Mark Scheme (Results) J anuary 2008

GCE

GCE Chemistry (6241) Paper 1

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(i)	Copper $\ldots3 d^{10} 4 s^{1}$	Subscripts/ignore capitals $4 s$ inside 3d	$3 d^{9} 4 s^{2}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(ii)	Bromide ion $\ldots . . .3 d^{10} 4 s^{2} 4 p^{6}$	Subscript/ignore capitals $4 s$ inside 3d	4 p inside 3d	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	The average mass (taking into account the abundance of each isotope) of the atoms (of that element) (1)	Weighted/ mean in place of average		
relative to $1 / 12^{\text {th }}$ the (mass of a) carbon 12 atom Or relative to ${ }^{12} \mathrm{C}=12$ (exactly) (1) second mark stand alone must be mentioned at least once to score (2)	Average mass of a mole of atoms of an element relative to $1 / 12^{\text {th }}$ mole of Cre $^{12} /$ relative to one mole of ${ }^{12} \mathrm{C}$ $=12$ (exactly) (2)			

Question	Correct Answer				Acceptable Answers	Reject	Mark
1.(d)(i)						Use of atomic	
	Cu	C	0	H		number scores 0	
	57.5	$\underline{5.40}$	36.2	0.900			
	63.5			1			
	0.906	0.450	2.26	0.900			
	2.01	1	5.02	2.00			
	Empirical formula $\mathrm{Cu}_{2} \mathrm{CO}_{5} \mathrm{H}_{2}$ (1) for dividing by atomic mass (1) stating empirical formula				Correct answer without working scores (2)		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)(ii)	Empirical formula mass $=221=\mathrm{M}_{\mathrm{r}}$ Molecular formula $\mathrm{Cu}_{2} \mathrm{CO}_{5} \mathrm{H}_{2}$	If use atomic number in(i) allow mark for $\mathrm{Cu}_{2} \mathrm{CO}_{5} \mathrm{H}$ and 220		
	Must show use of 221	Allow any formula that adds up to the correct molecular formula		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)	(Highest $\left.={ }^{65} \mathrm{Cu}+2{ }^{3 /} \mathrm{Cl}\right)=139(\mathbf{1)}$ $\left(\begin{array}{l}\left.\text { Lowest }={ }^{63} \mathrm{Cu}+2{ }^{35} \mathrm{Cl}\right)=133 \text { (1) } \\ \text { lgnore units }\end{array}\right.$			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
$\mathbf{2 . (a)}$	Lithium carmine/ red/ magenta/ crimson Any combination of these or prefaced by deep or dark Potassium: lilac Sodium: yellow	scarlet	Brick-red			
mauve or purple						
orange or yellow-						
orange						
All three correct						
Two correct	$\mathbf{1}$ marks				\quad	2
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	Electrons (absorb heat energy and) are promoted (to higher level) (1)	'Excited' any phrase that implies movement to higher level	If answer based on absorption spectra scores zero	
	They drop back and emit light/ radiation (of characteristic colour) (1)	ignore references to shells, sub-shells, etc.	Colour or energy	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(i)	LiCl $+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{LiHSO}_{4}+\mathrm{HCl}$ Ignore state symbols	Multiples $2 \mathrm{LiCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Li}_{2} \mathrm{SO}_{4}$ +2 HCl		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(ii)	$\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$	Multiples		
	$\mathrm{CO}_{3}{ }^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} / \mathrm{H}_{2} \mathrm{CO}_{3}$	$\mathrm{~K}_{2} \mathrm{CO}_{3}+2 \mathrm{HNO}_{3} \rightarrow$		
	$\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{HCO}_{3}{ }^{-}$	$\mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{CO}_{3}$		
	Ignore state symbols and spectator ions	$\mathrm{KHCO}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{KNO}_{3}+$		
			1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(iii)	Nal $+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgI}+\mathrm{NaNO}_{3}$ gnore state symbols and spectator ions	Multiples $\mathrm{Ag}^{+}+I^{-} \rightarrow \mathrm{AgI}$		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)(i)	The beryllium ion would be (very) small (1)	Allow Be ${ }^{2+}$ has a large charge to size ratio/large charge density and would polarise chloride ions (producing sharing of electrons / covalency) (1)	Answers that refer to polarisation of atoms score zero	
	Distort for polarise OR Difference in electronegativity small for chloride ion l similar (1) Therefore share (pair of) electrons / no electron transfer (1)	Answers that refer to electronegativity of ions score zero		
