

Mark Scheme (Final) Summer 2008

GCE

GCE Chemistry (6242/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

- 1 / means that the responses are alternatives and either answer should receive full credit.
- 2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
- 3 [] words inside square brackets are instructions or guidance for examiners.
- 4 Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.
- 5 OWTTE means or words to that effect
- 6 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(i)	anode: titanium (1) cathode: steel/Nickel/Ni (1) If both correct but in wrong place max 1		graphite	2

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
1 (a)(ii)	Anode $2Cl^- \rightarrow Cl_2 + 2e^{(-)}$ $2Cl^ 2e^{(-)} \rightarrow Cl_2$	Multiples		2
	Cathode $2H_2O + 2e^{(-)} \rightarrow H_2 + 2OH^{(-)}$ (1)	$2H^{+} + 2e^{(-)} \rightarrow H_2$		
	If both correct but in wrong place max 1			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(iii)	$2H_2O + 2Cl^- \rightarrow H_2 + Cl_2 + 2OH^-$	multiples	$2H^{+}$ +2Cl ⁻ →H ₂ +Cl ₂ Equation with $2e^{(-)}$ on both sides	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(iv)	treatment of (drinking) water Or to kill bacteria in water/swimming pools Or sterilisation of water Or as a disinfectant Or in production/manufacture/making of any one of: PVC bleaches herbicides insecticides/pesticides HCl/hydrochloric acid/hydrogen chloride named chlorinated solvents bromine titanium paper chloroethene poly(chloroethene) CFCs/HCFCs Silicon	as a bleach Or in bleach Or bleach	water purification Or swimming pools Or cleaning anything Or anything else	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	species oxidised chlorine/Cl₂ oxidation product sodium chlorate(I) / NaOCl / OCl ⁻ /chlorate(I) (ions) (1) both required for mark species reduced chlorine / Cl₂ reduction product (sodium) chloride / NaCl / chloride ion/Cl ⁻ (1) both required for mark	Species oxidised Cl (in Cl ₂) ox. prod. sodium hypochlorite Species reduced Cl (in Cl ₂)	Just "chlorate" and "sodium chlorate"	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)	IGNORE SF unless rounded to 1SF moles NaOCl = <u>100</u> = 74.5 1.342 (1) (= moles Cl ₂)	Method using mass: volume ratio 74.5 (g) gives 24 (dm ³) (1) \therefore 100 (g) gives 32.2 dm ³ (1)		2
	volume $Cl_2 = 1.342 \times 24 = 32.2 \text{ dm}^3$ - unit essential (1)	<u>Some</u> common acceptable answers are: 32.16/32/31.2/31 dm ³		
	2 nd mark consequential on moles			
	To get the 2^{nd} mark, must show attempt to calculate moles ie 100 $\div x$			
	Correct answer with no working (2)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a) QWC	enthalpy/heat/energy change when 1 mole (of a substance) (1)	"evolved" instead of "change" "sulphur" or "element" or "species" instead of "substance"	Heat/energy required "compound" instead of "substance"	3
	is completely burned in oxygen / burned in excess oxygen (1)		reacts completely with oxygen Any mention of specific products or specific amounts of products, other than SO ₂ , negates 2 nd mark	
	(all species) at 1 atm/100 kPa/10 ⁵ Pa/ 1 Bar and "a specified temperature" (1)	298 K/ 25 °C /101 kPa Or "a specified temperature e.g. any value"	Just "273 K" Any mention of concentration negates third mark	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(i)	Temperature 400 to 500 (⁰ C) or any value or range within this range inclusive (1)	673 - 773 K or any value or range within this range		3
	Pressure >1 to 5 atm or any value or range within this range inclusive (1)		1 atm or any range that includes 1 atm	
	<u>Catalyst</u> Vanadium(V) oxide / V ₂ O ₅ (1)	vanadium pentoxide	Just "vanadium oxide"	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(ii) QWC	<u>Temperature</u> More molecules/collisions/ particles have E ≥ E _{act} /sufficient energy to react (1)	E > E _{act} "energy barrier" instead of "E _{act} /activation energy"	More atoms	4
