

Mark Scheme January 2008

GCE

GCE Chemistry (8080/9080)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Services on + 44 1204 770 696, or visit our website at www.edexcel-international.org.uk.

January 2008

All the material in this publication is copyright $\ensuremath{^\odot}$ Edexcel Ltd 2008

Contents

1.	Unit 6241/01 Mark Scheme	1
2.	Unit 6242/01 Mark Scheme	13
3.	Unit 6243/01A Mark Scheme	23
4.	Unit 6243/02 Mark Scheme	29
5.	Unit 6244/01 Mark Scheme	37
6.	Unit 6245/01 Mark Scheme	53
7.	Unit 6246/01A Mark Scheme	63
8.	Unit 6246/02 Mark Scheme	69

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

- 1 / means that the responses are alternatives and either answer should receive full credit.
- 2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
- 3 [] words inside square brackets are instructions or guidance for examiners.
- 4 Phrases/words in **bold** indicate that the meaning of the phrase or the actual word is **essential** to the answer.
- 5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

6241/01

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(i)	Copper 3d ¹⁰ 4s ¹	Subscripts/ignore capitals 4s inside 3d	3d ⁹ 4s ²	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(ii)	Bromide ion 3d ¹⁰ 4s ² 4p ⁶	Subscript/ignore capitals 4s inside 3d	4p inside 3d	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	The average mass (taking into account the abundance of each isotope) of the atoms (of that element) (1)	Weighted/mean in place of average		
		Atoms must be mentioned		
	relative to 1/12 th the (mass of a) carbon 12 atom	at least once to score (2)		
	Or relative to ¹² C = 12 (exactly) (1) second mark stand alone	Average mass of a mole of atoms of an element relative to 1/12 th mole of C ¹² /		
		relative to one mole of ¹² C = 12 (exactly) (2)		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)	<u>[62.93 x 69.17] + [64.93 x 30.83]</u> (1) 100	63.54 with some working scores (1)		
	= 63.55 (1) must be to 2 decimal places	Correct answer alone scores (2)		
	cq only on transcription error e.g. 69.71 provided answer to 2 d.p.	Answer should have no unit, but allow unit of "g mol ⁻¹ " but not "grams" or "g"		
				2

Question Number		Cor	rect Ans	swer	Acceptable Answers	Reject	Mark
1.(d)(i)	Cu <u>57.5</u> 63.5 0.906 2.01 Empiric. (1) for c (1) stat		by atom	nic mass	Correct answer without working scores (2)	Use of atomic number scores 0	2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(d)(ii)	Empirical formula mass = 221 = M _r	If use atomic number in(i)		
	Molecular formula Cu ₂ CO ₅ H ₂	allow mark for Cu ₂ CO ₅ H and		
		220		
	Must show use of 221			
		Allow any formula that		
		adds up to the correct		
		molecular formula		
				1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)	(Highest = ${}^{65}Cu + 2 {}^{37}CI$) = 139 (1) (Lowest = ${}^{63}Cu + 2 {}^{35}CI$) = 133 (1)			
	Ignore units			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	Lithium carmine/ red/ magenta/ crimson Any combination of these or prefaced by deep or dark	scarlet	Brick-red	
	Potassium: lilac	mauve or purple		
	Sodium: yellow	orange or yellow- orange		
	All three correct2 marksTwo correct1 mark			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	Electrons (absorb heat energy and) are promoted (to higher level) (1)	'Excited' any phrase that implies movement to higher level	If answer based on absorption spectra scores zero	
	They drop back and emit light/radiation (of characteristic colour) (1)	ignore references to shells, sub-shells, etc.	Colour or energy	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(i)	$LiCI + H_2SO_4 \rightarrow LiHSO_4 + HCI$	Multiples		
	Ignore state symbols	$\begin{array}{l} 2LiCI + H_2SO_4 \to Li_2SO_4 \\ + 2HCI \end{array}$		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(ii)	$K_2CO_3 + 2HNO_3 \rightarrow 2KNO_3 + H_2O + CO_2$	Multiples		
	$\mathrm{CO_3}^{2-}$ + 2H ⁺ \rightarrow H ₂ O + CO ₂ /H ₂ CO ₃	$K_2CO_3 + 2HNO_3 \rightarrow$		
	$\text{CO}_3^{2^-} + \text{H}^+ \rightarrow \text{HCO}_3^-$	$2KNO_3 + H_2CO_3$		
		$K_2CO_3 + HNO_3 \rightarrow KNO_3 + KHCO_3$		
	Ignore state symbols and spectator			
	lons			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(iii)	Nal + AgNO ₃ \rightarrow AgI + NaNO ₃	Multiples		
	Ignore state symbols and spectator ions	$Ag^{+} + I^{-} \rightarrow AgI$		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number			_	
2.(d)(i)	The beryllium ion would be (very) small (1)	Allow Be ²⁺ has a large charge to size ratio/large charge density	Answers that refer to polarisation of atoms score zero	
	and would polarise chloride ions (producing sharing of electrons / covalency) (1)	Distort for polarise Anion for chloride ion		
	OR Difference in electronegativity small /similar (1) Therefore share (pair of) electrons / no electron transfer (1) <i>If both routes given. Mark both out of</i>		Answers that refer to electronegativity of ions score zero	
	<i>2 and then score higher hark.</i>			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)(ii)	 :CI : Be: CI: 	All dots or all crosses or mixture of both	Dimer Ionic formula	
	Ignore shape and inner electrons if correct	Polymer with continuation bonds		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	 Diagram showing correct covalent and hydrogen bonds (1) 	If only two water molecules shown max 2 marks	If use O ₂ H allow third mark only	
	 Linear around at least two H and water shown as 'v' shaped (1) 			
	• δ^+ H and δ^- O (1) must be shown across at least one hydrogen bond δ^- δ^+ O H δ^- H δ^+ δ^+ δ^+ δ^+ H H $\delta^ \delta^+$ δ^- δ^+ δ^+ δ^+ H H δ^+ $\delta^ \delta^ \delta^-$ H $\delta^ \delta^ \delta^-$	Blobs for O and H provided correct δ^+/δ^- shown Ignore a slip in partial charges provided not part of hydrogen bond	If any H bond shown between two oxygens or two hydrogens	
				3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)	Each water can form more hydrogen bonds (than each hydrogen fluoride molecule) (1)	Each water molecule can form two hydrogen bonds, HF can only form one Each water molecule can form four hydrogen bonds HF can only form two	Just 'H bonds in water are stronger' Is not good enough to score the mark	
	So more energy is needed to break the hydrogen bonds in water/separate molecules (hence higher boiling temperature) (1) 2 nd mark is stand alone unless wrong intermolecular force identified in first part e.g. vdw	"Intermolecular force" for "hydrogen bond"	Any reference to breaking covalent bonds/bonds in the molecule scores zero.	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)(i)	$\left(\begin{array}{c} 0\\ H\\ H\end{array}\right)^{+}\left(\begin{array}{c} 0\\ H\\ H\end{array}\right)^{+}\left(\begin{array}{c} 0\\ H\\ H\end{array}\right)^{+}\right)^{+}$ Must attempt to draw as a pyramid - wedge or dash or both. If three lines drawn must not look planar Ignore name unless "planar"	lgnore omission of + sign in diagram		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)(ii)	Any number from 105 to 108 inclusive. Mark independently of (c)(i)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)(iii)	Repulsion between the H_3O^+ and the H^+	They are both cations so repulsion OR They are both positive so repulsion		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)	Substance that can lower/reduce the oxidation number (of an element in another substance) Ignore references to loss or gain of electrons unless contradictory.	Substance containing an element whose oxidation number is increased (in a reaction) OR Causes a decrease in the oxidation number of the molecule/species it reacts with OR The reducing agent's oxidation number increases	The oxidation number goes down A definition of redox	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(i)	$2\text{CIO}^- + 4\text{H}^+ + 2\text{e}^{(-)} \rightarrow \text{CI}_2 + 2\text{H}_2\text{O}$	Or multiples		
	Ignore state symbols and \Rightarrow	"-2e ^{(-)"} on RHS		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(ii)	$2CI^{-} \rightarrow CI_2 + 2e^{(-)}$	Or multiples		
	Ignore state symbols and \Rightarrow	"-2e ^{(-)"} on LHS		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(c)	$CIO^{-} + CI^{-} + 2H^{+} \rightarrow CI_{2} + H_{2}O$	Or multiples		
	Stand alone not consequential on (b)			
	Ignore state symbols and \Rightarrow			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(d)	White/misty/steamy fumes		White smoke	
	Mauve/purple/violet/ (iodine) vapour/gas/fumes	lilac		
	Black solid	(shiny) grey solid	Just 'dark solid' precipitate	
	Any two of above			
	Ignore any yellow solid/ bubbling/fizzing			
	Ignore non-visible observations e.g. getting hot			2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4.(e)(i)	$2\text{KCIO}_3 \rightarrow 2\text{KCI} + 3\text{O}_2$	Or multiples		
				1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(e)(ii)	Oxidation numbers all correct (1) Cl O Start +5 -2 End -1 O Chlorine reduced as oxidation number decreases/ changes from +5 to -1 (1) Oxygen oxidised as oxidation number increases/changes from -2 to 0 (1) Oxidation number mark may be awarded if included within explanations. Penalise omission of reference to oxidation or reduction once 2 nd and 3 rd marks are consequential on stated oxidation numbers.	Allow 5+, 2-, 1- Allow V, -II, -I Correct identification of O as oxidised and CI as reduced scores (2) provided oxidation number change is in the correct direction for both even if actual numbers wrong.	CI ⁵⁺ , CI ^{-1 ,} O ⁻²	
				3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(i)	The ability of an atom/element/ species to attract the electrons (1)	"Power/extent" instead of "ability" "pulls toward/draws" instead of "attract"	Molecule	
	in a covalent bond/bond pair/shared electrons (1)			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(ii)	The molecule is symmetrical / tetrahedral (1)		Too small a difference in electronegativity	
	So bond polarity/dipoles cancels OR centres of positive and negative charge coincide (1) - stand alone	Diagrams showing vectors	Charge cancels	2
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(iii)	Dispersion/Induced dipole /London OR	van der Waals/vdw	Dipole-dipole	
	temporary/instantaneous dipole		Hydrogen bond	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
Number 5.(b)(i)	Ignore sig. figs UNLESS rounded to 1SF 700 g TMP = $\frac{700}{114}$ (1) = 6.14 mol Moles of oxygen = 12.5 x 6.14 (1) = 76.75 Volume of oxygen = 12.5 x 6.14 x 24 =1842 dm ³ (1) Units essential Working must be checked i.e. 3.07 x 25 x 24 = 1842 dm ³ (2) 3.07 x 12.5 x 24 = 921 dm ³ (1) OR 228 g of TMP need 25 x 24 dm ³ of oxygen (1) \therefore 700 g of TMP need $\frac{25 \times 24 \times 700}{228}$ of oxygen(1) = 1842 dm ³ (1) Units essential [Working must be checked]	1840/1800 dm ³ 1830 if 6.14 rounded to 6.1	Moles $2C_8H_{18} = \frac{700}{228}$ = 3.07	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(b)(ii)	Ignore sig. figs UNLESS rounded to 1SF			
	Moles of $CO_2 = 8 \times 6.14$ (1) = 49.12	04 (0 (0000		
	Mass of CO ₂ = 8 x6.14 x44 = 2161 g (1) Units essential but don't penalise if already penalised in (i)	2160/2200 or 2147 / 2150 / 2100 if 6.14 rounded to 6.1		
	OR 228 g of TMP give 44 x 16 g CO ₂ (1)			
	∴ 700g of TMP give <u>44 x 16 x 700</u> g 228			
	of CO ₂ = 2161 g (1)			
	Could be consequential on (i)			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(a)	Energy/Enthalpy/heat change per mole for the (1)	"Required" instead of "change"		
	Removal of one electron (per atom) (1)	$X(g) \rightarrow X^{+}(g) + e^{(-)} can$ score last 2 marks		
	From 1 mole of gaseous atoms (1)			
	If wrong equation given with a correct definition (max 2)			
				3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(b)	Increase in shielding/screening (1) Increase in nuclear charge/more protons/atomic number (1) Increase in distance (of outermost electron)/larger atomic radius OR (increase in) shielding outweighs nuclear charge (increase) (1) Ignore references to: effective nuclear charge OR nuclear attraction	Electron at higher energy level		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
	Na:Mg:Al metallic (structure) Si giant atomic (structure) P:S:Cl:Ar simple molecular All three correct 1 mark			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(c)(ii)	strong covalent bonds (1) (throughout the lattice and lots of energy) need to break many bonds (1)			
				2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(c)(iii)	Aluminium supplies more electrons (per atom)/Al ion is more highly charged/Al ion is smaller/ Al ion has a higher charge density (1) The (attractive) forces between the aluminium ions and the electrons are stronger/require more energy to break than in the case of sodium. (1)	Reverse for Na	Any reference to bonding other than metallic bond/ sea of electrons/ delocalised system	2

