Mark Scheme (Final) Summer 2008

GCE

GCE Chemistry (6241/ 01)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

1 I means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
$5 \mathrm{ecf} / T E / c q$ (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(i)	High energy/fast/gun electrons hit/strike OR bombarded by electrons (1) Removes/knocks out /causes loss of electron $O R$ equation e.g. $X \rightarrow X^{+}+e^{(-)}$ OR $X+e \rightarrow X^{+}+2 e$ IGNORE state symbols If knock out is mentioned, hit/strike is not required in $1^{\text {st }}$ mark		Any suggestion that a negative ion is produced score zero overall If just "forms a cation/ positive ion", not sufficient for second mark	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 ~ (a) (i i) ~}$	Mass (1)	Weight		
Charge (1)	Ignore the following: speed kinetic energy size/ volume radius charge density density	Mass: charge ratio OR m/e (1) OR m/z (1)	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)	$\mathbf{1}^{\text {st }}$ mark (stand alone) The mass of an atom (of the isotope) (1) $\mathbf{2}^{\text {nd }}$ mark (stand alone) Relative to ${ }^{1} / 12^{\text {th }}$ the mass of a ${ }^{12} \mathrm{C}$ (atom) OR Relative to ${ }^{12} \mathrm{C}=$ 12(exactly) OR On a scale where C^{12} has a mass of 12 (1) If 'atom' missing from $1^{\text {st }}$ mark it can score if mentioned in $2^{\text {nd }}$ mark	$1^{\text {st }}$ mark The mass of a mole of the isotope (1) $2^{\text {nd }}$ mark Relative to ${ }^{1} / 12^{\text {th }}$ the mass of a mole of ${ }^{12} \mathrm{C}$ OR On a scale where a mole of C^{12} has a mass of 12 g (1) Must mention the word 'mole' at least once in these definitions Answer must be either consistently atoms or moles in order to be awarded both marks	Average mass/ weighted average/ Element instead of isotope	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)	$\begin{aligned} & {[(49.95 \times 4.345)+(51.94 \times} \\ & 83.79)+(52.94 \times 9.501)+(53.94 \times \\ & 2.364)] / 100(\mathbf{1}) \\ & =51.9958 \\ & =52.00 \text { must be to } 4 \mathrm{SF}(\mathbf{1}) \end{aligned}$ Correct answer to 4SF with no working (2) Should not have units but allow $\mathrm{g} \mathrm{mol}^{-1}$ Allow error carried forward only on transcription error of mass or percentage	$\begin{aligned} & 51.99 \text { scores (1) } \\ & \text { not (2) } \end{aligned}$	$\begin{aligned} & 52 \\ & 52.0 \\ & 52.00 \mathrm{~g} \end{aligned}$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)	First ionisation energy of the elements Li to Ne General increase, starting with carbon above boron (1) Dip from N to O only (1)	Lines joining points do not need to be drawn in. a very small drop from N to 0		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)	- The nuclear charge/ proton number increases / becomes more positive (1) -The (inner shell) shielding is the same/ same number of inner shell electrons/ no or little increase in shielding (1) Either Outer electron closer to nucleus /atomic radius decreases / size of atom decreases Or electrons being removed are in same - shell Or - Outer electrons are in same shell (1)Atomic Number increasing	3		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 (c)}$	In boron the extra electron is in a p orbital / new sub-shell (1)	Reverse argument for beryllium	Shell for sub-shell Answers that refer to full shell being Which has extra shielding (by the s orbital electrons) OR Which is at a higher energy (level than the score sorbital in Be) (1)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)	$\mathrm{Mg}^{+}(\mathrm{g}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{e}^{(-)}$ $\mathrm{Mg}^{+}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})$	$\mathrm{X}^{+}(\mathrm{g}) \rightarrow \mathrm{X}^{2+}(\mathrm{g})+\mathrm{e}$ Or any other symbol can score SS mark only	Any other equations score zero	2
