Question Number		Correct Answer	Acceptable Answers	Reject	Mark
4.	2 3 4 5 6 7	(Add $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to all five): the one that gives white ppte is BaCl_{2} Add BaCl_{2} to other four solutions. White ppte with AgNO_{3} Add remaining three solutions to AgCl ppte AgCl dissolves in NH_{3} Add AgNO_{3} to remaining two solutions White ppte with both ZnCl_{2} and NaCl Add excess $\mathrm{NH}_{3}: \mathrm{ZnCl}_{2}$ ppt disolves			7

OR

Question Number		Correct Answer	Acceptable Answers	Reject	Mark
4.	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 7 \end{aligned}$	(Add $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to all five): the one that gives white ppte is BaCl_{2} Add BaCl_{2} to other four solutions. White ppte with AgNO_{3} Add remaining three solutions to AgCl ppte AgCl dissolves in NH_{3} Add NH_{3} to NaCl and ZnCl_{2} White ppte with ZnCl_{2} No ppte with $\mathrm{NaCl} / \mathrm{NaCl}$ remaining			7

OR

Question Number		Correct Answer	Acceptable Answers	Reject	Mark
4.	$\begin{aligned} & \hline 1 \\ & \hline 2 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 7 \\ & \hline \end{aligned}$	(Add $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to all five): two white ppts - BaCl_{2} and AgNO_{3} Distinguish between ppts Add AgNO_{3} to remaining three solutions White ppts with NaCl and ZnCl_{2} Brown ppte with $\mathrm{NH}_{3} /$ remaining one is NH_{3} Add NH_{3} to NaCl and ZnCl_{2} White ppte with ZnCl_{2}	No white ppte with NH_{3}		7