6242/01

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)	bauxite			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	electrodes	Anode / cathode	A reducing agent Just "to form carbon dioxide"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)(i)	$AI^{3+} + 3e^{(-)} \rightarrow AI$	Multiples	Equilibrium	1
	Ignore state symbols unless (aq)	Al ³⁺ → Al - 3e ⁽⁻⁾		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)(ii)	Oxidation (1) Stand alone loss of electrons (from O ²⁻ ions) (1) Conditional on first mark	oxidisation	Oxidising / redox in terms of ox. no. Oxygen molecules or O ₂ or wrong formula for ion	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)	900 (^o C)	800 - 1000 (°C) any range or number within this range (inclusive) value in kelvin (1073 - 1273) provided unit given		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)	to dissolve the aluminium oxide/alumina/Al ₂ O ₃ Or As a solvent		To dissolve bauxite. Just "lowers melting point (of aluminium oxide)". Any reference to catalysts scores 0.	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)	(Generation of) electricity/or electrical energy. Ignore any reference to heat.			1

Question Number	Correct A	nswer	Acceptable Answers	Reject	Mark
1.(g)	Any one correct use link property:	ed to appropriate			1
	<u>Use</u> Planes:	<u>Property</u> low density high strength to weight ratio(1)	(Superstructure of) ships	"light" if used instead of "low density" "Light and strong"	
	bicycle frames/parts	low density (1)	Light for its strength	"Light but strong"	
	car bodies/engines	low density /does not corrode/oxidise (1)	Protected by oxide layer	Rust if used instead of corrode	
	window/ greenhouse frame	does not corrode/ easily extruded (1)	protected by oxide layer		
	cans	do not corrode/ do not react with contents/ acids high strength to weight ratio.	Protected by oxide layer	Do not react with water Easy to recycle	
	pans	good heat conductor (1)			
	(cooking) foil	good heat conductor / good reflector (1)			
	power cables	high/good conductivity / low density (1)		Electric wiring	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	N/N ₂ goes from 0 to -3 = reduction (1) H/H ₂ goes from 0 to (+)1 = oxidation (1)	If "the oxidation number of N goes down hence reduced and the oxidation number of H goes up and hence oxidised" (max 1) If all O.N. correct but fails to state which is oxidation and which is reduction scores 1.	If all O.N. correct but both reactions misclassified, scores zero. Any answer not referring to nitrogen or hydrogen scores zero.	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(i)	Calculation of bonds broken $463 \times 3+944/$ (=2252) (1) Calculation of bonds made $388 \times 6/$ (=2328) (1) $\Delta H = -76$ (kJ mol ⁻¹) (1) mark consequential on numerical values calculated above	Correct answer with some working scores 3 marks Correct answer alone scores 2 marks		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(ii)	Average / mean bond enthalpy used for N-H bond / ammonia		Just "average bond enthalpies used"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(iii)	<u>Thermodynamic:</u> energy level of products lower than that of reactants OR energy released in bond formation > energy used to break bonds (1) <u>kinetic:</u> high activation energy (1)	Δ <i>H</i> negative / reaction exothermic		3
	because strong N=N (1) [confusion between thermodynamic and kinetic loses first 2 marks].	because N≡N is 944/ total bond breaking energy is high/2252(kJmol ⁻¹)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(i) Q W C	<u>One way</u> temperature increase therefore molecules have greater (average kinetic) energy (1)	moving faster		6
	more molecules/collisions have E ≥E _{act} (1) Therefore a greater proportion of/ more of the collisions are successful (1) Ignore greater frequency of collision	E > E _{act} particles for molecules greater frequency of successful collisions/ more successful conditions per unit	just "more successful collisions"	
	<u>Another way</u> addition of (iron) catalyst (1)	time platinum catalyst	incorrect catalyst	
	provides alternative route of lower activation energy (1)			
	EITHER: A greater proportion of /more of the molecules/collisions have $E \ge E_{cat}/a$ greater proportion of collisions are successful		just "more successful collisions"	
	OR provides (active) sites (where reactant molecules can bond / be adsorbed) (1)			
	Ignore any answers referring to pressure or concentration. Do not penalise just "more collisions are successful" more than once			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(ii) Q W C	Decrease temperature(1) because (forward) reaction exothermic (1) increase pressure (1) because more moles (of gas) on left (1)	Low temperature Δ <i>H</i> is negative High pressure Molecules for moles	Answer based on endothermic reaction scores 0	4

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2.(d)(i)	(cool to) condense / liquefy		Just "cool"	1
	OR cool to below critical temperature			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)(ii)	Recycle (the unreacted gases) OWTTE			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(i)	2-bromobutane the "2" must be in front of "bromo" Ignore punctuation and capitals			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(ii)	CH ₃ CHBrCH ₂ CH ₃ + KOH → CH ₃ CHOHCH ₂ CH ₃ + KBr	C_2H_5 instead of CH_2CH_3	eqns with NaOH	1
	OR CH ₃ CHBrCH ₂ CH ₃ + OH ⁻ \rightarrow CH ₃ CHOHCH ₂ CH ₃ + Br ⁻	Allow K^* as spectator ion		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(iii)	water / H ₂ O / aqueous ethanol	C ₂ H₅OH (aq) / aqueous alcohol/KOH(aq)/aqueous Do not penalise use of NaOH(aq) again	just "ethanol / ethanolic / alcoholic (KOH)"	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3.(a)(iv)	nucleophilic substitution	reasonable phonetic		1
	(both needed)	spelling		

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3.(b)(i)	$CH_3CHBrCH_2CH_3 + OH^- \rightarrow CH_3CH=CHCH_3$			1
	$+ H_2O + Br^{-}$			
	OR			
	$CH_3CHBrCH_2CH_3 + OH^- \rightarrow$	C_2H_5 instead of CH_2CH_3		
	$CH_2 = CHCH_2CH_3 + H_2O + Br^-$			
	Double bond need not be shown	Ignore spectator ions		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(ii)	Ethanol / C ₂ H ₅ OH / CH ₃ CH ₂ OH / H H H $-$ C $-$ C $-$ OH H H	Alcohol OR Ethanolic/alcoholic KOH/NaOH	C ₂ H ₆ O Any mention of water/aqueous	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3.(b)(iii)	elimination		electrophilic	1
	ignore "nucleophilic"		elimination	

Question Number	Correct Answer				Acceptable Answers	Reject	Mark
3.(c)(i)	CH ₃ C=	=C_H3	CH ₃ C=	=C_H CH ₃	bond to H of CH ₃ on left carbon structure with 90° bond angles		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)(ii)	no / restricted rotation around double	limited rotation		2
	bond / C=C / π - bond (1) has two different groups joined to each C (of double bond) OR each (carbon of C=C) has a CH ₃ and a H (1)		on the carbon	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(d)(i)	nickel / Ni			1
	OR platinum / Pt			
	OR palladium / Pd			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(d)(ii)	butane / CH ₃ CH ₂ CH ₂ CH ₃	C_2H_5 for CH_3CH_2	JUST "C ₄ H ₁₀ "	1
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(e)(i)	CH ₃ CHBrCH ₂ CH ₃ + 2NH ₃ → CH ₃ CHNH ₂ CH ₂ CH ₃ + NH ₄ Br OR CH ₃ CHBrCH ₂ CH ₃ + NH ₃ → CH ₃ CHNH ₃ ⁺ CH ₂ CH ₃ + Br ⁻	CH ₃ CHBrCH ₂ CH ₃ + NH ₃ → CH ₃ CHNH ₂ CH ₂ CH ₃ + HBr		1
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(e)(ii)	excess / concentrated / ethanolic ammonia	heat in sealed tube	Just "heat" Just "sealed tube"	1
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(e)(iii)	$\frac{74.4}{12}: \frac{14.7}{1}: \frac{10.9}{14} (1) (= 6.2: 14.7: 0.779)$ $\frac{6.2}{0.779}: \frac{14.7}{0.779}: \frac{0.779}{0.779} = 8:19:1$ so $C_8H_{19}N$ (1)	Correct answer alone scores (2)	dividing by atomic number scores zero	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)(i)	ΣΔH _f (products) - ΣΔH _f (reactants) / [(-394) + (2 x -242)] - (-75) (1)	correct answer without working scores (2)	any positive value scores zero	2
	= -803 (kJ mol ⁻¹) (1)	-561 (kJ mol ⁻¹) scores (1)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)(ii)	(under standard conditions) water condenses / is a liquid (more heat evolved)	Reverse argument Water is not in its standard state	Any answer in terms of average bond energies Just "conditions are not standard"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)(iii) Q W C	Any 4 of: H ₂ better because: cheaper per kJ (1) more energy per gram / less weight/mass to carry for same energy (1) no CO ₂ /only H ₂ O produced (at point of use) (1)	converse argument	Just "cheaper" Just "more energy" Just "hard to store"	4
	H ₂ worse because: gas storage needs pressurised/large containers (1) which are heavy (1) needs to be cooled to very low temperature to be liquefied (1) Ignore problems with refuelling		Hydrogen is flammable/ dangerous/explosive	
L		-1	ļ	
Question	Correct Answer	Acceptable Answers	Reject	Mark