	∴ a greater proportion of collisions are successful Or More of the collisions are successful (1)	Collisions more likely to be successful Greater chance of successful More successful collisions per second	just "more successful collisions" "fruitful collisions"	
	IGNORE greater frequency of collision 2 nd mark dependent on 1 st mark UNLESS 1 st mark is not awarded through use of "atoms"			
	<u>Catalyst</u> EITHER: provides alternative route of lower activation energy (1)	"energy barrier" instead of "E _{act} /activation energy"		
	more molecules have E > E _{cat} / a greater proportion of collisions are successful (1) 2 nd mark dependent on mention of lowered activation energy Do not penalise use of "atoms" again	Collisions more likely to be successful Greater chance of successful More successful collisions per second	just "more successful collisions" N.B. Penalise "more collisions are successful" only once "fruitful collisions"	
	OR: provides (active) sites (1) where reactant molecules can bond/be adsorbed (1)		Where reaction can take place	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iii)	reaction exothermic (1)	ΔH negative/reverse reaction is endothermic		2
QWC	equilibrium shifts to the left decreasing the yield (1) 2 nd mark is dependent on the 1 st		Just "equilibrium shifts to the left"	
	and is not consequential. IGNORE Le Chatelier explanations		Just "yield decreases"	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iv) QWC	fewer (gaseous) molecules /particles/moles on the right (1) equilibrium shifts to the right increasing the yield (1) 2 nd mark is dependent on the 1 st and is not consequential. IGNORE Le Chatelier explanations N.B do not penalise omission of either 'equilibrium shifts' or change of yield if already penalised in (iii)		Just "equilibrium shifts to the right" Just "yield increases" Arguments based on volume	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)	$\Delta H = \Delta H_{f} \text{ (products)} - \Delta H_{f}$ (reactants) Or (-814×2) - (-286×2) (1) = -1056 (kJ mol ⁻¹) (1) IGNORE units Correct answer with no working (2) Omission of either or both of ×2 max 1. Hence -242 with some working (1) -1342 with some working (1) -528 with some working (1) (+)1056 with some working (1)		Δ <i>H</i> f vaues added scores zero overall	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	any one of: making fertiliser/ detergents/ paint/ pigment inc TiO ₂ / dyes/ fibres/ plastics/ pharmaceuticals/ explosives OR (in) car batteries OR pickling iron OR anodising Al OR electrolytic refining of		Making soap	1
	copper			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(i)	Any two of (same) general formula 	(Same) general molecular	(Same)	2
	• (successive) members differ by	formula	molecular formula	
	 CH₂ (same) functional group/ 			
	(similar/same) chemical properties/reactions			
	 regular trend in physical properties 		Same physical properties	
	IGNORE "same properties"		Reference to a specific	
			reaction e.g. same reaction with chlorine	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(ii)	alkene(s)		C=C alkane	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(iii)	electrophilic addition (1) both needed			2
	IGNORE heterolytic and penalise homolytic			
	hydrogen chloride/HCl (1)		(Dilute) hydrochloric acid/dilute HCl /HCl(aq)	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	Classification nucleophilic substitution (1)Reagent potassium cyanide/KCN Or sodium cyanide/NaCN (1)Condition 	Cyanide ions/CN ⁻	Cyanide Aqueous alone	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	same molecular formula (1)	Same numbers of each atom		2
	different structural formulae/ displayed formulae/ arrangement of atoms (1)	different structure	different arrangement in space	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(iii)	There are many possibilities e.g.	Accept CH_3 and/or CN e.g.		1
	$ \begin{array}{c} H \\ H - C - H \\ H - C - C = N \\ H - C - H \\ H \end{array} $	CH ₃ H—C—CN CH ₃		
	Or structures including rings / multiple bonds /isonitriles			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)	1-bromopropane faster (1) Stand alone	Reverse statement	Any answer which gives 1-chloropropane as faster scores zero overall	3
