Mark Scheme (Final) June 2008

GCE

GCE Chemistry (6243/01A)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

1. / means that the responses are alternatives and either answer should receive full credit.
2. () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3. [] words inside square brackets are instructions or guidance for examiners.
4. Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
5. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

In general, an inference should follow an observation.

Apparatus amd Materials

Apparatu:

Each camdidato will requiza:
apperztas for 2 flame tert; spatuls;
$10 \mathrm{~cm}^{3}$ masaruring cylinder:
$50 \mathrm{~cm}^{3}$ masaruing cylinder:
3 tast tuber amd 1 boiling tube in a rack,
1 stopper to fit a teat tube;
supply of droppins pipettes;
tast tube bolder;
Brasen beanar,
$50 \mathrm{~cm}^{3}$ burats, stred zod clamp, with small f:menl for filling, whito tile $z \mathrm{~m}$ a small bovker for drzining burata:
11. $2 \times 250 \mathrm{~cm}^{3}$ comical flatkr;
12. $-25 \mathrm{~cm}^{3}$ pupate with safory sillar;
13. expuedad polystyrane cup bald sacuraly in a $250 \mathrm{~cm}^{3}$ baskar;
14. a tharmometer of range from at lastr rocm tempecature to $50^{\circ} \mathrm{C}$ (a.g. 0 to $50^{\circ} \mathrm{C}$ or -10 to $-110^{\circ} \mathrm{C}$). able to be rasd to $\pm 0.5^{\circ} \mathrm{C}$ or better,
15. accens to a balamee randing to at lasst 2 dacimal places.

Materials

Each czodidate will requize:
(z) ${ }^{*}$ approximataly 0.5 g of potassium sulphzte, labollod X . The ideutity of this monst not be revozled to candidztas;
(b) ${ }^{8} 3 \mathrm{~cm}^{3}$ of aquegas nilvor nitrate: concouration approximataly $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$, labollad Y. The idantity of this monst mot be sevvaled to comdedates;
(c) $2 \mathrm{~cm}^{3}$ of dilhte bydrochloric acid concentation approximasaly 2 mol den .

(o) $2 \mathrm{~cm}^{3}$ of difute aquovas sodiven hydroxide: comcoefration approximataly 2 mol den ${ }^{-1}$;
(f) alumienim foil, approximatoly $2 \times 2 \mathrm{~cm}$;
g) red liman prear
(h) $1 \mathrm{cms}^{3}$ of aquesen potasium iodids: coecoertration spproximataly $0.1 \mathrm{~mol} \mathrm{dm}^{-1}$;
(i) ${ }^{8} \quad 200 \mathrm{~cm}^{3}$ of aquesm sodium hytrexids: concantation $0.150 \mathrm{~mol} \mathrm{dm}^{-1}$, habolled B;
(j) $200 \mathrm{~cm}^{3}$ of açaous mulphamic acid $\left(\mathrm{NH}_{3} \mathrm{SO}, \mathrm{H}\right)$: concanteztion $13.5 \mathrm{~g} \mathrm{dm} \mathrm{gm}^{-1}$, labollod C . The idanity of the solute must not be revaelad to candidzses;
(k) phonolphthanloin indicztor,
 be revazlad to candidztac,
(im) distillad wztar

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)	Obs: Lilac (1)	Purple/ mauve	Violet	2
	Inf: Potassium/ K $\mathrm{K}^{+}(1)$	K		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(i)	Obs: White precipitate (1) Inf: sulphate $/ \mathrm{SO}_{4}{ }^{2-}$ (1)	Cloudy/milky hydrogen sulphate $/ \mathrm{HSO}_{4}{ }^{-}$	$\begin{aligned} & \text { Goes misty } \\ & \mathrm{SO}_{4} / \mathrm{HSO}_{4} \end{aligned}$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(ii)	To prevent the precipitation with other ions (1) Any correct ion specified	Destroy any ion which would interfere with the test. Any correct ion specified So that only sulphate will precipitate	Dissolve precipitate of ions or compounds	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)	$\mathrm{K}_{2} \mathrm{SO}_{4}$ Conditional on correct (a) and (b)	$\mathrm{K}\left(\mathrm{HSO}_{4}\right)_{2}$	Potassium sulphate No charges allowed	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)(i)	Grey brown precipitate [observation only requested]		Brown solid Not "just" brown without precipitate	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)(ii)	Obs: Litmus turns blue (1) Inf: Ammonia/ $\mathrm{NH}_{3}(1)$ Nitrate/ $\mathrm{NO}_{3}{ }^{-}$	Nitrite/ $\mathrm{NO}_{2}{ }^{-}$	3	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)	Obs: (Pale) yellow precipitate (1) Inf: $\mathrm{Ag}^{+}(1)$ $\mathrm{AgI}(1)$Silver $/ \mathrm{Pb}^{2+} / \mathrm{lead}$ Pbl_{2}	Cream $\mathrm{Ag} / \mathrm{Pb}$	3	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 . (b) (i) ~}$	$\frac{0.150 \times \text { titre }}{1000}$			
	S.F. i) ii) iii) Penalise rounding to 2 s.f. once unless trailing zero iv) Ignore s.f.		1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(ii)	answer (i)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(iii)	answer (ii) x 40			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(iv)	13.5/ answer (iii)	Ignore unit		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 . (b) (v) ~}$	Titre would be too low/smaller/lower/too small (1) Because some alkali remains in the flask (1) Stand alone marks	No difference because quantity of excess alkali is within experimental error.	Just "small" Just "low" Stops too quickly or too soon	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Table 2 Weighings in correct spaces to at least 2 dp (1) Correct subtractions (1) Table 3 Two temps recorded in correct spaces (1) BOTH to $0.5^{\circ} \mathrm{C}$ or better (1) ΔT correct with neg. sign (1) EXPECTED VALUE TO BE -6.2 for [4.95- 5.05]g $\pm 0.8^{\circ} \mathrm{C}$ (3) $\pm 1.2^{\circ} \mathrm{C}$ (2) $\pm 1.6^{\circ} \mathrm{C}$ (1) $>1.6^{\circ} \mathrm{C}(0)$			8

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(i)	For correct substitution and evaluation (1) positive sign (1) Answer to 2 sig figs (1)		3	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(ii)	No because it has the same systematic errors/same errors with measuring cylinder/thermometer/heat loss/impure sample (1)	Same error in balance	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.	Weigh crucible (1) $\checkmark \mathrm{m} 1$ Weigh with sample (1) $\checkmark \mathrm{m} 2$ Heat (1) $\checkmark \mathrm{m} 3$ to constant weight (1) $\checkmark \mathrm{m} 4$	Take known mass/stated mass (1) Either Calculate mass (of gas) lost (1) $\checkmark \mathrm{cc}$ Moles $\mathrm{CO}_{2}=\frac{\text { mass lost }}{44 / \mathrm{Mr}}$moles MgCO (1) $\quad \checkmark \mathrm{c2}$ Mass $\mathrm{MgCO}_{3}=$ moles $\times 84 \mathrm{Mr}$ (hence \%) $(1) \checkmark \mathrm{c3}$	7	