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4.(b)(i)	$ \begin{array}{c} H \\ H \\ -C \\ H \end{array} \begin{array}{c} C \\ -C \\ H \end{array} \begin{array}{c} H \\ O \\ (1) \end{array} \begin{array}{c} H \\ -C \\ -C \\ H \end{array} \begin{array}{c} O \\ -C \\ -C \\ O \\ -H \end{array} \begin{array}{c} O \\ (1) \end{array} \begin{array}{c} H \\ O \\ -H \end{array} \begin{array}{c} O \\ (1) \end{array} $	-OH for -O — H		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(ii)	structural formula of any tertiary alcohol (1) and its name (1) - must not contradict the formula and conditional on tertiary alcohol	2 nd mark can be awarded if minor slip in formula or no formula given		2
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(c)	(concentrated) sulphuric acid / H ₂ SO ₄ OR phosphoric acid / H ₃ PO ₄ OR aluminium oxide/Al ₂ O ₃	pumice	Dilute H ₂ SO ₄ Or H ₂ SO ₄ (aq) Or Dilute H ₃ PO ₄ 50% H ₂ SO ₄	1
			50% П ₂ 504	
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(d)(i)	-CH ₂ CH ₂ - (1)	-(-CH ₂ - CH ₂ -) _n -	- CH ₂ -	1
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(d)(ii)	bags / bottles / packaging / (food) containers / buckets / bowls	Electrical insulation /cling film/water pipes	Clothing, light fittings, ropes	1

6243/01A

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)	Observation (white) solid (re-)forms higher up tube / white smoke (1)		White fumes/misty/ Gas/ precipitate	3
	Inferences sublimes / sublimation (1) Ammonium / NH4 ⁺ (1) Ignore NH3 /HCI	Can be awarded if given in observation White sublimate (2)	NH₄CI	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	Observation red \rightarrow blue (1) (and blue-no change) Inferences ammonia / NH ₃ (1) - must follow obs. ammonium / NH ₄ ⁺ (1) - must follow obs/NH ₃		Ignore NH₄CL Just_alkaline gas NO3 / NO2	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)	Observations white ppt / white suspension (1)	Goes cloudy/milky	Cream / yellow ppt Any "solution"	3
	dissolves / soluble / colourless solution (in ammonia) / disappears (1)	Goes clear	Partially soluble	
	Inference Cl⁻/ chloride (1)		Chlorine Just "AgCI" Ignore NH₄CL	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)	It prevents other anions forming a precipitate OR (Nitric) acid destroys interfering anions.	Destroys carbonate /hydroxide/sulphite	Just "makes it acidic"	1

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers		10
2.(a)	Table 1 Check subtractions and averaging arithmetic, correcting if necessary.			12
	All volumes recorded to 0.05 cm ³ (1) ALLOW one slip but withhold this mark if any readings are in the			
	wrong boxes.			
	ALLOW 0 as initial volume NOT 50 as initial volume All subtractions correct (1)			
	[✓✓top RHS of Table 1]			
	Mean titre			
	For correct averaging of chosen values / choosing identical values and for recording the average correct to 2 or 3 dps or to $raccording the average correct to 2 or 3 dps or to recording the average correct to 2 or 3 dps or to the second term raccording the average correct to 2 or 3 dps or to the second term raccording term and ter$			
	nearest 0.05 cm ³ (1) Do not penalise lack of 2 nd d.p. in mean if this has been			
	penalised in Table 1.			
	Allow loss of 2 nd d.p. if zero			
	[✓ by the mean in space <u>or</u> near the dotted line in paragraph below]			
	Accuracy			
	If the candidate has made an arithmetical error in the Table 1			
	volumes used in the mean or in averaging the examiner must			
	calculate a new average.For an averaging error simply calculate a new value using			
	the candidate's chosen titres.			
	• If a wrongly subtracted titre has been used in the mean then			
	choose any two identical titres or take an average of the			
	closest two titres.			
	Calculate the difference between the candidate's mean titre and that of the examiner or supervisor.			
	Examiner's titre = 26.20 cm ³ (to be confirmed at standardisation)			
	Award marks for accuracy as follows.			
	Difference d = ± 0.30 ± 0.40 ± 0.50 ± 0.60 ± 0.80 ± 1.00			
	Mark 6 5 4 3 2 1			
	Range			
	Award a mark on the range of titres used by the candidate to			
	calculate the mean. The range(r) is the difference between the outermost titres used to calculate the mean. If the examiner has			
	corrected titres because of incorrect subtraction then award the			
	range mark on the corrected titres used by the examiner to re-			
	calculate the mean			
	Range of 0.20 ±0.30 ±0.50			
	titres/cm ³ Mark 3 2			
	Examiner to show the marks awarded for accuracy and range as			
	d= value r = value			
	✓ 6max ✓ 3 max			
	Then the mark out of 12 written in margin. [Overseas scripts: examiner to write "SR = titre value" on each			
	script]		l	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2.(b)(i)	<u>Mean titre</u> x 0.100	Answer with no working.		1
	1000			
	Mark is for answer to > 2sf.			
	[Penalise sf once only in (i)-(iii)]			
	Allow loss of 3 rd s.f. if it would be a zero			
	Ignore units even if wrong			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(ii)	Moles HCI in 25 cm ³ = Answer to (i) Moles HCI in 250 cm ³ = above moles x 10 Mark is for answer to > 2sf. [Penalise sf once only in (i)-(iii)] Allow loss of 3 rd s.f. if it would be a zero Ignore units even if wrong	Answer with no working.		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(iii)	1^{st} answer to (ii) $\times \frac{1000}{2.5}$ (1) or 2^{nd} answer to (ii) $\times \frac{1000}{25}$ (1) $2^{correct}$ value to > 2sf And units (if given) correct (1)	Correct value with no working (2) ¹ / ₁₀ of correct value with no working (1)		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(i)	Titre will be very low / about ¹ / ₁₀ th of value obtained by student.(1) % error increases (1) Must follow 1 st mark		Any indicator colour change reference. Less accurate	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(ii)	Water in pipette and/or burette would dilute solution/alter concentration (1)		Alter titre	2
	Water added to flask anyway so no effect on concentration of solution. (1)	Water does not affect amount HCI present.		

Question		Correct A	Answer		Acceptable Answers	Reject	Mark
Number							
3.(a)	Table 2 Three tempe spaces.(1)	ratures rec	orded in co	orrect			6
	Each to at least 1 dp (1)						
	Change in te to at least 1 zero (1) Award marks	d.p. but al	low loss of	d.p's if			
	Home Centres					Negative value	
	Compare candidate's temperature change (corrected if necessary) with table						
	Range r =	6.0 – 7.5	5.5 -8.0	5.0 – 8.5			
	Marks	√3	√2	√1			
	International	Centres	•				
	Write superv						
	Compare can						
	(corrected if	5,					
	Range	<u>+</u> 0.8	<u>+</u> 1.3	<u>+</u> 1.8			
	Marks	√3	√2	√ 1			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3.(b)(i)	<u>25 x 1.0</u> = 0.025 ONLY	Answer with no working.		1
	1000			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(ii)	50 x 4.18 x ΔT (kJ) 1000 OR 50 x 4.18 x ΔT (J) Mark is for method IGNORE sf, sign both of ΔT and answer and units (even if wrong)	Correct answer with no working		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(iii)	<u>Answer to (ii)</u> Answer to (i) Value consequential on (ii). (1) If units given, must be kJ mol ⁻¹ or kJ Sign - negative only - stand alone (1) 2 sf - only award if correct method (1)			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(iv)	any two Use pipette / burette not measuring cylinder. (1) Use a more precise /more accurate / / digital thermometer (1) Use more concentrated solutions (1)	Add NaOH in small volumes & plot volume /temp graph Lid on polystyrene cup	Repeat expt. Larger volumes	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.	Method 1 ¹ Collect gas in gas syringe/over water/diagram (1) 		Unworkable diagram negates 1 st mark	7
	✓ ² Mix CaCO ₃ + HCI/reagents (1)		Adding a little at a time	
	 ³ When no more bubbles evolved / syringe stops moving/reaction complete(1) 	No more CO_2 evolved		
	✓ ⁴ Record volume of gas collected (1) ✓ ⁵ Moles $CO_2 = \frac{volume CO_2(cm^3)}{24,000}$ OR	Record syringe volume (at start and end) for 2 marks		
	Moles $CO_2 = \frac{\text{volume } CO_2 \text{ dm}^3}{24}$ (1)			
	 ⁶ Moles HCI = 2 x moles CO₂ (1) ⁷Concentration HCI = <u>1000 x moles HCI(1)</u> Vol HCl used 			
	Method 2 ✓ ¹ Weigh CaCO ₃ (1) ✓ ² Mix CaCO ₃ + HCI / reagents (1)		Adding a little at a time	
	 ³ When reaction is complete / no more bubbles evolved / no more effervescence. (1) ⁴ Filter off, dry and weigh CaCO₃ (1) ⁵Moles CaCO₃ reacted = mass CaCO₃ reacted (1) 100 or RMM ⁶Moles HCI = 2 x moles CaCO₃ (1) ⁷Concentration HCI = 1000 x moles HCI (1) Vol HCl used 	No more CO ₂ evolved		
	Method 3 ✓ ¹ Mix CaCO ₃ + HCI / reagents (1) ✓ ² Weigh immediately / tare balance (1)		Adding a little at a time	
	 ³When reaction is complete / no more bubbles evolved / no more effervescence / no more weight loss (1) ⁴Re-weigh flask + reaction mixture / record loss of mass if tared (1) ⁵Moles CO₂ = <u>mass CO₂ loss in mass</u> (1) <u>44/RMM</u> ⁶Moles HCI = 2 x moles CO₂ (1) ⁷Concentration HCI = <u>1000 x moles HCI</u> (1) Vol HCI used 	No more CO ₂ evolved		

Materials

Each candidate will require:

- (a)* 1.5 g of ammonium chloride labelled A. The identity of this compound is not to be disclosed to candidates;
- (b)* 100 cm3 of aqueous hydrochloric acid of concentration 1.050 mol dm-3 labelled Solution B for Questions 2 and 3. The concentration of this solution is not to be disclosed to candidates;
- (c)* 200 cm3 of aqueous sodium hydroxide of concentration 0.100 mol dm-3 labelled Solution C;
- (d)* 50 cm³ of aqueous sodium hydroxide of concentration 1.00 mol dm⁻³ labelled Solution E; 6 cm³ of dilute sodium hydroxide; concentration approximately 0.5 mol dm⁻³;
- (e)
- 2 cm3 of aqueous silver nitrate; concentration approximately 0.05 mol dm-3; (f)
- 2 cm3 of dilute nitric acid; concentration approximately 2.0 mol dm-3; (g)
- 10 cm³ of dilute aqueous ammonia; concentration approximately 2.0 mol dm⁻³; (h)
- Phenolphthalein indicator; (i)
- Red and blue litmus paper; (j)
- (k) A supply of distilled water.