	Species (1) State symbols (1)	Ignore (g) as state symbol for e^{-}		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b)(i)	Dative / dative covalent/ co-ordinate	"dative convalent"	J ust "covalent"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	Covalent	Polar covalent	Any reference to hydrogen bonding	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)	Please read complete answer first $1^{\text {st }}$ mark Stand alone The $\mathrm{Mg}^{2+} /$ cation/ Mg ion has (the same charge but) smaller size OR $\mathrm{Mg}^{2+} /$ cation has larger charge density (1) $2^{\text {nd }}$ Mark $\mathrm{Mg}^{2+} /$ cation / Mg ion is more polarising OR Carbonate anion more polarised (1) $3^{\text {rd }}$ mark We are looking for some effect on the carbonate ion of the above Carbon to oxygen bond weakened OR Weakens (covalent) bonds in the carbonate OR electrons in anion pulled towards the cation OR Distorts the electron cloud (around the carbonate)	Reverse argument based on Ba^{2+} $\mathrm{Mg}^{2+} /$ cation / Mg ion has greater polarising power	Mention of molecules and atoms throughout answer scores (0) Penalise omission of ions only once Mention of covalency between metal and carbonate/ electronegativity/ vdW or other intermolecular forces / polarising power of the carbonate ion scores zero for last 2 marks Weakens IONIC BONDS	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	Diagram with Layer made of alternate identified $\mathrm{Na}^{+} /$sodium ion and $\mathrm{I} / \mathrm{iodide}$ ion (1) Extended to more than one layer (1) Also allow (1) (1)	Correct structure with + for Na^{+}and - for l' scores (2) Correct unlabelled structure or with omission of charges scores (1)	If label it NaCl max 1	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
4 (a)(ii)	Ionic radius / Size of ion (1)	Size and charge scores (2)	Any reference to size of element, atoms or molecules loses first	2		
Charge (1)	Charge density Scores (1)	Nuclear charge			\quad	
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iii)	lodide (ion) larger than chloride (ion) (but has same charge) larger ionic radius (1) Note References to iodine and/ or chlorine loses 1 ${ }^{\text {st }}$ mark	Reverse argument	References to atoms, molecules or other forces such as vdW or covalent bonding scores zero overall	2
(So increase distance between centres of charge means forces of attraction are less/ weaker ionic bond OR Cl'has higher charge density so stronger attraction to Na ${ }^{+}$(1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)	In molten (Nal) the ions are free to move (1) (and carry the current) In solid (Nal) the ions are in fixed lattice / fixed position / cannot move(1) Both stand alone	In the solid, there are no mobile charge carriers	Electron movement scores (0)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)	Strong attraction between ions (in liquid) OR Strong forces/ bonds/ ionic bonds (in liquid) Or Lots of energy needed to overcome the ionic attraction or Needs a lot of energy to break ionic bonds (in liquid) (1)	Any reference to lattice/ melting	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (a)(i)	$\mathrm{Cl}_{2}+2 \mathrm{NaBr} \rightarrow \mathrm{Br}_{2}+2 \mathrm{NaCl}$	multiples		1
OR $\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-}$ Ignore state symbols				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(ii)	Disproportionation (1)	Redox Any reasonable spelling	A general definition of disproportionation i.e. no reference to bromine	(Bromine oxidised from 0) goes to +1 and (reduced from 0) goes to -1 (1) These could be shown as annotation on the equation
Answer must be in terms of change of oxidation number. Correct references to gain and loss of electrons are non- scoring points				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (a)(iii)	SO_{2} +4 etc (1) $\mathrm{H}_{2} \mathrm{SO}_{4}$ +6 etc (1) If both S^{4+} and S^{6+} given award $\mathbf{1}$ (out of 2)	$\begin{aligned} & 4+\mathrm{IV}+\mathrm{VV} \text { Four } \\ & 6+\mathrm{VI}+\mathrm{VI} \text { six } \end{aligned}$	$\begin{aligned} & S^{4+} \\ & S^{6+} \end{aligned}$	2

