

Mark Scheme (Final) Summer 2008

GCE

GCE Chemistry (6246/01A)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

- 1. / means that the responses are alternatives and either answer should receive full credit.
- 2. () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
- 3. [] words inside square brackets are instructions or guidance for examiners.
- 4. Phrases/words in **bold** indicate that the meaning of the phrase or the actual word is **essential** to the answer.
- 5. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

In general, an inference should follow an observation.

Apparatus and Materials

Apparatus

Each candidate will require:

- 50.0 cm³ burette, stand and clamp, with small funnel for filling, white tile and a small beaker for draining burette;
- two 250 cm³ conical flasks;
- 25.0 cm³ pipette and safety filler;
- 4. six test tubes and one boiling tube in a test tube rack;
- 5. one 10 cm³ and two 25 cm³ measuring cylinders;
- a supply of dropping pipettes;
- a 250 cm³ beaker of hot water at about 70 °C to be used as a water bath.

Materials

Each candidate will require:

- (a) * 200 cm³ of aqueous sodium thiosulphate of concentration 0.110 mol dm⁻³ labelled **Solution A**. The concentration of this solution is **not** to be disclosed to candidates;
- (b)* 200 cm³ of aqueous potassium manganate(VII) of concentration $0.020 \, \text{mol dm}^{-3}$ labelled Solution B;
- (c)* 10 cm³ of approximately 0.25 mol dm³ aqueous zinc sulphate labelled **Solution of C**. The identity of this solution is **not** to be disclosed to candidates;
- $(d)^*$ 5 cm³ of approximately 0.10 mol dm⁻³ aqueous potassium chromium(III) sulphate, labelled **Solution of D**. The identity of this solution is **not** to be disclosed to candidates;
- (e)* 5 cm³ of propanone labelled E. The identity of this compound is **not** to be disclosed to candidates:
- (f) 100 cm³ of dilute sulphuric acid of concentration approximately 1.0 mol dm⁻³, labelled **Dilute** sulphuric acid;
- (g) 100 cm³ of aqueous potassium iodide of concentration approximately 0.50 mol dm⁻³ labelled Aqueous potassium iodide;
- (h) 15 cm³ of dilute sodium hydroxide; concentration approximately 1.0 mol dm⁻³;
- 15 cm³ of dilute aqueous ammonia; concentration approximately 2.0 mol dm⁻³;
- (j) 5 cm³ of dilute hydrochloric acid; concentration approximately 2.0 mol dm⁻³;
- (k) 5 cm³ of aqueous barium chloride; concentration approximately 0.2 mol dm⁻³;
- (l) 10 cm³ of freshly-prepared aqueous hydrogen peroxide; concentration approximately 10 vol;
- (m) 5 cm³ of 2,4-dinitrophenylhydrazine solution. This may be made by adding 0.1 g of the solid reagent to 45 cm³ of water and 5 cm³ of concentrated hydrochloric acid, stirring and filtering if necessary. Alternatively centres may prepare this reagent using their own procedure providing the reagent gives a positive test with propanone;
- (n) 5 cm³ dilute sulphuric acid; concentration approximately 1.0 mol dm⁻³ (for Question 3);
- (o) 5 cm³ of aqueous potassium dichromate(VI); concentration approximately 0.20 mol dm⁻³;
- (p) 10 cm³ of aqueous sodium hydroxide; concentration approximately 0.50 mol dm⁻³. Label this solution 0.50 mol dm⁻³ sodium hydroxide for Q3(c);
- (q) 10 cm³ of iodine/potassium iodide solution made by adding 2 g iodine to 6 g potassium iodide dissolved in 100 cm³ water and labelled aqueous iodine;
- (r) 20 cm³ of freshly prepared aqueous starch; concentration approximately 1% labelled starch;
- (s) a supply of distilled water.

For home centres (ONLY), the chemicals identified with an asterisk (*) will be sent by a firm of manufacturing chemists.

Question	Correct Answer	Acceptable	Reject	Mark
Question Number 1.(a)	Table 1 Check subtractions and averaging arithmetic, correcting if necessary. All volumes recorded to 0.05 cm³ (1) ALLOW one slip but withhold this mark if any readings are in the wrong boxes. ALLOW 0 as initial volume NOT 50 as initial volume All subtractions correct (1) [✓✓top RHS of Table 1] Mean titre For correct averaging of chosen values / choosing identical values and for recording the average correct to 2 or 3 dps or to nearest 0.05 cm³ (1) Do not penalise missing 2/3 rd dp if already	Acceptable Answers	Reject	Mark 10
	penalised in Table 1. [\subseteq by the mean in space or near the dotted line in paragraph below] Accuracy			
	If the candidate has made an arithmetical error in the Table 1 volumes used in the mean or in averaging the examiner must calculate a new average. • For an averaging error simply calculate a new value using the candidate's chosen titres. • If a wrongly subtracted titre has been			
	used in the mean then choose any two identical titres or take an average of the closest two titres. Calculate the difference(d) between the candidate's mean titre and that of the examiner or supervisor.			
	Examiner's titre = 22.70 cm ³ (to be confirmed at standardisation)			
	Award marks for accuracy as follows.			
	Difference ±0.20 ±0.30 ±0.40 ±0.50			
	IVIGITY 4 3 2 1			

Award a mark on the range of titres used by the candidate to calculate the mean. The range(r) is the difference between the outermost titres used to calculate the mean. If the examiner has corrected titres because of incorrect subtraction then award the range mark on the corrected titres used by the examiner to re-calculate the mean