6243/02

Reject all titration methods

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)	From orange to green or blue	to blue-green or green- blue	Yellow	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(i)	Sulphur dioxide/sulphur(IV) oxide/SO ₂	Sulfur dioxide Sulfur(IV) oxide		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(ii)	any two of Butan-1-ol or CH ₃ CH ₂ CH ₂ CH ₂ OH (1) Butan-2-ol or CH ₃ CH(OH)CH ₂ CH ₃ (1) 2-methylpropan-1-ol or (CH ₃) ₂ CHCH ₂ OH (1) or Full structural formulae	C ₂ H ₅ for CH ₃ CH ₂ Partial names with correct formulae methylpropan-1-ol Penalise full structural formulae without H's once only in (b)(ii) and (iii) Penalise incorrect linkage (e.g. C-H-O) once in (b)(ii) and (b)(iii)	Butanol p-alcohol s-alcohol	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(iii)	2-methylpropan-2-ol OR full structural formula	(CH ₃) ₃ COH methylpropan-2-ol Penalise full structural formulae without H's once only in (b)(ii) and (iii)		
		Penalise incorrect linkage once in (b)(ii) and (b)(iii)		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)(i)	Nitrate or NO_3^- OR Nitrite or NO_2^-	nitrate(V OR nitrate(III)	NO ₃ and NO ₂	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)(ii)	Ammonia/NH ₃			
	ECF on NH₄⁺ only			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)(iii)	(gas) turns (damp red) litmus blue	White smoke with HCI (Universal)	White fumes or white mist	
	No ECF, not standalone	indicator/pH paper		
		goes blue		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d) Q W C	Dip a nichrome or platinum or flame-testing wire or silica rod (1) in (conc.) hydrochloric acid then the solid and then into a (hot	Dissolve salt in HCI and then put in flame	Spatula chromium (wire) glass rod Into yellow or luminous	
	Bunsen) flame. (1) Lithium (gives) crimson (flame) (1)	carmine or red or magenta or scarlet	(Bunsen) flame Heat	
	Sodium (gives) yellow (flame) (1)	orange		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a) Q W C	(Transfer solid to a beaker &) dissolve in distilled or deionised water (1)	Dissolve in volumetric flask rather than beaker	Just 'water'	
	Use of volumetric flask (1)	Standard or graduated flask	Flask	
	Add washings from weighing bottle (and beaker) (1)	Rinse weighing bottle		
	Make up solution to the mark (1)	to 250 cm ³ or line	Up to the meniscus	
	Mix final solution (1)	Invert flask		
	If dissolved in 250 cm ³ 3 max rinse weighing bottle (1) Use of volumetric flask (1) Mix final solution (1)]			
				5

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	$M_{r} (Na_{2}CO_{3}) = 106 (1)$ Amount (Na ₂ CO ₃) = 2.45 106 Conc. = $2.45 \div 0.250 (1)$ = 0.0925 (mol dm ⁻³) (1) Answer must be to 3 SF	ECF for wrong M _r or amount Correct answer with some working 0.0924 and ECF		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(i)	From yellow to orange	Yellow to salmon pink Yellow to peach	Pink alone and any other colours	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(ii)	$(28.60 + 28.70) = 28.65 \text{ (cm}^3)$ 2	Correct answer without working	28.80 and 28.7 (cm ³)	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(iii)	Amount of Na ₂ CO ₃ = $0.0925 \times \frac{25.0}{1000}$ (1) Moles HCI in titre = $2 \times 0.0925 \times \frac{25.0}{1000}$ (1) Conc HCI = $\frac{2 \times 25.0 \times 0.0925}{28.65 \text{ or value from (ii)}}$	Correct answer with some working and ecf		
	= 0.161 (mol dm ⁻³) (1) [<i>Penalise 1 SF only</i>)] If alternative conc used: Amount of Na ₂ CO ₃ = $\frac{1.50 \times 25.0}{1000}$ (1) Moles HCl in titre = 2 x 1.50 x $\frac{25.0}{1000}$ (1) Conc. HCl = $\frac{2x25.0x1.50}{28.65}$ or value from(ii) = 2.62 (mol dm ⁻³) (1)	('M' for mol dm ⁻³)		
				3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(i)	Reaction exothermic or Reactants might evaporate	Prevent oxidation of HBr or Br ⁻ (to bromine or Br ₂)	Vigorous or violent or Side reactions occur	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(ii)	Heated round or pear-shaped flask (1) Correct vertical condenser inc. water direction (1) Gas-tight joint & open apparatus (1)	Heat Horizontal lines on flask (at joint) Just arrows to indicate water direction	Just ↑ or just 'heat' or direct heating with a Bunsen or conical flask Horizontal lines at the top of condenser Distillation	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(iii)	Immiscible (with water) or do not mix	Immiscible with aqueous solution Insoluble in water	"Different densities" on its own	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(iv)	Drying agent or to dry product	To remove water	Dehydrate or Dehydrating agent	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(v)	Either Use electrical heater or sand bath (1) 1-bromopropane is flammable (1) Or wear gloves (1) 1-bromopropane harmful by skin absorption (1) 2 nd mark conditional on 1 st	Water bath Flammable mixture OR propan-1-ol flammable sulphuric acid corrosive (1)	Keep away from naked flame as 1-bromopropane is flammable Organic liquids flammable 1-bromopropane is harmful to skin	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(i)	Moles propan-1-ol = $\frac{7.55}{60.0}$ (1) Mass 1-bromopropane = $\begin{bmatrix} 123 \times \frac{7.55}{60.0} \end{bmatrix}$	7.55 x <u>123</u> = 15.5 g 60.0 scores full marks		
	= 15.5 g (1) IGNORE SF	Correct answer with some working	15.4 (from 7.5/60 or truncated)	
				2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(ii)	100 x 8.3 ÷ 123 x <u>7.55</u> = 53.6 %	100 x <u>8.3</u> = 53.5%	Yield > 100%	
	60.0	15.5		
	IGNORE SF	ECF		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(iii)	Transfer losses or other products formed or side reactions or (reaction) not complete		Experimental error or spillages Evaporation (from reflux)	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)(i)	To determine the (minimum) volume of acid needed (for complete neutralisation of the alkali)	Amount of acid needed To ensure equal moles of acid & alkali used	To find [HCl]	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)(ii)	Temperature equilibration or steady temperature	Same or settled or room temperature		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(i)	Mass = 25 + 22.75 = 47.75 (1) or in equation below 47.75 x 4.18 x 10.5 = 2096 (J) (1) (=2100 (J)) consequential on calculated mass	Correct answer with some working (2) Use of incorrect mass (e.g. m = 1 g) can gain 2 nd mark Answer changed to kJ		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(ii)	Moles (water)= $\frac{25 \times 1.5}{1000}$ = 0.0375 (1) $\triangle H = (-)$ 2096 (1) (1000 x .0375) = -55.9 (kJ mol ⁻¹) (1) both value, in kJ mol ⁻¹ , and sign needed [ignore SF]	Correct answer -55.9 or -56.0 kJ mol ⁻¹ with some working (3) $\triangle H = (-) 2100$ (1) (1000 x .0375) = -56.0 (kJ mol ⁻¹)(1) scores full marks Conversion to kJ can be at		
		final stage		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(c)	Any one of No heat is lost (to the surroundings) OR Polystyrene cup or thermometer have negligible heat capacity OR All the acid was transferred (from the beaker) to the polystyrene cup	Takes up negligible heat		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5. Q W C	Stated volume (25 $-$ 100 cm ³) or equal volume (of solutions) used in each reaction (1) Calculated mass or equal mass of Mg used in each reaction (1) Mix and stir (1) Measure initial and final temperature (1) Bigger $\triangle T$ (therefore bigger $\triangle H$), therefore bigger difference in reactivity (1)	10 -150 cm^3 amount Temperature rise OR highest temperature References to specific reaction(s) (but these must be correct) e.g. biggest Δ T with CuSO ₄ or smallest Δ T with Zn(NO ₃) ₂	Just 'excess Mg'	
				5

6244/01

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(i)	lonic	Giant ionic or electrovalent		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(ii)	Covalent	Giant covalent	Co <u>n</u> valent	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(i)	Basic	Base or alkali or alkaline		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(ii)	Acidic	Acid Weakly acidic Weak acid		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)(i)	$3Na_{2}O + 2H_{3}PO_{4} \rightarrow 2Na_{3}PO_{4} + 3H_{2}O$ OR $Na_{2}O + H_{3}PO_{4} \rightarrow Na_{2}HPO_{4} + H_{2}O$ OR $Na_{2}O + 2H_{3}PO_{4} \rightarrow 2NaH_{2}PO_{4} + H_{2}O$ (1) Ignore state symbols			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)(ii)	$SiO_2 + 2NaOH \rightarrow Na_2SiO_3 + H_2O$ (1) Ignore state symbols	$SiO_2 + 2OH^- \rightarrow SiO_3^{2^-} + H_2O$		1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number 1.(d)	First mark: $AI_2O_{3(S)} + 6H^+_{(aq)} \rightarrow 2AI^{3+}_{(aq)} + 3H_2O_{(I)}$ (1) <i>This mark is for correct species and balancing</i> Second mark: $AI_2O_{3(S)} + 2OH^{(aq)} + 3H_2O_{(I)} \rightarrow 2AI(OH)^{4 (aq)}$ OR $AI_2O_{3(S)} + 6OH^{(aq)} + 3H_2O_{(I)} \rightarrow 2AI(OH)^{3-}_{6 (aq)}$ OR $AI_2O_{3(S)} + 6OH^{(aq)} \rightarrow 2AIO^{2 (aq)} + H_2O(I)$ (1) <i>This mark is for correct species and balancing</i> Third mark is for the state symbols (1) Correct state symbols in either equation, but all species must be correct. <i>This mark may be awarded from an unbalanced equation</i> .	Two correct 'molecular' equations with correct state symbols scores (2)		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)	$PbO_2 + 4HCl \rightarrow PbCl_2 + Cl_2 + 2H_2O$ Ignore state symbols	$PbO_{2} + 6HCI \rightarrow H_{2}PbCI_{4}$ $CI_{2} + 2H_{2}O$		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
Number 1.(f)	First mark: Tin more stable in the +4 oxidation state (than the +2 oxidation state) whereas lead more stable in the +2 oxidation state (than in the +4 oxidation state) OR +2 oxidation state becomes more stable relative to +4 oxidation state as group descended. (1) Second Mark: (So) I_2 reduced to I^- (by Sn^{2+}) OR $Sn^{2+} + I_2 \rightarrow Sn^{4+} + 2I^-$ OR	redox reaction between Sn ²⁺ and I ₂ OR Sn ²⁺ oxidised (to Sn ⁴⁺)	Sn ²⁺ ions less stable than Pb ²⁺ OR Pb(II) is more stable than Sn(II)	2
	Therefore tin(II) is a strong(er) reducing agent (than lead(II)) (1)	OR Sn(II) acts as (a strong) reducing agent		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	IGNORE 'alkane' in any answer			3
	X : ester (1)		carbonyl	
	Y: both alkene	carbon-carbon double		
	and alcohol or hydroxyl (1)	bond "hydroxy"	OH [−] or "hydroxide"	
	Z : both alcohol or hydroxyl and aldehyde (1)	"hydroxy"	<i>OH</i> ⁻ or "hydroxide" or "carbonyl" Just the formula	
			c	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number 2.(b)	X : no reaction (1) Y : no reaction (1)			3
	Z: $H = \begin{pmatrix} H & H & H \\ C & C & C & C \\ 0 & H & H \\ 0 & 0 & 0 & 0 \\ 0 & H & H \\ (1) do not award if the bond from the carbon atom is clearly to the H of the OH group$	о о—н -O ⁻ Na⁺ or -ONa	Any formula with the alcohol group oxidised	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(i)	$\begin{array}{c} CH_{3}CH_{2}CH_{2}COONa/CH_{3}CH_{2}CH_{2}COO^{-}Na^{+}/\\ H & H & H & H \\ H & C & C & C & O \\ H & H & H & H & O \\ H & H & H & H & O \\ & & & O \\ H & & & O \\ \end{array}$ (1) Allow C_{3}H_{7} / C_{2}H_{5}CH_{2} $\begin{array}{c} CH_{3}OH/\\ H & C & O \\ H & H & H \\ H & & O \\ \end{array}$ (1)	CH ₃ CH ₂ CH ₂ C O ⁻ Na ⁺ / CH ₃ CH ₂ CH ₂ COO ⁻ / CH ₃ CH ₂ CH ₂ CO ₂ Na / CH ₃ CH ₂ CH ₂ CO ₂ $^-$ Na ⁺	Carboxylic acid Or O ⁻ –Na ⁺	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(ii)	$\begin{array}{c} CHI_{3} / \\ H \\ H \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	CH₂CHCOO ⁻ Allow carboxylic acid as product e.g. CH₂CHCOOH		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(iii)	$/CH_{2}(OH)CH_{2}CH_{2}CH(CN)OH$ $/ CH_{2}(OH)CH_{2}CH_{2}CH(OH)CN (1)$			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(i)	To slow down the reaction/to stop the reaction OR to quench the reaction OR to freeze the (position of) equilibrium OWTTE (1) so that the (equilibrium) concentrations/amounts do not change (1)	To stop equilibrium shifting to the left		2