If both routes given. Mark both out of 2 and then score higher hark.		2		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2. (d)(ii)	$: \ddot{\mathrm{Cl}}: \mathrm{Be}: \ddot{\mathrm{Cl}}$ Ignore shape and inner electrons if correct	All dots or all crosses or mixture of both Polymer with continuation bonds	Dimer Ionic formula	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	- Diagram showing correct covalent and hydrogen bonds (1) - Linear around at least two H and water shown as ' v ' shaped (1) - $\delta^{+} H$ and $\delta^{-} O(1)$ must be shown across at least one hydrogen bond	If only two water molecules shown $\max 2$ marks Blobs for O and H provided correct δ^{+} / δ^{-} shown Ignore a slip in partial charges provided not part of hydrogen bond	If use $\mathrm{O}_{2} \mathrm{H}$ allow third mark only If any H bond shown between two oxygens or two hydrogens	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)	Each water can form more hydrogen bonds (than each hydrogen fluoride molecule) (1)	Each water molecule can form two hydrogen bonds, HF can only form one	Just 'H bonds in water are stronger' Is not good enough to score the mark	
	Each water molecule can form four hydrogen bonds HF can only form two	So more energy is needed to break the hydrogen bonds in water/ separate molecules (hence higher boiling temperature) (1) "Intermolecular force" for "hydrogen bond"	Any reference to breaking covalent bonds/ bonds in the mole is stand alone unless wrong intermolecular force identified in first zart e.g. vdw	zero.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)(i)	$\left(\begin{array}{l}\text { I } \\ \text { Must attempt to draw as a pyramid - } \\ \text { wedge or dash or both. If three lines } \\ \text { drawn must not look planar } \\ \text { Ignore name unless "planar" }\end{array}\right.$		Ignore omission of + sign in diagram	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)(ii)	Any number from 105 to 108 inclusive. Mark independently of (c)(i)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)(iii)	Repulsion between the $\mathrm{H}_{3} \mathrm{O}^{+}$and the H^{+}	They are both cations so repulsion OR They are both positive so repulsion		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
4.(a)	Substance that can lower/ reduce the oxidation number (of an element in another substance) Ignore references to loss or gain of electrons unless contradictory.	Substance containing an element whose oxidation number is increased (in a reaction) OR Causes a decrease in the oxidation number of the molecule/ species it reacts with OR The reducing agent's oxidation number increases	The oxidation number goes down	A definition of redox	\quad	
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(i)	$2 \mathrm{ClO}^{-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{(-)} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Ignore state symbols and \rightleftharpoons	Or multiples " $\mathrm{e}^{(-) "}$ on RHS		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(ii)	$2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{(-)}$ Ignore state symbols and \rightleftharpoons	Or multiples " $-2 \mathrm{e}^{(-) "}$ on LHS		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(c)	$\mathrm{ClO}^{-}+\mathrm{Cl}^{-}+2 \mathrm{H}^{+} \rightarrow \quad \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$ Stand alone not consequential on (b) Ignore state symbols and \rightleftharpoons	Or multiples		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(d)	White/ misty/ steamy fumes Mauve/ purple/ violet/ (iodine) vapour/gas/ fumes Black solid Any two of above Ignore any yellow solid/ bubbling/fizzing Ignore non-visible observations e.g. getting hot	lilac	White smoke	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(e)(i)	$2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$	Or multiples		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4. (e)(ii)	Oxidation numbers all correct (1) Start +5 - Chlorine reduced as oxidation number decreases/ changes from +5 to -1 (1) Oxygen oxidised as oxidation number increases/ changes from -2 to 0 (1) Oxidation number mark may be awarded if included within explanations. Penalise omission of reference to oxidation or reduction once $2^{\text {nd }}$ and $3^{\text {rd }}$ marks are consequential on stated oxidation numbers.	Allow 5+, 2-, 1- Allow V, -II, -I Correct identification of O as oxidised and Cl as reduced scores (2) provided oxidation number change is in the correct direction for both even if actual numbers wrong.	$\mathrm{Cl}^{5+}, \mathrm{Cl}^{-1} \cdot \mathrm{O}^{-2}$	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 . (a) (i)}$	The ability of an atom/ element/ species to attract the electrons (1)	"Power/ extent" instead of "ability" "pulls toward/ draws" instead of "attract"	Molecule	