Rang	je(r) of es/cm³	±0.20	±0.30	±0.50
Mark	<	3	2	1

Examiner to show the mark awarded for accuracy and range as

d= value r = value $\checkmark 4 max$ $\checkmark 3 max$

Then the mark out of 10 written in margin. [Overseas scripts: examiner to write "SR = titre value" on each script]

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	Moles MnO_4^- in 25.0 cm ³ = $\frac{25 \times 0.020}{1000}$ (1)	Correct answer from any method for (3)		3
	moles $S_2O_3^{2-}$ in mean titre = moles $MnO_4^- \times 5$ (1)			
	concentration $Na_2S_2O_3 = \frac{\text{moles } S_2O_3^{2^-} \text{ in mean titre}}{\text{mean titre}}$ to 3 sf (1) mean titre ÷ 1000	Ignore sf except on final conc ⁿ .	Final conc ⁿ if not to 3 sf.	
	Ignore units. Do not penalise loss of trailing zeros.		∴ max (2)	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)	Yellow to colourless	Straw (colour) to colourless	Colourless alone Any purple/brown	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2.(a)	Observations			3
	White precipitate (1)			
	Dissolves / disappears (in excess NaOH) / colourless solution (1)	Soluble in excess/ goes clear		
	Inference Zinc / Zn ²⁺ , aluminium / Al ³⁺ lead(II) / Pb ²⁺ any two (1)		Symbols Zn, Al, Pb.	
	Ignore Cd ²⁺ / Sn ²⁺ / Sn ⁴⁺ / Sb ³⁺			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	Observations White precipitate (1)			5
	Dissolves / disappears (in excess NH ₃) / colourless solution (1)	Soluble in excess/ goes clear		
	Inferences Zinc (ions) / Zn^{2+} (1) $Zn(OH)_2$ / $[Zn(H_2O)_4(OH)_2]$ (1) $[Zn(NH_3)_4]^{2+}$ (1)	Allow equivalent Cd species if Cd given in (a) [Zn(NH ₃) ₄ (H ₂ O) ₂] ²⁺		

Question Number	С	orrect Answer	Acceptable Answers	Reject	Mark
2.(c)	Observation	White precipitate (1)			2
	Inference	Sulphate / SO ₄ ²⁻ (1)	hydrogensulphate/ HSO ₄ -	Barium sulphate	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2.(d)	ZnSO ₄	CdSO ₄		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2.(e)	Observations			6
	(any) green precipitate (1)			
	Dissolves/ disappears (in excess) / green	Soluble in excess/		
	solution (1)	goes clear		
	Any yellow / any brown solution (1)			
	Inferences			
	$Cr(OH)_3 / [Cr(H_2O)_3(OH)_3]$ (1)			
	$[Cr(OH)_{6}]^{3-}(1)$			
	CrO ₄ ²⁻ (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(f)	$Cr_2(SO_4)_3$			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Observation	Yellow-orange		2
	Yellow / orange precipitate (1)			
	Inference Carbonyl / C=O/>C=O/ both of aldehyde or ketone (1)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3.(b)	Observation			3
	Stays orange / no change (1)	No reaction	Just "nothing"	
	Inferences			
	Ketone / not aldehyde if follows A or K in (a) (1)		Tertiary alcohol	
	Not oxidised / no redox / does not reduce $Cr_2O_7^{2-}$ (1)		Reject cq on wrong colour	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)	Observation			3
	(pale) Yellow precipitate (1)	Cream ppte		
	Inferences			
	Triiodomethane / lodoform / CHI ₃ (1)		CH ₃ I	
	Methyl ketone / CH₃CO (1)		Methyl secondary alcohol / ethanol / ethanal	

Question Number		Correct Answer		Acceptable Answers	Reject	Mark
3.(d)(i)	m/e	58	(1)			2
	Structure	CH ₃ —C=O CH ₃ gnore positiv	(1) ve charge		CH ₃ COCH ₃ Species with negative charge	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(d)(ii)	CH ₃ CO ⁺		Formula with no positive charge	1
			$C_2H_3O^+$	

Question Number		Correct Answer	Acceptable Answers	Reject	Mark
4.	1	(Add NaCl to all five); the one that gives white ppte is			7
		$AgNO_3$			
	2✔	Add AgNO ₃ to new samples of remaining four.			
	3 ✔	Solution that gives yellow ppte is KI.			
	4 🗸	Solution that gives brown ppte or no ppte is NH ₃ .	No white ppte with		
	5✔	Solution that give white ppts are KCI and AICI ₃ .	NH ₃		
	6✔	Add NH ₃ to remaining two unknown solutions.			
	7 🗸	Solution that gives white ppte is AICI ₃ .			

<u>OR</u>

Question		Correct Answer	Acceptable	Reject	Mark
Number			Answers		
4.	1 🗸	(Add NaCl to all five); the one that gives white ppte is AgNO ₃			7
	2✔	Add four solutions to (AgCI) ppte.			
	3✔	Ppte dissolves in NH ₃ .			
	4 🗸	Add NH_3 to remaining three solutions.			
	5 ~	White ppts AICI ₃ .			
	6 ~	Add AgNO ₃ to remaining solutions.			
	7 ~	Yellow ppte with KI and white ppte with KCI.			

<u>OR</u>

Question		Correct Answer	Acceptable	Reject	Mark
Number			Answers		
4.	1	(Add NaCl to all five); the one that gives white ppte is AgNO ₃			7
	2✔	Add four solutions to (AgCI) ppte.			
	3✔	Ppte dissolves in NH ₃			
	4 🗸	Add AgNO ₃ to remaining three solutions.			
	5 ~	White ppts with AICI ₃ + KCI and yellow ppte with KI.			
	6 ~	Add NH ₃ to solutions of AICl ₃ + KCl			
	7 🗸	White ppte with AICI ₃ .			