	because C-Br bond weaker (than C-Cl) (1)	Reverse argument	If no reference to carbon-halogen bond	
	IGNORE attempted explanations of why C-Br bond weaker			
	therefore lower activation energy/E _{act} (1) [Lower E _{act} must be related to C-X bond]	Reverse argument		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)	$\begin{array}{c c} H & H \\ -C & C \\ CH_3 & Cl \\ \hline \\ 2 \text{ carbon chain with } \\ \text{continuation bonds in repeat } \\ \text{unit (1)} \\ \text{All other atoms correct (1)} \\ \text{IGNORE subscript n} \\ \text{IGNORE where the bond to the } \\ CH_3 \text{ goes e.g.} \\ \downarrow \\ CH_3 \text{ is fine} \\ \end{array}$	If more than one repeat unit given and number of repeat units stated or the repeat unit identified (2) If repeat unit not stated or identified can score 2 nd mark only	3 carbon chain Or Any repeat unit containing a double bond scores zero	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (e)	Restricted rotation around double bond (1)	No rotation/double bond cannot rotate (at room temperature)		2
	1-chloropropene has two different groups on both carbons/each carbon (in the double bond)(but propene does not) (1)	Propene has two identical groups on one carbon (of the double bond) (but 1- chloropropene does not)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	KMnO ₄ /potassium manganate(VII) / potassium permanganate	Sodium analogues	Just "Potassium manganate"	1
	IGNORE any acid or alkali	Or O ₂ followed by aqueous acid		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	1,2(-)dibromoethane			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iii)	EITHER: sodium bromide/NaBr /potassium bromide/KBr (1)	HBr with concentrated/50 % sulphuric (1 only)		2
	(50 %) sulphuric acid/H ₂ SO ₄ / phosphoric acid/H ₃ PO ₄ (1)	concentrated H_2SO_4	Dilute/aqueous sulphuric acid/H₂SO₄	
	OR: (Moist) red phosphorus/P (1)			
	Bromine/Br ₂ (1)	PBr₃ alone (1 only)	PBr3 plus any other reagent (0)	
	2 nd mark is conditional on the 1 st			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iv)	Colour change			3
	from orange to green/blue (1)		to brown	
	Oxidation products (2) any 2 of:			
	$ \begin{array}{c} $	OH instead of O–H		
		If any two of the following given (1 out 2)		
	0-H_0	CH₂OHCHO	CH₂OHCOH	
		СН₂ОНСООН		
		CHOCHO Or OHCCHO	CHOCOH Or OHCCOH	
	Н О-Н	CHOCOOH Or OHCCOOH		
	H-O O-H	COOHCOOH Or (COOH) ₂ Or HOOCCOOH		
	Bonding from C must be to O of OH groups - penalise once only	Allow CO2H for COOH in the above		
	IGNORE any names			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(v)	$C_{2}H_{2}/CH=CH/ethyne$ Or $CH_{2}=CHBr /CH_{2}CHBr/bromoethene$	1-bromoethene 2-bromoethene	CH ₂ BrCH C ₂ H ₃ Br	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(i)	$C_2H_5Br/bromoethane (1)$		Side reactions	2
	(only) monosubstitution occurs (1)		Reaction reaches equilibrium	
	Or			
	1,1-dibromoethane/CH ₃ CHBr ₂ (1)			
	isomer of B / substitutes onto same carbon/Br (radical) can remove H from either carbon (1)			
	Or 1,1,2-tribromoethane etc. (1)			
	substitution continues/ polysubstitution/reaction continues (1)			
	Or Butane/C4H10 (1) Combination of two C2H5 radicals (1)			
	The 1 st mark is stand alone in each case.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	$C_2H_6 + 3\frac{1}{2}O_2 \rightarrow 2CO_2 + 3H_2O$	Multiples	If incorrect hydrocarbon e.g.	2
	Species (1) Balancing (1) IGNORE state symbols	CH_3CH_3 instead of C_2H_6	ethene scores zero	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iii)	simplest (whole number) ratio of the different atoms in a compound/molecule	ratio of moles of atoms	"elements" for "atoms"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(iv)	CH ₃			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(v)	Any alkane formula with odd no. of C atoms other than CH ₄ This can be a structural, full structural or molecular formula			1
	IGNORE names even if incorrect			