Question Number	Correct Answer	Acceptable Answers	Reject		
$\mathbf{5 ~ (a) (i v) ~}$	The oxidation number of S is increasing (so bromine is acting as an oxidising agent) Or oxidation number of Br is decreasing so it must be acting as an oxidising agent number of) S goes from +4 to +6	If say oxidation number of bromine goes from 0 to -2 score zero	1		
ecf but do not award this					
mark if the ON of S in					
$\mathrm{H}_{2} \mathrm{SO}_{4}$ is shown as less than					
or equal to that in SO in					
(iii)				\quad	(Tidation
:---					

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 (b) (i)}$	$\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{(-)}$ OR $\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}$	multiples		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)(ii)	Correct balanced equation $\begin{equation*} 2 \mathrm{IO}_{3}+5 \mathrm{SO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{I}_{2}+5 \mathrm{SO}_{4}{ }^{2-}+8 \mathrm{H}^{+} \tag{2} \end{equation*}$ If candidate gives this equation with one omission in balancing numbers or one ionic charge, check rest of working to see if this is a transcription error in final answer. If so, award one mark Also allow 1 mark for: $\begin{array}{r} 2 \mathrm{IO}_{3}^{-}+12 \mathrm{H}^{+}+5 \mathrm{SO}_{2}+10 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{I}_{2}+5 \mathrm{SO}_{4}^{2^{-}}+ \\ 20 \mathrm{H}^{+}+6 \mathrm{H}_{2} \mathrm{O}(1) \end{array}$ [There is no consequential marking from (i)]	multiples		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6}$ (a)(i)	(pale) green	apple green yellow(y) green	blue green	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6}$ (a)(ii)	Crimson	Red Scarlet Carmine Depth of red colour e.g.	Red with any other colour e.g. Brick-red Oark red Orange-red Yellow-red Deep red	1
Pale red	Magenta			
Light red				
Bright red				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (b)	$\begin{array}{cc} \hline \mathrm{Ba} & 0 \tag{1}\\ \frac{81.1}{137} & \frac{18.9}{16} \\ =0.592 & =1.18 \\ 1 & 2 \end{array}$ Correct working leading to answer BaO_{2} (1) Working must be shown and final formula given for 2 marks BaO_{2} without working 1 mark	Dividing by 32 scores (0) unless their table is headed by O_{2}, then answer BaO_{2} scores (1) but if this is the case BaO scores (0)	Any answer dividing by atomic number (0) This leads to $\mathrm{Ba}_{2} \mathrm{O}$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 (c) (i)}$	$\mathrm{Ba}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2}$ lgnore state symbols even if they are wrong	Multiples	Equations based on BaO	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 ~ (c) (i i) ~}$	- Gets warm - Effervescence/ fizzing/ bubbles/ mist - Ba sinks/ moves up and down / Does not float Give one mark for observation from each bullet point to max of 2	Bubbles of hydrogen 3 answers given, one wrong scores (1) 3 answers given, two wrong scores zero lgnore mention of Steam/ steamy fumes Ba gets smaller Ba disappears Goes cloudy / precipitate Gas/ hydrogen evolved is not an observation	Reference to flame Melts Dashes about on surface are wrong answers	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6}$ (c)(iii)	Red litmus (goes) blue/ "(\rightarrow) blue" and blue litmus unchanged/ stays blue/ no effect/ nothing			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
7 (a)(i)	8 electrons around each Cl (1) three shared pairs and one lone pair around P (1) If symbols omitted max 1	All dots or all crosses		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{7}$ (a)(ii)		Must be an attempt to draw as a pyramid. Wedge, dashes, both. If draw 3 lines must not look planar	Planar triangular even if no lone pair shown in part (i)	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
7 (a)(iii)	Mark consequentially on part (a)(ii) $1^{\text {st }}$ mark PCl_{3} has 4 pairs of electrons/ 3 bond and 1 lone pair (1) $2^{\text {nd }}$ mark The electron pairs repel to a position of maximum separation / minimum repulsion OR Ip-bp repulsion >bp-bp (1) $3^{\text {rd }}$ mark CH_{4} has 4 bonding pairs of electrons so angle less in PCl_{3} or more in CH_{4} OR CH_{4} has no lone pairs so angle less in PCl_{3} or more in $\mathrm{CH}_{4}(\mathbf{1})$ If in part (ii) they give a structure which is planar triangular they can score full marks for a correct description of why it is planar triangular i.e. PCl_{3} has 3 pairs of electrons (1) The electron pairs repel to a position of maximum separation /minimum repulsion (1) So the angles are 120° for PCl_{3} and CH_{4} has 4 bonding pairs of electrons, so $109(.5)^{\circ}$ for $\mathrm{CH}_{4}(1)$	Phosphorus in PCl_{3} has a lone pair but carbon in CH_{4} has no lone pairs scores first mark	Repulsion of atoms or bonds	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
7 (b)(i)	Ignore sig figs unless they round to 1 sig.fig during calculation Incorrect / absent units in final answer penalise only once in part (i)/ (ii) 7.19 g of $\mathrm{PCl}_{5}=\frac{7.19}{208.5} \mathrm{~mol}$ (1) $(=0.03448)$ (1 mol of PCl_{5} from 1 mol of P) Mass of $\mathrm{P}=0.03448 \times 31=$ 1.07 g (1) Penalise use of Atomic Number only once Answer with no working scores 2	$\begin{aligned} & 2 \times 31 \mathrm{~g} \text { of } \mathrm{P} \\ & \text { produce } 2 \times 208.5 \\ & \mathrm{~g} \text { of } \mathrm{PCl}_{5}(\mathbf{1}) \\ & 7.19 \mathrm{~g} \text { of } \mathrm{PCl}_{5} \text { from } \\ & \frac{2 \times 31 \times 7.19}{2 \times 208.5} \\ & =1.07 \mathrm{~g}(\mathbf{1}) \end{aligned}$ Allow 0.034 but NOT 0.035		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
7 (b)(ii)	Mark consequentially on part (i) Moles of chlorine needed $=$ 0.03448×2.5 (1) $\text { Volume }=24 \times 0.03448 \times$ $2.5=2.07 \mathrm{dm}^{3}(\mathbf{1})-$ Value and unit necessary Value consequential on their calculated/ stated moles of chorine x 24 Answer with no working scores 2	$2 \times 208.5 \mathrm{~g}$ of PCl_{5} produced from $5 \times$ $24 \mathrm{dm}^{3}$ of $\mathrm{Cl}_{2}(1)$ $7.19 \mathrm{~g} \mathrm{PCl}_{5}$ produced from $\frac{5 \times 24 \times 7.19}{2 \times 208.5}=$ $2.07 \mathrm{dm}^{3}$ (1)	J ust $24 \times 2.5=60 \mathrm{dm}^{3}$ scores zero	2