		Acceptable Answers	Reject	Mark
3.(a)(ii) First mark: $\begin{bmatrix} H_{2(g)} \end{bmatrix} = \begin{bmatrix} I_{2(g)} \end{bmatrix}$ OR Use of $(5.0 \times 10^{-4})^2$ (Second mark: $\begin{bmatrix} HI_{(g)} \end{bmatrix}^2 = \frac{(5.0 \times 10^{-4})^2}{0.019}$ OR $0.019 = (5.0 \times 10^{-4})^2$ OR $[HI(g)] = \int ((5.0 \times 10^{-4})^2)^2$ OR $[HI(g)] = \int ((5.0 \times 10^{-4})^2)^2$ Third mark: $\begin{bmatrix} HI_{(g)} \end{bmatrix} = 3.6 \times 10^{-3}$ (n Correct answer scores Ignore state symbols. Ignore units unless wrother the symbols.) (1) ol dm ⁻³) (1) marks.	If [HI] not squared, first mark only.	If first mark not awarded, total (0).	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(i)	$K_{p} = \frac{p_{HI}^{2}}{p_{H_{2}} \times p_{I_{2}}}$ Ignore position of any ()		[] scores (0)	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(ii)	Each step of this calculation must be looked at. 1 st mark is for calculating equilibrium moles H ₂ = 0.2 I ₂ = 0.2 HI = 1.6 (1) 2 nd mark is for dividing these by 2 (to get mole fractions) $x_{H_2} = \frac{0.2}{2.0} = 0.1$ $x_{I_2} = \frac{0.2}{2.0} = 0.1$ $x_{HI} = \frac{1.6}{2.0} = 0.8$ (1) 3 rd mark is for multiplying by 1.1 (to	Mark consequentially Mark consequentially		4
	get partial pressures) $P_{H_2} = \frac{0.2}{2.0} \times 1.1$ $= 0.11 \text{ (atm)}$ $P_{I_2} = \frac{0.2}{2.0} \times 1.1$ $= 0.11 \text{ (atm)}$ $P_{HI} = \frac{1.6}{2.0} \times 1.1$ $= 0.88 \text{ (atm)} (1)$ $4^{\text{th}} \text{ mark is for substituting into their expression and calculating K_p K_p = \frac{(0.88)^2}{(0.11) \times (0.11)} = 64 (1) Ignore s.f.Correct answer with no working scores (1)$	Mark consequentially If moles HI given as 0.8 , $K_p = 16 \max(3)$		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(iii)	Same number of moles on each side OR (Total) pressure cancels OR (Pressure) units cancel (May be shown by crossing out etc. in b(ii))	'Powers cancel' OR 'They cancel' OR 'Same number of molecules on each side'	'Partial pressures cancel' OR 'mol dm ⁻³ cancel'	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)(i)	ΔH_6			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)(ii)	$\frac{\Delta H_5}{2} OR \frac{1}{2} \Delta H_5$		ΔH_5	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)	Either $\Delta Hf = \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5 + \Delta H_6$ OR $\Delta Hf = (+178)+(1735)+2\times(+218)+2\times(-73) + (-2389)$	[First mark only if doubles both ${}^{\Delta H}_{at}$ and electron affinity for hydrogen]		2
	= -186 (kJ mol ⁻¹) (1) Correct answer with no working (2) <i>Ignore kJ</i>	[2nd mark is only consequential on failure to multiply either ΔHat or electron affinity or both giving: -404 / -113 /-331 (kJ mol-1)]	+186 scores (0) +404 / +113 /+331 scores (0)	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(c)	EITHER First mark: Magnesium/Mg ion smaller (radius) than calcium/Ca ion Or the sum of the ionic radii in MgH ₂ smaller (than in CaH ₂) (1)	Magnesium ion has greater charge density than calcium ion for first mark.	Reference to 'atoms' or 'molecules' or 'H ₂ ' scores zero overall.	3
	Second mark: but charges the same (1) Third mark: (so) stronger (forces of) attraction between ions (in M_gH_2) (1) [Correct reverse arguments can score both marks]	"stronger ionic bonding" for 3 rd mark in either case.	If "H ⁺ ions" or "hydrogen ions" referred to, 3 rd mark cannot be awarded in either case If just "stronger bonding in MaH ₂ ".	
	OR First and second mark combined: $Mg^{2+}(ion)$ or $Mg^{2+}(cation)$ smaller (radius) than Ca^{2+} (2) Third mark:		bonding in MgH ₂ ", 3 rd mark cannot be awarded in either case	
	(so) stronger (forces of) attraction between ions (in MgH_2) (1)			
	[Correct reverse arguments can score both marks]			
	Ignore references to polarisation of the hydride ion or "covalent character" in the hydrides.			
	Ignore references to "energy required to separate ions/break bonds"			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(d)(i)	Enthalpy/energy/heat change when 1 mol of gaseous ions (1)	Heat released X ⁺ (g) + aq →X ⁺ (aq) and statement of energy change per mole for first mark.	Any implication of endothermic, do not award 1 st mark	2
	Is dissolved in (a large) excess of water Or Is dissolved until further dilution causes no further heat change (1)	"Added to water" or "reacts with water " instead of "dissolved"	"Dissolves completely"	
	Ignore any reference to "standard conditions"	"Infinitely dilute solution"		
	Mark independently	"Is completely surrounded by water molecules"		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(d)(ii)	δ ⁻ O (in water) attracted to positive ions/cations (1) δ ⁺ H (in water) attracted to negative ions/anions (1)	'forms (dative) bonds' instead of 'attracted' Just "attraction between water (molecules) and ions" (1 max)	Reference to full charges on water molecules scores zero overall "energy required" or implication of an endothermic process scores (0) overall. Dipole-dipole attractions and/or "polarisation" scores zero overall	2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
5.(a)(i)	One acid: CH ₃ CH ₂ COOH(aq)	Accept correct acids		2
	Conjugate base: CH ₃ CH ₂ COO ⁻ (aq) (1)	with conjugate bases in either order		
	Other acid: H₃O⁺(aq)			
	Conjugate base: $H_2O(I)$ (1)			
	Ignore state symbols			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(ii)	WEAK: dissociates/ionises to a small extent (1) OWTTE	'Few molecules dissociate' 'Incomplete' or 'partial' dissociation "Does not fully dissociate"	"ions partially dissociate"	2
	ACID: proton donor (1)	Produces H₃O ⁺ / hydrogen / H ⁺ ions	Just "contains H₃O⁺ ″	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(b)(i)	$Ka = \frac{[CH_3CH_2COO^-][H_3O^+]}{[CH_3CH_2COOH]}$	$[H^{\dagger}]$ instead of $[H_3O^{\dagger}]$	Any expression containing [H ₂ O]	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
5.(b)(ii)	$([H^+] =) 3.63 \times 10^{-4} \text{ (mol dm}^{-3})$ (1)	If K _a expression		5
	Or 10 ^{-3.44}	incorrect in (b)(i) or		
		[H ⁺] not squared, only		
	$[CH_3CH_2COOH] = [\underline{H^{\pm}}]^2$	1 st mark available		
	1.30×10^{-5}			
	Or			
	-			
	$[CH_{3}CH_{2}COOH] = \frac{(3.63 \times 10^{-4})^{2}}{1.30 \times 10^{-5}}$ (1) = 0.010 (1) (mol dm ⁻³) (1)			
	1.30×10^{-5} (1)			
	$= 0.010 (1) (mol dm^{-3}) (1)$			
	ASSUMPTIONS:			
	First assumption mark:			
		"No other source of H^{+}	Just "CH ₃ CH ₂ COO ⁻ =	
	negligible $[H^+]$ from ionisation of water	ions"	H ⁺ " (ie no square	
	Or $[CH_3CH_2COO^-] = [H^+]$ (1)		brackets)	
	Second assumption mark:			
	lonisation of the (weak) acid is	"Very slight ionisation	Any mention of non-	
	negligible	"	standard conditions	
	Or $x-[H^+] \approx x$ where x is initial	"the initial [HA] =		
	concentration of CH ₃ CH ₂ COOH		or 'temperature not	
	Or [H+]<<[HA] (1)	equilibrium [HA]"	at 298 K′	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(c)	$\begin{array}{l} CH_{3}CH_{2}COO^{-} + H_{2}O \rightleftharpoons / \rightarrow CH_{3}CH_{2}COOH \\ + OH^{-} \\ Or \\ CH_{3}CH_{2}COONa + H_{2}O \rightleftharpoons / \rightarrow \\ CH_{3}CH_{2}COOH + NaOH \end{array} \tag{1}$	$CH_{3}CH_{2}COO^{-} + H^{+} \rightleftharpoons$ $CH_{3}CH_{2}COOH$ and causes the following eqm to shift to the right $H_{2}O \rightleftharpoons H^{+} + OH^{-}$		2
	OH ⁻ ions produced cause the solution to be alkaline (1) Mark independently	Causing an excess of OH ⁻ ions (1)	"OH ⁻ ions from water″	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(d)(i)	Ignore "A solution of known pH which"			2
	maintains nearly constant pH OR resists change in pH (1) OWTTE			
	on adding small amounts of acid or alkali (1)			
	Mark independently			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
Question Number 5.(d)(ii)	Working MUST be checked First mark: $[H^{*}] = K_{a} \times \underline{[acid]} (1)$ Second mark: Correct [acid] = 0.0025 and [salt] = 0.00375 (1) Third mark: Calculation of pH correct consequential on [acid] and [salt] used. $[H^{+}] = 1.30 \times 10^{-5} \times \frac{0.0025}{0.00375}$ $= 8.67 \times 10^{-6} \text{ (mol dm}^{-3)}$ $pH = 5.06 (1)$ Ignore sig fig OR First mark: $pH = pK_{a} - \log_{10} \frac{[acid]}{[salt]} (1)$ Second mark: Correct [acid] = 0.0025 and [salt] = 0.00375 (1) Third mark: Calculation of pH correct consequential on [acid] and [salt] used. $pH = 4.89 - \log_{10} \frac{[0.0025]}{(0.0025]}$	Acceptable Answers $K_a = [H^{\pm}]x [salt]$ [acid][acid]If [salt] and [acid] inverted, pH is 4.71 (2 marks) Inverted with the original concentrations, pH = 5.19 (1 mark)In both cases, if [acid] = [0.0100] and [salt] = [0.00500], pH = 4.59 (2 marks)	Reject	Mark 3
	[0.00375] (1) $= 4.89 - (-0.18)$ $= 5.07 (1)$	5.06		
	Ignore sig fig			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(a)(i)	$\begin{array}{c} & & & & & \\ & & & & \\ H & & & & \\ H & & & \\ H & & & \\ H & & \\ \end{array}$ Positive charge must be on the N atom The minus charge must be on the O in the C-O if no delocalisation shown	Delocalised carboxylate group with a negative charge shown	Compressed structural formula	1
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(a)(ii)	(H ⁺ from) COOH (group) protonates the −NH ₂ (group)	Transfer of H ⁺ from COOH to NH ₂ Or "self-protonation"	Just "protonation" Just "acid-base reaction"	1
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(a)(iii)	Read the whole answer! High energy needed to overcome (strong) ionic attractions (1) between zwitterions (1)	"ionic bonds" or "ionic lattice" instead of "ionic attractions" between adjacent	Just "intermolecular forces" Or H bonding Or van der Waals' forces etc award zero overall	2
	Ignore reference to "molecules" if clearly used in the context of attraction between ions	species		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(b)(i)	⁺ NH ₃ CH ₂ COOH / ⁺ H ₃ NCH ₂ COOH / ⁺ H ₃ NCH ₂ COOH OR written right to left	$-CO_2H$ OR $-NH_3^+Cl^-$	Molecular formula	1
	OR OH H C H NH ₃	Or —NH₃CI		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(b)(ii)	$NH_{2}CH_{2}COO^{-} / NH_{2}CH_{2}CO_{2}^{-} / $	–COONa or –COO [–] Na⁺	Molecular formula	1

