Mark Scheme (Final) Summer 2008

GCE

GCE Chemistry (6246/ 01A)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

1. / means that the responses are alternatives and either answer should receive full credit.
2. () means that a phrase/ word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3. [] words inside square brackets are instructions or guidance for examiners.
4. Phrases/ words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
5. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

In general, an inference should follow an observation.

Apparatus and Materials

Apparatus

Each candidate will require:

1. $50.0 \mathrm{~cm}^{3}$ burette, stand and clamp, with small funnel for filling, white tile and a small beaker for draining burette;
two $250 \mathrm{~cm}^{3}$ conical flasks;
$25.0 \mathrm{~cm}^{3}$ pipette and safety filler;
six test tubes and one boiling tube in a test tube rack; one $10 \mathrm{~cm}^{3}$ and two $25 \mathrm{~cm}^{3}$ measuring cylinders;
a supply of dropping pipettes;
a $250 \mathrm{~cm}^{3}$ beaker of hot water at about $70^{\circ} \mathrm{C}$ to be used as a water bath.

Materials

Each candidate will require:
(a)* $200 \mathrm{~cm}^{3}$ of aqueous sodium thiosulphate of concentration $0.110 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution \mathbf{A}. The concentration of this solution is not to be disclosed to candidates;
(b)* $200 \mathrm{~cm}^{3}$ of aqueous potassium manganate(VII) of concentration $0.020 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution B;
(c)* $10 \mathrm{~cm}^{3}$ of approximately $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous zinc sulphate labelled Solution of \mathbf{C}. The identity of this solution is not to be disclosed to candidates;
(d)* $5 \mathrm{~cm}^{3}$ of approximately $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous potassium chromium(III) sulphate, labelled Solution of D. The identity of this solution is not to be disclosed to candidates;
(e)* $5 \mathrm{~cm}^{3}$ of propanone labelled \mathbf{E}. The identity of this compound is not to be disclosed to candidates;
(f) $100 \mathrm{~cm}^{3}$ of dilute sulphuric acid of concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$, labelled Dilute sulphuric acid;
(g) $100 \mathrm{~cm}^{3}$ of aqueous potassium iodide of concentration approximately $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Aqueous potassium iodide;
(h) $15 \mathrm{~cm}^{3}$ of dilute sodium hydroxide; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(i) $15 \mathrm{~cm}^{3}$ of dilute aqueous ammonia; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(j) $5 \mathrm{~cm}^{3}$ of dilute hydrochloric acid; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(k) $5 \mathrm{~cm}^{3}$ of aqueous barium chloride; concentration approximately $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$;
(l) $10 \mathrm{~cm}^{3}$ of freshly-prepared aqueous hydrogen peroxide; concentration approximately 10 vol ;
(m) $5 \mathrm{~cm}^{3}$ of 2,4-dinitrophenylhydrazine solution. This may be made by adding 0.1 g of the solid reagent to $45 \mathrm{~cm}^{3}$ of water and $5 \mathrm{~cm}^{3}$ of concentrated hydrochloric acid, stirring and filtering if necessary. Alternatively centres may prepare this reagent using their own procedure providing the reagent gives a positive test with propanone;
(n) $5 \mathrm{~cm}^{3}$ dilute sulphuric acid; concentration approximately $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ (for Question 3);
(o) $5 \mathrm{~cm}^{3}$ of aqueous potassium dichromate(VI); concentration approximately $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$;
(p) $10 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide; concentration approximately $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$. Label this solution $0.50 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ sodium hydroxide for Q3(c);
(q) $10 \mathrm{~cm}^{3}$ of iodine/potassium iodide solution made by adding 2 g iodine to 6 g potassium iodide dissolved in $100 \mathrm{~cm}^{3}$ water and labelled aqueous iodine;
(r) $20 \mathrm{~cm}^{3}$ of freshly prepared aqueous starch; concentration approximately 1% labelled starch;
(s) a supply of distilled water:

For home centres (ONLY), the chemicals identified with an asterisk (*) will be sent by a firm of manufacturing chemists.

