Mark Scheme (Final)
Summer 2008

GCE

GCE Chemistry (6242/01)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
5 OWTTE means or words to that effect
$6 \mathrm{ecf} / \mathrm{TE} / \mathrm{cq}$ (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (a)(i)	anode: titanium (1) cathode: steel/Nickel/Ni (1) If both correct but in wrong place max 1		graphite	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 ~ (a) (i i) ~}$	Anode $2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{(-)}$ $2 \mathrm{Cl}^{-}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{Cl}_{2}$ Cathode $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{(-)} \rightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{(-)}(1)$ If both correct but in wrong place max 1	Multiples		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 ~ (a) (i i i) ~}$	$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{H}_{2}+\mathrm{Cl}_{2}+2 \mathrm{OH}^{-}$	multiples	$2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{H}_{2}+\mathrm{Cl}_{2}$ Equation with $2 e^{(-)}$ on both sides	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(iv)	treatment of (drinking) water Or to kill bacteria in water/swimming pools Or sterilisation of water Or as a disinfectant Or in production/manufacture/making of any one of: PVC bleaches herbicides insecticides/pesticides $\mathrm{HCl} /$ hydrochloric acid/hydrogen chloride named chlorinated solvents bromine titanium paper chloroethene poly(chloroethene) CFCs/HCFCs Silicon	as a bleach Or in bleach Or bleach	water purification Or swimming pools Or cleaning anything Or anything else	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	species oxidised chlorine/ Cl_{2} oxidation product sodium chlorate(I) / NaOCl / OCl /chlorate(I) (ions) (1) both required for mark species reduced chlorine / Cl 2 reduction product (sodium) chloride / NaCl / chloride ion/ Cl^{-}(1) both required for mark	Species oxidised Cl (in Cl_{2}) ox. prod. sodium hypochlorite Species reduced Cl (in Cl_{2})	Just "chlorate" and "sodium chlorate"	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)	IGNORE SF unless rounded to 1SF moles $\mathrm{NaOCl}=\frac{100}{74.5}=$ $1.342 \text { (1) }\left(=\text { moles } \mathrm{Cl}_{2}\right)$ volume $\mathrm{Cl}_{2}=1.342 \times 24=32.2 \mathrm{dm}^{3}$ - unit essential (1) $2^{\text {nd }}$ mark consequential on moles To get the $2^{\text {nd }}$ mark, must show attempt to calculate moles ie $100 \div \mathrm{x}$ Correct answer with no working (2)	Method using mass: volume ratio $74.5(\mathrm{~g})$ gives $24\left(\mathrm{dm}^{3}\right)$ (1) $\therefore 100(\mathrm{~g})$ gives $32.2 \mathrm{dm}^{3}$ (1) Some common acceptable answers are: $32.16 / 32 / 31.2 / 31 \mathrm{dm}^{3}$		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\begin{aligned} & \hline 2(a) \\ & \text { QWC } \end{aligned}$	enthalpy/heat/energy change when 1 mole (of a substance) (1) is completely burned in oxygen / burned in excess oxygen (1) (all species) at $1 \mathrm{~atm} / 100 \mathrm{kPa} / 10^{5} \mathrm{~Pa} /$ 1 Bar and "a specified temperature" (1)	"evolved" instead of "change" "sulphur" or "element" or "species" instead of "substance" $\text { } 298 \mathrm{~K} / 25^{\circ} \mathrm{C} / 101 \mathrm{kPa}$ Or ".....a specified temperature e.g. any value"	Heat/energy required "compound" instead of "substance" reacts completely with oxygen Any mention of specific products or specific amounts of products, other than SO_{2}, negates $2^{\text {nd }}$ mark Just " 273 K" Any mention of concentration negates third mark	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) (i) ~}$	Temperature 400 to $500\left({ }^{\circ} \mathrm{C}\right)$ or any value or range within this range inclusive (1)	$673-773 \mathrm{~K}$ or any value or range within this range	3	
	Pressure >1 to 5 atm or any value or range within this range inclusive (1)	1 atm or any range that includes 1 atm	Just "vanadium oxide"	