6. (b) (iii) $CH_3CONHCH_2COOH/$ $CH_3CONHCH_2CO_2H$ Molecular formula 1 $O_{C}O^{H}$ H - C - H H - C	Question Number	Correct Answer	Acceptable Answers	Reject	Mark
			OR	Molecular formula	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(b)(iv)	$\begin{array}{c c} NH_2CH_2COOCH_3 / \\ & & \\ & & \\ & & \\ O & & \\ \\ O & & \\ & & \\ & \\ & \\ O & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	NH ₂ CH ₂ CO ₂ CH ₃		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(c)(i)	(Glutamic acid molecule) has four different groups attached to a C (atom) Or (Glutamic acid molecule) has four different groups attached to a chiral centre OR has mirror images which are not	Contains an asymmetric carbon (atom) Or molecule has no plane of symmetry	Just "has a chiral centre" Or Just "the molecule is asymmetrical"	1
	superimposable			
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(c)(ii)	(the isomers) rotate the plane (or polarisation) of (plane-) polarised light (1) in opposite directions (1)	"rotate plane polarised light"	Just "in different	2
	Ignore any reference to polarimeter		directions"	
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(d)	$H_2N(CH_2)_6NH_2$ (1) $CIOC(CH_2)_4COCI /$ O O O $CIC(CH_2)_4C$ $CI CIC(CH_2)_4C$ (1) [Monomers can be given in either order]	$NH_{2}(CH_{2})_{6}NH_{2}$ $HOOC(CH_{2})_{4}COOH /$ $HO_{2}C(CH_{2})_{4}CO_{2}H /$ $O O$ $HO - C(CH_{2})_{4} C - OH$ $COOH(CH_{2})_{4}COOH$ $Or COCI(CH_{2})_{4}COCI$		2

6245/01

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(i)	Cr [Ar] 3d⁵4s ¹ and Cr ³⁺ [Ar] 3d ³			1
	OR 4s ¹ 3d ⁵ and 3d ³			
	OR $3D^54S^1$ and $3D^3$			
	OR $4S^{1}3D^{5}$ and $3D^{3}$			
	OR $3d_54s_1$ and $3d_3$			
	OR $4s_13d_5$ and $3d_3$			
	OR $3D_54S_1$ and $3D_3$			
	OR $4S_13D_5$ and $3D_3$			
	ALLOW 1s ² 2s ² etc for [Ar] provided it			
	is complete and correct			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(ii)	octahedral (1)	diagram for name		3
	6 electron pairs around Cr (ion) (1)	6 bonds, could be drawn on diagram		
	these repel to a position of minimum repulsion / maximum separation (1)		bonds/atoms repelling	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(iii)	(gelatinous) green ppt (1)	green solid any shade of green		2
	(dissolves) to green solution (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(iv)	$\begin{array}{l} [Cr(H_2O)_6]^{3^+} + 3OH^- \rightarrow \\ Cr(OH)_3(H_2O)_3 + 3H_2O \\ OR \\ [Cr(H_2O)_6]^{3^+} + 3OH^- \rightarrow Cr(OH)_3 + \\ 6H_2O \ \textbf{(1)} \\ \\ Cr(OH)_3(H_2O)_3 + 3OH^- \rightarrow \\ [Cr(OH)_6]^{3^-} + 3H_2O \\ OR \\ Cr(OH)_3 + 3OH^- \rightarrow [Cr(OH)_6]^{3^-} \ \textbf{(1)} \\ Ignore state symbols \end{array}$	equations with NaOH eg 3NaOH on LHS 3Na ⁺ on RHS If 3H ₂ O is missing from RHS of both equations, allow (1) for both correct Cr species on RHS	Cr ³⁺ (aq)	2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(b)(i)	Reactant (1) Product (1)		molecular formulae	2
	Formula of a: Formula of a:			
	primary alcohol \rightarrow aldehyde		names with no	
			formulae	
	primary alcohol \rightarrow carboxylic acid			
			COH for aldehyde,	
	secondary alcohol \rightarrow ketone		unless structure	
			shown as well	
	aldehyde \rightarrow carboxylic acid			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(b)(ii)	<i>Ecell</i> ^{θ} for MnO ₄ ⁻ reacting with Cl ⁻ = (+) 0.15 (V) (1) <i>Ecell</i> ^{θ} for Cr ₂ O ₇ ²⁻ reacting with Cl ⁻ = - 0.03 (V) OR			4
	E°_{cell} for Cr ³⁺ reacting with Cl ₂ = (+)0.03(V)(1) MnO ₄ ⁻ will oxidise Cl ⁷ /HCl so HCl cannot be used OR 2MnO ₄ ⁻ + 16H ⁺ + 10Cl ⁻ → 2Mn ²⁺ + 8H ₂ O + 5Cl ₂ so HCl cannot be used (1) Cr ₂ O ₇ ²⁻ will not oxidise Cl ⁻ /HCl so HCl can be used (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(iii)	oxidation number of Cr remains at +6 ALLOW this mark if the oxidation numbers are written under the species in the equation		gain or loss of electrons oxidation number does not change if it is not specified or is incorrect	1

2. ACCEPT NAMES OR FORMULAE FOR REAGENTS IF BOTH ARE GIVEN, BOTH MUST BE CORRECT. CONDITION MARKS ARE ONLY AVAILABLE FOR CORRECT REAGENTS

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)(i)	concentrated nitric acid (1) concentrated sulphuric acid (1) [penalise lack of "concentrated" once]	concentrated + formulae "c" for concentrated		3
	temperature 40-60°C (1) stand alone	any temperature or range of temperatures within this range	more than 40°C less than 60°C	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)(ii)	$HNO_{3} + H_{2}SO_{4} \rightarrow H_{2}O + HSO_{4}^{-}$ $+NO_{2}^{+}(1)$ Can be shown in two stages OR $HNO_{3} + 2H_{2}SO_{4} \rightarrow H_{3}O^{+} + 2HSO_{4}^{-} +$ $NO_{2}^{+}(1)$ $HO_{2}^{+} \rightarrow H$	arrow to or from charges Kekule structures		4
	$\underbrace{(+, +)}^{NO_2} \xrightarrow{(+, +)}^{NO_2} \xrightarrow{(+, +)}^{NO_2} \xrightarrow{(+, +)}^{NO_2} \xrightarrow{(+, +)}^{H^+(+, +)}_{H^2SO_4}$ Curly arrow from ring towards (space between C in ring and) N in NO ₂ ⁺ (1) Correct intermediate (1) Curved arrow from C – H bond back	if HSO₄ ⁻ is used in the last step, arrow must come from O curly arrow from within ring		
	into ring (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	tin and conc hydrochloric acid (1) IGNORE heat or any stated temperature reduction OR loss of oxygen and gain of hydrogen (1)	Fe or Zn and conc HCl H ₂ + Pt/Ni/Pd	LiAlH₄ redox	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)	sodium nitrite/ NaNO ₂ and hydrochloric acid/HCl (aq) (1) 0-10°C (1)	sodium nitrate(III) dilute or concentrated acid any temperature or range of temperatures	just "HCI" temperature value qualified by "below"/	3
	benzene diazonium chloride (1)	within this range	"above"	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Question Number 2.(d)	collect gas in gas syringe/over water in graduated apparatus or diagram (1) measure volume of gas at regular time intervals (1) label volume and time on axes (1) sketch including horizontal finish/final volume (1)	Acceptable Answers If [BDC] measured only the following marks are available: Label [BDC] and time on axes (1) Sketch (1) find at least 2 half lives, first order if half lives are constant (1)	Reject	6 Mark
	1 st half life is time taken to half final volume, 2 nd half life is time from half to 3⁄4 these could be shown on graph (1) Half lives constant (therefore 1 st order) (1) STAND ALONE ALTERNATIVE FOR LAST 4 MARKS measure final volume and calculate (V_{final} - V_t) (1) Label (V_{final} - V_t) and time on axes (1) sketch (1) V_{final} - V_t find at least 2 half lives, first order if half lives are constant (1) OR collect gas in gas syringe/over water in graduated apparatus or diagram (1) find volume of gas after fixed time and calculate rate = vol/time (1) repeat for different values of [X] (1) label rate and [X] on axes (1) sketch straight line (1) rate proportional to [X], so first order (1) Mass loss method could be applied to any of above	For pH method only the following marks are available: use a pH probe (1) measure pH at regular time intervals (1) half lives constant (1) If candidate mixes answers, mark them as if separate and award the highest mark		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Boiling composition be vapour be vapour and fraction composition Liquid Liquid Liquid Liquid and fraction composition com	If diagram slopes up to left, could still score other two marks If 109°C labelled at lower temp than 82°C, can only score liquid and vapour mark	Straight liquid or vapour line	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)	draws more than 1 tie line, starting at 0.75, connected by verticals (and heading correctly towards the lower bp component) (1)			4
	states that (equilibrium) vapour is richer in the more volatile component / propan-1-ol (1) STAND ALONE			
	describes repeated distillations (with correct reference to tie lines) (1)			
	give rise to (first) distillate of pure propan-1-ol / 2-methylpropan-1-ol left in the flask (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)	Ester(s) (1)	triester(s) triglyceride(s)	Ether(s) lipid(s)	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(i)	Any example e.g. (1) H H C=C			2
	R R [R can be any group/atom other than hydrogen, R can be the same or different]			
	both hydrogen atoms on the same side OR both larger groups on the same side (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(ii)	saturates pack more closely together than unsaturates (due to cis isomers) (1)		breaking single / double / σ / π bonds	2
	saturates have higher/stronger dispersion/Van der Waals' forces than unsaturates (so more energy is required to melt) (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(c)(i)	3 RCOONa / RCOO ⁻ Na ⁺ (1) CH ₂ OHCH(OH)CH ₂ OH (1)	RCO ₂ Na Full structural formulae	Covalent bond shown between O and Na.	2
			RCOOH	
			$C_3H_8O_2$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(c)(ii)	Making/manufacture of: soap/soapy detergents or soap production (1)		saponification	1