Question Number	Correct Answer					Acceptable Answers	Reject	Mark
1.(a)								10
	Check subtractions and averaging arithmetic, correcting if necessary. All volumes recorded to $0.05 \mathrm{~cm}^{3}$ (1)							
	ALLOW one slip but withhold this mark if any readings are in the wrong boxes.							
	ALLOW 0 as initial volume NOT 50 as initial volume All subtractions correct (1)							
	[$\checkmark \vee$ top RHS of Table 1]							
	Mean titre							
	For correct averaging of chosen values / choosing identical values and for recording the average correct to 2 or 3 dps or to nearest $0.05 \mathrm{~cm}^{3}$ (1)							
	Do not penalise missing $2 / 3^{\text {rd }} \mathrm{dp}$ if already penalised in Table 1.							
	[\checkmark by the mean in space or near the dotted line in paragraph below]							
	AccuracyIf the candidate has made an arithmetical							
	If the candidate has made an arithmetical error in the Table 1 volumes used in the mean							
	or in averaging the examiner must calculate a new average.							
	- For an averaging error simply calculate a new value using the candidate's chosen							
	- If a wrongly subtracted titre has been							
	identical titres or take an average of the closest two titres.							
	Calculate the difference(d) between thecandidate's mean titre and that of theexaminer or supervisor.							
	Examiner's titre $=22.70 \mathrm{~cm}^{3}$ (to be confirmed at standardisation)							
	Award marks for accuracy as follows.							
	Difference	± 0.20	± 0.30	± 0.40	± 0.50			
	(d) $=$							
	Mark	4	3	2	1			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	Moles $\mathrm{MnO}_{4}{ }^{-}$in $25.0 \mathrm{~cm}^{3}=\frac{25 \times 0.020}{1000}$ (1) moles $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ in mean titre $=$ moles $\mathrm{MnO}_{4}^{-} \times 5$ (1) concentration $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=$ moles $\mathrm{S}_{2} \underline{\mathrm{O}}_{3}{ }^{2-}$ in mean titre to 3 sf (1) mean titre $\div 1000$ Ignore units. Do not penalise loss of trailing zeros.	Correct answer from any method for (3) Ignore sf except on final conc.	Final conc ${ }^{n}$ if not to 3 sf. $\therefore \max (2)$	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 . (c)}$	Yellow to colourless	Straw (colour) to colourless	Colourless alone Any purple/ brown	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	Observations White precipitate (1) Dissolves / disappears (in excess NaOH) / colourless solution (1) Inference Zinc $/ \mathrm{Zn}^{2+}$, aluminium $/ \mathrm{Al}^{3+}$ lead(II) $/ \mathrm{Pb}^{2+}$			
Ignore $\mathrm{Cd}^{2+} / \mathrm{Sn}^{2+} / \mathrm{Sn}^{4+} / \mathrm{Sb}^{3+}$	Soluble in excess/ goes clear	3		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	Observations White precipitate (1) Dissolves / disappears (in excess $\left.\mathrm{NH}_{3}\right) /$ colourless solution (1) Inferences Zinc (ions) / $\mathrm{Zn}{ }^{2+}(1)$ $\mathrm{Zn}(\mathrm{OH})_{2} /\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right](1)$ $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(1)$	Soluble in excess/ goes clear	Allow equivalent Cd species if Cd given in (a) $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$	

| Question
 Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2.(c) | 2
 Observation White precipitate (1)
 Inference Sulphate $/ \mathrm{SO}_{4}{ }^{2-}(1)$ hydrogensulphate/ $\mathrm{HSO}_{4}{ }^{-}$ Barium sulphate | | | |

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)	ZnSO_{4}	CdSO_{4}		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(e)	Observations (any) green precipitate (1) Dissolves/ disappears (in excess) / green solution (1) Any yellow / any brown solution (1) Inferences $\begin{aligned} & \mathrm{Cr}(\mathrm{OH})_{3} /\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right](1) \\ & {\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3^{--}}(1)} \\ & \mathrm{CrO}_{4}^{2-}(1) \end{aligned}$	Soluble in excess/ goes clear		6

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(f)	$\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Observation Yellow / orange precipitate (1) Inference Carbonyl / C $=0 />C=0 /$ both of aldehyde or ketone	Yellow-orange		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)	Observation Stays orange / no change (1) Inferences Ketone / not aldehyde if follows A or K in (a) (1) Not oxidised / no redox / does not reduce $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2^{-}}(1)$	No reaction	Just "nothing" Tertiary alcohol Reject cq on wrong colour	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)	Observation (pale) Yellow precipitate (1) Inferences Triiodomethane / lodoform / $\mathrm{CHI}_{3}(1)$ Methyl ketone / $\mathrm{CH}_{3} \mathrm{CO}(1)$	Cream ppte	3	

Question Number	Correct Answer		Acceptable Answers	Reject	Mark
3.(d)(i)	m/e	58 (1)			2
	Structure	 Ignore positive charge		$\begin{equation*} \mathrm{CH}_{3} \mathrm{COCH}_{3} \tag{1} \end{equation*}$ Species with negative charge	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(d)(ii)	$\mathrm{CH}_{3} \mathrm{CO}^{+}$		Formula with no positive charge $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{+}$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.	1v (Add NaCl to all five); the one that gives white ppte is AgNO_{3} $2 \checkmark \mathrm{Add}_{\mathrm{AgNO}}^{3}$ to new samples of remaining four. 3 $\sqrt{\checkmark}$ Solution that gives yellow ppte is KI . $4 \checkmark$ Solution that gives brown ppte or no ppte is NH_{3}. 5^{\checkmark} Solution that give white ppts are KCl and AlCl_{3}. $6 \checkmark$ Add NH_{3} to remaining two unknown solutions. $7 \checkmark$ Solution that gives white ppte is AlCl_{3}.	No white ppte with NH_{3}		7

OR

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number \& Correct Answer \& Acceptable Answers \& Reject \& Mark

\hline 4. \& | 1` (Add NaCl to all five); the one that gives white ppte is AgNO_{3} |
| :--- |
| $2 \checkmark$ Add four solutions to (AgCl) ppte. |
| $3 \checkmark$ Ppte dissolves in NH_{3}. |
| $4 \vee \quad$ Add NH_{3} to remaining three solutions. |
| 5 ${ }^{\checkmark}$ White ppts AlCl_{3}. |
| $6 \checkmark \quad \mathrm{Add} \mathrm{AgNO}_{3}$ to remaining solutions. |
| 7~ Yellow ppte with KI and white ppte with KCl . | \& \& \& 7

\hline
\end{tabular}

OR

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.	1^ (Add NaCl to all five); the one that gives white ppte is AgNO_{3} 2 Add four solutions to (AgCl) ppte. 3 Ppte dissolves in NH_{3} $4 \checkmark \quad \mathrm{Add} \mathrm{AgNO}_{3}$ to remaining three solutions. 5 White ppts with $\mathrm{AlCl}_{3}+\mathrm{KCl}$ and yellow ppte with KI . $6 \checkmark \quad$ Add NH_{3} to solutions of $\mathrm{AlCl}_{3}+\mathrm{KCl}$ $7 \checkmark$ White ppte with AlCl_{3}.			7