Catalyst Vanadium(V) oxide $/ \mathrm{V}_{2} \mathrm{O}_{5}(\mathbf{1)}$	vanadium pentoxide			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$2 \text { (b)(iii) }$ QWC	reaction exothermic (1) equilibrium shifts to the left decreasing the yield (1) $2^{\text {nd }}$ mark is dependent on the $1^{\text {st }}$ and is not consequential. IGNORE Le Chatelier explanations	$\Delta \mathrm{H}$ negative/reverse reaction is endothermic	Just "equilibrium shifts to the left" Just "yield decreases"	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iv) QWC	fewer (gaseous) molecules /particles/moles on the right (1) equilibrium shifts to the right increasing the yield (1) $2^{\text {nd }}$ mark is dependent on the 1 and is not consequential.	Just "equilibrium shifts to the right"	Just "yield increases" IGNORE Le Chatelier explanations	Arguments based on volume
N.B do not penalise omission of either 'equilibrium shifts' or change of yield if already penalised in (iii)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (c) ~}$	$\Delta \mathrm{H}=\Delta \mathrm{H}_{\mathrm{f}}($ products $)-\Delta \mathrm{H}_{\mathrm{f}}$ (reactants) Or $(-814 \times 2)-(-286 \times 2)(1)$ $=-1056\left(\mathrm{~kJ}\right.$ mol $\left.^{-1}\right)(1)$ IGNORE units Correct answer with no working (2)		2	
	Omission of either or both of $\times 2$ max 1. Hence -242 with some working (1) -1342 with some working (1) -528 with some working (1) (+)1056 with some working (1)	ΔH_{f} vaues added scores zero overall		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(i)	Any two of - (same) general formula - (successive) members differ by CH_{2} - (same) functional group/ (similar/same) chemical properties/reactions - regular trend in physical properties IGNORE "same properties"	(Same) general molecular formula	(Same) molecular formula Same physical properties Reference to a specific reaction e.g. same reaction with chlorine	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(ii)	alkene(s)	C=C alkane	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(iii)	electrophilic addition (1) both needed IGNORE heterolytic and penalise homolytic hydrogen chloride/HCl (1)		2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (b) (i) ~}$	Classification nucleophilic substitution (1) Reagent potassium cyanide/KCN Or sodium cyanide/NaCN (1) Condition	Cyanide ions/CN ${ }^{-}$	Cyanide	3
(Heat under reflux in) aqueous ethanol/ethanol / alcohol (solvent) (1) 3rd mark dependent on (a) cyanide as reagent $3^{\text {rd mark can be awarded in }}$reagent line	Aqueous alone			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (b) (i i) ~}$	same molecular formula (1)	Same numbers of each atom	2	
	different structural formulae/ displayed formulae/ arrangement of atoms (1)	different structure	different arrangement in space	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(iii)	There are many possibilities e.g. Or structures including rings / multiple bonds /isonitriles	Accept CH_{3} and/or CN e.g.		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (c) ~}$	1-bromopropane faster (1) Stand alone	Reverse statement	Any answer which gives 1-chloropropane as faster scores zero overall	3
because C-Br bond weaker (than C-Cl) (1) IGNORE attempted explanations of why C-Br bond weaker therefore lower activation energy/E [Lower Eact must be related to C-X bond]	Reverse argument	If no reference to carbon-halogen bond		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)	 2 carbon chain with continuation bonds in repeat unit (1) All other atoms correct (1) IGNORE subscript n IGNORE where the bond to the CH_{3} goes e.g. CH_{3} is fine	If more than one repeat unit given and number of repeat units stated or the repeat unit identified (2) If repeat unit not stated or identified can score $2^{\text {nd }}$ mark only	3 carbon chain Or Any repeat unit containing a double bond scores zero	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (e)	Restricted rotation around double bond (1)	No rotation/double bond cannot rotate (at room temperature)	2	
	1-chloropropene has two different groups on both carbons/each carbon (in the double bond)(but propene does not) (1)	Propene has two identical groups on one carbon (of the double bond) (but 1- chloropropene does not)		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 (a) (i)}$	KMnO $_{4}$ /potassium manganate(VII) / potassium permanganate	Sodium analogues	Just "Potassium manganate"	1
	IGNORE any acid or alkali	Or O_{2} followed by aqueous acid		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	1,2(-)dibromoethane			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iii)	EITHER: sodium bromide $/ \mathrm{NaBr}$ /potassium bromide $/ \mathrm{KBr}$ (1) (50\%) sulphuric acid $/ \mathrm{H}_{2} \mathrm{SO}_{4}$ / phosphoric acid $/ \mathrm{H}_{3} \mathrm{PO}_{4}$ (1) OR: (Moist) red phosphorus/P (1) Bromine $/ \mathrm{Br}_{2}$ (1) $2^{\text {nd }}$ mark is conditional on the $1^{\text {st }}$	HBr with concentrated/50 \% sulphuric (1 only) concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ PBr_{3} alone (1 only)	Dilute/aqueous sulphuric $\mathrm{acid} / \mathrm{H}_{2} \mathrm{SO}_{4}$ PBr_{3} plus any other reagent (0)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iv)	Colour change			3
	from orange to green/blue (1)		...to brown	
	Oxidation products (2)			
		OH instead of $\mathrm{O}-\mathrm{H}$		
		If any two of the following given (1 out 2)		
	$\mathrm{O}-\mathrm{H}$	$\mathrm{CH}_{2} \mathrm{OHCHO}$	$\mathrm{CH}_{2} \mathrm{OHCOH}$	
	$\mathrm{H}-\mathrm{C}-\mathrm{C}$	$\mathrm{CH}_{2} \mathrm{OHCOOH}$		
	$\mathrm{O} \quad \mathrm{O}$	CHOCHO Or OHCCHO	$\begin{aligned} & \text { CHOCOH Or } \\ & \text { OHCCOH } \end{aligned}$	
		$\begin{aligned} & \mathrm{CHOCOOH} \mathrm{Or} \\ & \mathrm{OHCCOOH} \end{aligned}$		
		COOHCOOH Or $(\mathrm{COOH})_{2}$ Or HOOCCOOH		
	Bonding from C must be to O of OH groups - penalise once only	Allow $\mathrm{CO}_{2} \mathrm{H}$ for COOH in the above		
	IGNORE any names			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(v)	$\mathrm{C}_{2} \mathrm{H}_{2} / \mathrm{CH} \equiv \mathrm{CH} /$ ethyne			1
Or				
$\mathrm{CH}_{2}=\mathrm{CHBr} / \mathrm{CH}_{2} \mathrm{CHBr} /$ bromoethene	1-bromoethene 2-bromoethene	$\mathrm{CH}_{2} \mathrm{BrCH}$ $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Br}$		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(i)	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br} /$ bromoethane (1) (only) monosubstitution occurs (1) Or 1,1 -dibromoethane/ $\mathrm{CH}_{3} \mathrm{CHBr}_{2}$ (1) isomer of B / substitutes onto same carbon/Br (radical) can remove H from either carbon (1)	Side reactions Reaction reaches equilibrium	2	
	Or $1,1,2$-tribromoethane etc. (1) substitution continues/ polysubstitution/reaction continues (1)	Or Butane/C H_{10} (1) Combination of two $\mathrm{C}_{2} \mathrm{H}_{5}$ radicals $\mathbf{(1)}$	The 1st mark is stand alone in each case.	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	$\mathrm{C}_{2} \mathrm{H}_{6}+31 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ Species (1) Balancing (1) IGNORE state symbolsMultiples $\mathrm{CH}_{3} \mathrm{CH}_{3}$ instead of $\mathrm{C}_{2} \mathrm{H}_{6}$	If incorrect hydrocarbon e.g. ethene scores zero	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iii)	simplest (whole number) ratio of the different atoms in a compound/moleculeratio of moles of atoms....	"elements" for "atoms"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iv)	CH_{3}			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 (b) (v)}$	Any alkane formula with odd no. of C atoms other than CH_{4}		1	
This can be a structural, full structural or molecular formula IGNORE names even if incorrect				