Question	Correct Answer		Acceptable Answers	Reject	Mark	
Number						
4.(d)(i)	(i) Any one from:			Answer involving		3
	Reagent	2- methylpropan- 2-ol	propanoic acid	formation of an ester, identified by smell, for either acid or alcohol		
	(1)	obs (1)	obs(1)	either acid or alcohol		
	NaHCO ₃	no change	effervescence			
	Na ₂ CO ₃	no change	effervescence	Description of test for		
	Observation marks conditional on correct reagent		CO ₂ instead of effervescence			
	IGNORE references to heat					

Question Number		Correct Answ	er	Acceptable Answers	Reject	Mark
4.(d)(ii)	correct reag	Propanal obs (1) blue to red ppt silver mirror/ppt orange to green/blue/ brown no change		Benedicts Ammoniacal AgNO₃ MnO₄⁻/H⁺ with correct colour changes		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(e)(i)	$\begin{array}{cccc} H_{3}C & & O^{\ominus} \\ H_{3}C & C & H_{3}C - C - CN \\ H_{3}C & (:)CN & CH_{3} \\ \end{array}$ Each arrow (1) (1) $\begin{array}{c} O^{\ominus} & H - CN \\ H_{3}C - C - CN \\ H_{3}C - C - CN \\ H_{3}C - C - CN \\ CH_{3} \end{array} \rightarrow \begin{array}{c} O^{\ominus} \\ H_{3}C - C - CN \\ H_{3}C - CN \\ H_{3$	CN ⁻ or ⁻ CN arrows start from negative charge on O or C arrow to H ⁺ or to HCN in 2 nd step		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(e)(ii)	higher [H ⁺] (1)			2
	(so) lower [CN ⁻] and rate slower (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(i)	electrode – platinum/Pt (1) Fe ²⁺ and Fe ³⁺ (1) 1 mol dm ⁻³ (1) conditional on both ions being present			3

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
5.(a)(ii)	to bring the solutions to the same	to allow the movement	to allow flow of	1
	potential/connect solutions without	of ions OR	electrons	
	setting up a p.d. (1)	to complete the circuit		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(iii)	(saturated) potassium chloride OR	Formulae		1
	(saturated) potassium nitrate (1)	Sodium nitrate or chloride		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(iv)	x − 0.34 = 0.43 (1) x = +0.77 V (1)			2
	Correct answer with some working (2)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(v)	$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$ OR $Fe^{3+} + e^{-} \neq Fe^{2+}$ (1)	e for electron		2
	$Cu \rightarrow Cu^{2+} + 2e^{-}$ OR			
	$\begin{array}{rcl} Cu & \rightleftharpoons & Cu^{2+} + 2e^{-} \\ OR \\ Cu - 2e^{-} & \rightarrow & Cu^{2+} \\ OR \end{array}$			
	OR Cu – 2e ⁻			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(vi)	Cu + 2Fe ³⁺ → 2Fe ²⁺ + Cu ²⁺ (1)	$2Fe^{2+}$ + $Cu^{2+} \rightarrow Cu$ + $2Fe^{3+}$ if both half equations in opposite direction in (v)		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(b)	$\frac{1}{2} O_2 + 2e^- + H_2 O $ ⇒/ \rightarrow 20H ⁻ species (1) balance (1) ignore state symbols	multiples		2
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(c)	Moles $S_2O_3^{2-} = (\underline{16.5}) \times 0.1 = 1.65 \times 10^{-3}$ (1) 1000			3
	(Moles $I_2 = \frac{1.65 \times 10^{-3}}{2} = 8.25 \times 10^{-4}$)			
	Moles Cu ²⁺ = 1.65x10 ⁻³ (1)			
	Conc CuSO ₄ = $1.65 \times 10^{-3} \times (1000) = 0.066 \text{(mol dm}^{-3})$ 25 (1)			
	Penalise incorrect unit			

6246/01A

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)	Observation: green (1) Inference: d-block (1)	Transition series/metals		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	Observation: white ppt in limewater (1) black (residue) (1) Inference: Carbon dioxide/CO ₂ (1)	Goes cloudy/milky		4
	Carbonate/CO ₃ ²⁻ (1)	hydrogencarbonate /bicarbonate/ HCO ₃		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)	green solution and effervescence		CO ₂ evolved	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)(i)	Observation: Any blue ppt (1) (Deep/Dark) blue solution (1) Inference: copper(II)/ Cu ²⁺ / copper (2+) (1)		Copper/copper (II) hydroxide	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)(ii)	Observation: Brown (precipitate) (1) Black (coloration) (1)	Blue/black	Blue alone I	4
	Inference: Iodine / I ₂ (1) Redox (1)	Oxidation/reduction of S /Cu ²⁺	Just "reduction"	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(e)(i)	CuCO ₃	$Cu(HCO_3)_2$ cq on 1(b)	Copper carbonate	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(e)(ii)	O.N. in S: +2 (1)	II/2/2+/Cu ²⁺		2
	O.N. in product of test (d) (ii): +1 (1)	I/1/1+/Cu ⁺		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	Observation: Orange/yellow ppt (1) Inference: Carbonyl/>C=O/C=O/aldehyde or ketone (Both needed) (1)	Orange/yellow solid	Goes orange/goes yellow	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	Observation:			
	Remains orange (1)	No change No (observable) reaction	"nothing"	
	Inference: Not oxidised (1)			
	Ketone (1)	Not oxidisable/ not a reducing agent Allow "not aldehyde" if		3
	No consequential marking	BOTH are given in (a)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)	M ⁺ = 86 (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)	2 environments for protons/hydrogen (atoms) (1)			1

Question Number			Corr	ect Ar	nswer			Acceptable Answers	Reject	Mark
2.(e)(i)	H	H -C H	Н —С— Н		н —С— н	H 	1	CH ₃ CH ₂ —C—CH ₂ CH ₃		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(e)(ii)	Because there are 6 H atoms in one environment and 4 in the other the ratio of H atoms in different environments is 6:4 (1) Dependent on 2 (e) (i)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Check subtractions and averaging arithmetic, correcting if necessary			10
	All volumes read to 0.05 cm ³ (1)	Allow 1 slip but withhold this mark if any readings are in the wrong boxes Accept 0; 0.0; 0.00 as initial volume	Reject 50 as initial volume	
	All subtractions complete (1) ✓✓ top RHS of Table 1			
	Mean titre For correct averaging of chosen values/choosing identical values and for recording the average correct to 2 or 3 dps or to nearest 0.05 cm ³ [unless already penalised] Allow loss of 2 nd dp if zero ✓ by the mean titre (1)			
	Accuracy			
	If the candidate has made an arithmetical error in Table 1 volumes used in the mean or in averaging, the examiner must calculate a new average.			
	 For an averaging error simply calculate a new value using the candidate's chosen titres If a wrongly subtracted titre has been used in the mean then choose any two identical titres or take an average of the closest two titres 			
	Calculate the difference between the candidate's mean titre and that of the examiner or supervisor Record the difference on the scripts as d = ***			
	Examiner's titre TO BE CONFIRMED BY LOCAL SUPERVISOR Examiner to write SR= titre value on each script			
	Award marks for accuracy as follows:			

Difference ± 0.20 (4) Difference ± 0.30 (3) Difference ± 0.40 (2) Difference ± 0.60 (1) Difference >0.60 (0)	
Range Award a mark on the range of titres used by the candidate to calculate the mean. The range (r) is the difference between the outermost titres used to calculate the mean. If the examiner has corrected titres because of incorrect subtraction then award the range mark on the corrected titres used by the examiner to recalculate the mean.	
Range ± 0.20 (3) Range ± 0.30 (2) Range ± 0.50 (1) Range > 0.50 (0)	
Examiner to show the marks awarded for accuracy and range as $d = \sqrt{4} \max$ $r = \sqrt{3} \max$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)	Calculations Moles $MnO_4^- = 5.00 \times 10^{-4} \text{ (mol)} (1)$ Moles of $NO_2^- = 1.25 \times 10^{-3} \text{ (mol)} (1)$ Molar conc. = 1.25×10^{-3} mol dm ⁻³ titre/1000 (1) Mass conc. = molar conc. X 69 g dm ⁻³ (1) [cq. on third mark]	Final answers to > 2 sig fig		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)(i)	Blue solution (1)			2
	Brown gas (1)			
·				
Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3.(c)(ii)	titre value too low (1)	goes down/becomes	Reject "titre wrong/	2
	Because NO ₂ lost / sodium nitrite	smaller	inaccurate"	
	decomposed (by acid) (1)			
	Dependent on 3 (c) (i)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)	low hydrogen:carbon ratio	It is not C _n H _{2n+2} / Too few hydrogen atoms.		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)	equal masses/amounts (of C ₉ H ₁₂) (1) react with bromine water/solution (1) expect equal volumes/amounts (1) for bromine colour to remain/until no more decolourisation (1)	Allow equal volumes		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(c)	CH ₃ CH ₃ CH ₃ Or other isomers		C ₃ H ₇	1

Materials

Each candidate will require:

- (a) 1 g of basic copper carbonate, CuCO₃.Cu(OH)₂ labelled S. The identity of this must not be disclosed to candidates;
- (b) 1 cm³ of aqueous potassium iodide; concentration approximately 0.5 mol dm⁻³;
- (c) 200 cm³ of aqueous potassium manganate(VII), labelled Solution R; concentration 0.0200 mol dm⁻³;
- (d) 200 cm³ of aqueous sodium nitrite, labelled Solution Q; concentration 4.00 g dm⁻³. The concentration of this must not be disclosed to candidates;
- (e) 200 cm³ of dilute sulphuric acid; concentration approximately 1 mol dm⁻³. This is to be used in both Question 2 and Question 3;
- (f) 5 cm³ of limewater;
- (g) 2 cm³ of aqueous potassium dichromate(VI); concentration approximately 0.2 mol dm⁻³;
- (h) 4 cm³ of propanone, labelled P. The identity of this must not be disclosed to candidates. P is being used to represent another ketone;
- (i) 15 cm³ of dilute hydrochloric acid; concentration approximately 1 mol dm⁻³;
- (j) 10 cm³ of dilute aqueous ammonia; concentration approximately 2 mol dm⁻³;
- (k) a supply of distilled water;
- 1 cm³ of aqueous starch indicator; concentration approximately 1% w/v;
- (m) 2 cm³ of 2,4-dinitrophenylhydrazine reagent. This may be made as follows: Suspend the powdered 2,4-dinitrophenylhydrazine (1 g) in a mixture of concentrated hydrochloric acid (80 cm³) and water (100 cm³). Warm gently on a water bath. Cool the solution and add water (120 cm³). Filter if necessary. Centres may use an alternative preparation provided the reagent gives a precipitate with the propanone.