in a covalent bond/ bond pair/ shared electrons (1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
5.(a)(ii)	The molecule is symmetrical / tetrahedral (1)	Too small a difference in electronegativity				
So bond polarity/ dipoles cancels OR centres of positive and negative charge coincide (1) - stand alone	Diagrams showing vectors	Charge cancels			\quad	2
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 . (a) (i i i) ~}$	Dispersion/ Induced dipole / London OR temporary/ instantaneous dipole	van der Waals/ vdw	Dipole-dipole	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(b)(i)	Ignore sig. figs UNLESS rounded to 1SF $\begin{aligned} & 700 \mathrm{~g} \mathrm{TMP}=\frac{700}{114}(\mathbf{1})=6.14 \mathrm{~mol} \\ & \text { Moles of oxygen }=12.5 \times 6.14(\mathbf{1})= \\ & 76.75 \end{aligned} \begin{aligned} \text { Volume of oxygen } & =12.5 \times 6.14 \times 24 \\ & =1842 \mathrm{dm}^{3}(\mathbf{1}) \end{aligned}$ Units essential Working must be checked i.e. $3.07 \times 25 \times 24=1842 \mathrm{dm}^{3}(\mathbf{2})$ $3.07 \times 12.5 \times 24=921 \mathrm{dm}^{3}(\mathbf{1})$ OR 228 g of TMP need $25 \times 24 \mathrm{dm}^{3}$ of oxygen (1) $\therefore 700 \mathrm{~g}$ of TMP need $\frac{25 \times 24 \times 700}{228}$ of oxygen(1) $=1842 \mathrm{dm}^{3}(\mathbf{1})$ Units essential [Working must be checked]	$1840 / 1800 \mathrm{dm}^{3}$ 1830 if 6.14 rounded to 6.1	$\text { Moles } \begin{aligned} 2 \mathrm{C}_{8} \mathrm{H}_{18} & =\frac{700}{228} \\ & =3.07 \end{aligned}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5. (b)(ii)	Ignore sig. figs UNLESS rounded to 1SF Moles of $\mathrm{CO}_{2}=8 \times 6.14(\mathbf{1})=49.12$ Mass of $\mathrm{CO}_{2}=8 \times 6.14 \times 44=2161 \mathrm{~g}(1)$ Units essential but don't penalise if already penalised in (i) OR 228 g of TMP give $44 \times 16 \mathrm{~g} \mathrm{CO}_{2}$ (1) $\therefore 700 \mathrm{~g}$ of TMP give $\frac{44 \times 16 \times 700}{228} \mathrm{~g}$ of CO_{2} $=2161 \mathrm{~g}(\mathbf{1})$ Could be consequential on (i)	$\begin{array}{\|l} 2160 / 2200 \\ \text { or } 2147 / 2150 / 2100 \\ \text { if } 6.14 \text { rounded to } 6.1 \end{array}$		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(a)	Energy/ Enthalpy/ heat change per mole for the (1) Removal of one electron (per atom) (1) From 1 mole of gaseous atoms (1) If wrong equation given with a correct definition (max 2)	"Required" instead of change" X(g) $\rightarrow \mathrm{X}^{+}(\mathrm{g})+\mathrm{e}^{(-)}$can score last 2 marks		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(b)	Increase in shielding/ screening (1) Increase in nuclear charge/ more protons/ atomic number (1) Increase in distance (of outermost electron)/ larger atomic radius OR (increase in) shielding outweighs nuclear charge (increase) (1) Ignore references to: effective nuclear charge OR nuclear attraction	Electron at higher energy level		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(c)(i)	Na:Mg:Al metallic (structure) Si giant atomic (structure) P:S:Cl:Ar simple molecular All three correct 1 mark			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(c)(ii)	strong covalent bonds (1) (throughout the lattice and lots of energy) need to break many bonds (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 . (c) (i i i)}$	Aluminium supplies more electrons (per atom)/ Al ion is more highly charged/ Al ion is smaller/ Al ion has a higher charge density (1)	Reverse for Na		
The (attractive) forces between the aluminium ions and the electrons are stronger/require more energy to break than in the case of sodium. (1)	Any reference to bonding other than metallic bond/ sea of electrons/ delocalised system	2		