NOTES

Materials S, R, Q and P must be measured into dry, stoppered containers. Further quantities may be issued to candidates without penalty.

Containers should be labelled with the name, but not necessarily the concentration, of the reagent unless otherwise instructed.

Candidates may be supplied with laboratory reagent bottles containing these solutions if these are available.

6246/02

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)	$\begin{array}{rcl} CH_3COOH &+ & C_2H_5OH &\rightleftharpoons & CH_3COOC_2H_5 \\ &+ & H_2O \ \textbf{(1)} \end{array}$	CH ₃ CO ₂ H → CH ₃ CH ₂ for C ₂ H ₅	$CH_3OCOC_2H_5$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	catalyst /speed up reaction (1)		dehydrating agent	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)	flask with still head (1)			3
	condenser and a receiver (1)			
	thermometer at correct place (1)			
	penalty of (1) if apparatus sealed or open at the wrong place or doesn't work for some other reason.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)	mol ethanoic acid = <u>12.6(0)</u> = 0.21 (1) 60			3
	(mol ethyl ethanoate = 0.21)			
	theoretical mass ethyl ethanoate = 0.21 x 88 = 18.48 g or 18.5g (1)			
	% yield = <u>10.60</u> x 100 = 57 (1) 18.48			
	Allow 57.29 or 57.36 or 57.4			
	OR			
	Theoretical mol ethanoic acid = $\frac{12.60}{60}$			
	= 0.21 (1) (mol ethyl ethanoate = 0.21)			
	actual moles of ethyl ethanoate = <u>10.6</u> <u>88</u> = 0.12 (1)			
	% yield = <u>0.12</u> x100 = 57 (1) 0.21			
	Allow 57.1 or 57.14			
	CQ ON FORMULAE IN (a) but these must be possible compounds.			
	IGNORE S.F.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)(i)	$\begin{array}{rcl} C_2H_5OH &+& CH_3COCI \\ & \rightarrow & CH_3COOC_2H_5 &+& HCI \mbox{(1)} \end{array}$	CH_3CH_2 for C_2H_5 $\vec{\leftarrow}$	CH ₃ OCOC ₂ H ₅	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)(ii)	Reaction with ethanoic acid reaches equilibrium/is reversible OR Reaction with ethanoyl chloride is not reversible/goes to completion (1)		Reaction with ethanoic acid is incomplete	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)(i)	(Phenyl benzoate) must be soluble in the hot solvent and less/almost insoluble in cold solvent (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)(ii)	to remove insoluble/un-dissolved impurities (1)			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(f)(iii)	to remove solid from soluble impurities		Just 'collect the	1
	(1)		product'.	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)(iv)	to wash away remaining solution/soluble impurities /remove surface impurity. (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)(v)	measure melting temperature (1) check value same as data book/sharp melting point (1) OR Use gas-liquid chromatography (1) Showing only one peak (1)		Mix with known sample and measure melting temperature. Any other instrumental method.	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	ionic lattice (1) Na ⁺ ions have 6 nearest neighbours of Cl ⁻ ions and vice-versa / 6:6 co- ordination (1)	Labelled sketch can score both marks but must have some 3D extension.		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	electrostatic attractions (in solid NaCl) overcome (1)	Attractions overcome by solvation of ions scores (1) only		2
	by the attractions between the ions and dipoles in water (1) ; this can be shown in a diagram.			
	OR			
	Water has a high dielectric constant/relative permittivity (1) which reduces the forces of attraction between ions in the solution (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)	$NaCI(s)$ (+aq) \rightarrow $Na^{+}(aq)$ + $CI^{-}(aq)$			3
	Na ⁺ (g) + Cl ⁻ (g) (+aq) Cycle (1)			
	Arrows labelled with names or values (1)			
	<i>Check arrow direction agrees with label/sign of the value</i>			
	ΔH _{soln} = -406-364-(-771) = +1 (kJ mol ⁻¹) (1) + sign not essential		Negative value	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)	sodium hydroxide/NaOH (1) hydrogen /H ₂ (1) anode $2Br^{-} \rightarrow Br_2 + 2e^{(-)}$ OR $2Br^{-} - 2e^{(-)} \rightarrow Br_2$ (1) or halved.		H Br	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(e)(i)	$H \qquad H \qquad$	H H H H $H H$ $H Br H$ as intermediate		3
	$H \xrightarrow{H} H \xrightarrow{H} \xrightarrow{H}$	lone pair not essential, arrow can start at - on Br ⁻ and go to + on C		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(e)(ii)	initial attack (on ethene) is by an electrophile/Br ^{ō+} (1) no Cl ⁺ / Cl ^{ō+} available as the electrophile (so no dichloroethane			4
	formed) (1) then (nucleophilic) attack by Br ⁻ (1)			
	Cl ⁻ can replace Br ⁻ (as nucleophile, so 1-bromo-2-chloroethane is formed) (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(i)	[(CH ₃) ₃ CCI] increases by 1.5 while [OH ⁻] remains constant, rate increases by 1.5 OR In expts A and B, [(CH ₃) ₃ CCI] increases by 1.5 and rate increases by 1.5 (1) so first order (1) [OH ⁻] zero order, with some explanation (1)			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(ii)	$(CH_3)_3C^{-CI} \longrightarrow (CH_3)_3C^+ + CI^-$		S _N 1 mechanism if [OH ⁻] first order	3
	(1) arrow (1) both ions $(CH_3)_3C^+$ (:)OH ⁻ \longrightarrow $(CH_3)_3C$ -OH (1) arrow			
	Must be $S_N 2$ mechanism if 1^{st} order wrt OH ⁻ in (i):			
	$\begin{array}{c} \overset{\bullet}{\overset{\bullet}{\operatorname{Cl}}}_{I} \\ H_{3}C \overset{\bullet}{\overset{\bullet}{\operatorname{CH}}}_{I} \\ \overset{\bullet}{\underset{(:)OH}{\operatorname{CH}}} \end{array} \xrightarrow[]{} \begin{array}{c} CI \\ H_{3}C \overset{I}{\underset{(i)}{\operatorname{CH}}} \\ H$			
	each arrow (1) x 2 intermediate (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(i)	$ \begin{array}{c} CH_{3} & H & CH_{3} \\ C = C - CH_{2} - CH_{2} - C - CH_{2} - C \\ CH_{3} & H \\ \end{array} \begin{array}{c} O \\ H \\ H \end{array} $ (1)			1

Question Number	Correct A	nswer	Acceptable Answers	Reject	Mark
3.(b)(ii)	alkene (aqueous) bromine (1) colourless(1) OR	orange to			4
	(aqueous) potassium r (ignore alkaline/acid) colourless/brown (1)			Purple to green.	
	aldehyde any one matching pair reagent (1)	from: observation (1) :			
	Fehling's solution	blue (soln) to red/brown ppt	Benedict's, same observation.	2,4 DNP	
	Tollens' reagent	silver mirror or black ppt	Ammoniacal AgNO ₃ , same obs.		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(iii)	(with NaBH ₄) H ₃ C H CH ₃ H C=C-CH ₂ -CH ₂ -C-CH ₂ -C-OH H ₃ C H H			2
	(1) (with HBr)			
	$ \begin{array}{c} Br & CH_{3} \\ CH_{3} - C - CH_{2} - CH_{2$			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(iv)	$C_{10}H_{18}O + 14O_2 \rightarrow 10CO_2 + 9H_2O$ (1) Ignore any state symbols			4
	Moles citronellal = 1.0/154 (1) = 6.49x10 ⁻³			
	Moles $CO_2 = 10x \ 6.49x 10^{-3}$ (1) = 6.49x 10^{-2}			
	Volume $CO_2 = 24 \times 6.49 \times 10^{-2}$ = 1.56 dm ³ (1) allow 1.6			
	Allow cq from incorrectly balanced equation. Ignore sf			
	OR			
	154g citronellal gives $240 dm^3 CO_2$ (1)			
	Vol CO ₂ from 1 g = 240/154 (1) = 1.56 dm ³ (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)	silicon - giant atomic/ giant covalent /giant molecular/macromolecular (1) phosphorus and chlorine - (simple) molecular (1)			5
	covalent bonds broken in Si are stronger than intermolecular/dispersion/ Van der Waals' / London/ induced dipole forces (1)			
	phosphorus is P_4 and chlorine is Cl_2 (1)			
	P ₄ has more electrons (per molecule) so stronger dispersion (etc) forces (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)	 PCl₄⁺ tetrahedral (1) PCl₆⁻ octahedral (1) 4 or 6 pairs of electrons as far apart as possible to minimise repulsion (1) 	correct 3-D diagrams		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(c)	name of any specific alcohol (1) ROH + PCI ₅ \rightarrow RCI + HCI + POCI ₃ (1) [R must apply to the specific alcohol] OR name of any specific carboxylic acid (1) RCOOH + PCI ₅ \rightarrow RCOCI + HCI + POCI ₃ (1) [R must apply to the specific acid]	equation with 'R' if mark lost for not giving a specific example	Just 'alcohol' Just 'acid'	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
Question Number 4.(d)	Correct Answer PCI ₅ \Rightarrow PCI ₃ $+$ CI ₂ eqm moles: 0.33 0.67 0.67 (1) mole fraction: 0.33 0.67 0.67 (1) mole fraction: 0.33 0.67 0.67 (1) 1.67 1.67 1.67 1.67 1 $partial pressures:$ $0.33x4$ $0.67x4$ $0.67x4$ (1) 1.67 1.67 1.67 1.67 1.67 $= 0.79$ $= 1.605$ $= 1.605$ $= 1.605$ $\mathcal{K}_p = \underline{pPCl_3 \times pCl_2}$ (1) $pPCl_5$ $= 3.26$ and $atm(1)$ OR $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ $1/3$ $2/3$ eqm moles $1/3$ $2/3$ $2/3$ eqm moles (1) 0.2 0.4 0.4 mole $fraction(1)$ 0.8 1.6 1.6 partial $press(1)$ $\mathcal{K}_p = \underline{pPCl_3 \times pCl_2}$ (1) ρPCl_5 (1)	Acceptable Answers If eqm moles PCI ₅ = 0.67 and PCI ₃ =CI ₂ =0.33 answer = 0.5 and can score last 3 marks If 1.6 used here then final answer is 3.24	Reject	5
	= 3.2 atm (1)			
Question Number	Correct Answer	Acceptable Answers	Reject	Mark

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4.(e)(i)	$H_3PO_4 + 2NaOH \rightarrow Na_2HPO_4 + 2H_2O$			1
	(1)			
	OR			
	$H_3PO_4 + 2OH^- \rightarrow HPO_4^{2-} + 2H_2O (1)$			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(e)(ii)	any point between			1

Further copies of this publication are available from Edexcel UK Regional Offices at www.edexcel.org.uk/sfc/feschools/regional/ or International Regional Offices at www.edexcel-international.org/sfc/academic/regional/

For more information on Edexcel qualifications, please visit <u>www.edexcel-international.org/quals</u> Alternatively, you can contact Customer Services at <u>www.edexcel.org.uk/ask</u> or on + 44 1204 770 696

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH