Mark Scheme J anuary 2008

GCE

GCE Chemistry (8080/ 9080)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information please call our Customer Services on +44 1204770 696, or visit our website at www.edexcel-international.org.uk.

J anuary 2008

All the material in this publication is copyright © Edexcel Ltd 2008

Contents

1. Unit 6241/ 01 Mark Scheme 1
2. Unit 6242/ 01 Mark Scheme 13
3. Unit 6243/ 01A Mark Scheme 23
4. Unit 6243/ 02 Mark Scheme 29
5. Unit 6244/ 01 Mark Scheme 37
6. Unit 6245/ 01 Mark Scheme 53
7. Unit 6246/ 01A Mark Scheme 63
8. Unit 6246/ 02 Mark Scheme 69

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/ word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/ words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(i)	Copper $\ldots3 d^{10} 4 s^{1}$	Subscripts/ignore capitals $4 s$ inside 3d	$3 d^{9} 4 s^{2}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(ii)	Bromide ion $\ldots . . .3 d^{10} 4 s^{2} 4 p^{6}$	Subscript/ignore capitals $4 s$ inside 3d	4 p inside 3d	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 . (b)}$	The average mass (taking into account the abundance of each isotope) of the atoms (of that element) (1)	Weighted/ mean in place of average		
relative to $1 / 12^{\text {th }}$ the (mass of a) carbon 12 atom Or relative to ${ }^{12} \mathrm{C}=12$ (exactly) (1) second mark stand alone must be mentioned at least once to score (2)	Average mass of a mole of atoms of an element relative to $1 / 12^{\text {th }}$ mole of Crla $^{12} /$ relative to one mole of ${ }^{12} \mathrm{C}$ $=12$ (exactly) (2)			

Question	Correct Answer				Acceptable Answers	Reject	Mark
1. (d)(i)						Use of atomic	
	Cu	C	0	H		er scores 0	
	57.5	5.40	36.2	0.900			
	63.5	12	16	1			
	0.906	0.450	2.26	0.900			
	2.01	1	5.02	2.00			
	Empirical formula $\mathrm{Cu}_{2} \mathrm{CO}_{5} \mathrm{H}_{2}$ (1) for dividing by atomic mass (1) stating empirical formula				Correct answer without working scores (2)		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)(ii)	Empirical formula mass $=221=\mathrm{M}_{\mathrm{r}}$ Molecular formula $\mathrm{Cu}_{2} \mathrm{CO}_{5} \mathrm{H}_{2}$	If use atomic number in(i) allow mark for $\mathrm{Cu}_{2} \mathrm{CO}_{5} \mathrm{H}$ and 220		
	Must show use of 221	Allow any formula that adds up to the correct molecular formula		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)	(Highest $\left.={ }^{65} \mathrm{Cu}+2{ }^{3 /} \mathrm{Cl}\right)=139(\mathbf{1)}$ (Lowest $\left.={ }^{63} \mathrm{Cu}+2{ }^{35} \mathrm{Cl}\right)=133$ (1) lgnore units			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
$\mathbf{2 . (a)}$	Lithium carmine/ red/ magenta/ crimson Any combination of these or prefaced by deep or dark Potassium: lilac Sodium: yellow	scarlet	Brick-red			
mauve or purple						
orange or yellow-						
orange						
All three correct						
Two correct	$\mathbf{2}$ marks				\quad	mark
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	Electrons (absorb heat energy and) are promoted (to higher level) (1)	'Excited' any phrase that implies movement to higher level	If answer based on absorption spectra scores zero	
	They drop back and emit light/ radiation (of characteristic colour) (1)	ignore references to shells, sub-shells, etc.	Colour or energy	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(i)	$\mathrm{LiCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{LiHSO}_{4}+\mathrm{HCl}$ Ignore state symbols	Multiples $2 \mathrm{LiCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Li}_{2} \mathrm{SO}_{4}$ +2 HCl		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(ii)	$\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$	Multiples		
	$\mathrm{CO}_{3}^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} / \mathrm{H}_{2} \mathrm{CO}_{3}$	$\mathrm{~K}_{2} \mathrm{CO}_{3}+2 \mathrm{HNO}_{3} \rightarrow$		
	$\mathrm{CO}_{3}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{HCO}_{3}{ }^{-}$	$2 \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{CO}_{3}$		
	Ignore state symbols and spectator ions	$\mathrm{K}_{2} \mathrm{CO}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{KNO}_{3}+$		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(iii)	Nal $+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgI}+\mathrm{NaNO}_{3}$ gnore state symbols and spectator ions	Multiples $\mathrm{Ag}^{+}+I^{-} \rightarrow \mathrm{AgI}$		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)(i)	The beryllium ion would be (very) small (1)	Allow Be ${ }^{2+}$ has a large charge to size ratio/ large charge density and would polarise chloride ions (producing sharing of electrons / covalency) (1)	Answers that refer to polarisation of atoms score zero	
	Distort for polarise OR Difference in electronegativity small / similar (1) Therefore share (pair of) electrons / no electron transfer (1) If both routes given. Mark both out of 2 and then score higher hark.	Answers that refer to electronegativity of ions score zero		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2. (d)(ii)	$\ddot{\mathrm{Cl}}: \mathrm{Be}: \ddot{\mathrm{Cl}}:$ Ignore shape and inner electrons if correct	All dots or all crosses or mixture of both Polymer with continuation bonds	Dimer Ionic formula	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	- Diagram showing correct covalent and hydrogen bonds (1) - Linear around at least two H and water shown as ' v ' shaped (1) - $\delta^{+} \mathcal{H}$ and $\delta^{-} O(\mathbf{1})$ must be shown across at least one hydrogen bond	If only two water molecules shown max 2 marks Blobs for O and H provided correct δ^{+} / δ^{-} shown Ignore a slip in partial charges provided not part of hydrogen bond	If use $\mathrm{O}_{2} \mathrm{H}$ allow third mark only If any H bond shown between two oxygens or two hydrogens	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)	Each water can form more hydrogen bonds (than each hydrogen fluoride molecule) (1)	Each water molecule can form two hydrogen bonds, HF can only form one Each water molecule can form four hydrogen bonds HF can only form two	Just 'H bonds in water are stronger' st not good enough to score the mark	
	So more energy is needed to break the hydrogen bonds in water/ separate molecules (hence higher boiling temperature) (1)	"Intermolecular force" for "hydrogen bond"	Any reference to breaking covalent bonds/ bonds in the molecule scores zero.	
$2^{\text {nd }}$mark is stand alone unless wrong intermolecular force identified in first part e.g. vdw				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3. (c)(i)	Must attempt to draw as a pyramid wedge or dash or both. If three lines drawn must not look planar Ignore name unless "planar"	Ignore omission of + sign in diagram		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)(ii)	Any number from 105 to 108 inclusive. Mark independently of (c)(i)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)(iii)	Repulsion between the $\mathrm{H}_{3} \mathrm{O}^{+}$and the H^{+}	They are both cations so repulsion OR They are both positive so repulsion		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
4.(a)	Substance that can lower/ reduce the oxidation number (of an element in another substance) Ignore references to loss or gain of electrons unless contradictory.	Substance containing an element whose oxidation number is increased (in a reaction) OR Causes a decrease in the oxidation number of the molecule/ species it reacts with OR The reducing agent's oxidation number increases	The oxidation number goes down	A definition of redox	\quad	
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(i)	$2 \mathrm{ClO}^{-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{(-)} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Ignore state symbols and \rightleftharpoons	Or multiples "-2 $\mathrm{e}^{(-) "}$ on RHS		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(ii)	$2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{(-)}$ Ignore state symbols and \rightleftharpoons	Or multiples " $-2 \mathrm{e}^{(-) "}$ on LHS		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(c)	$\mathrm{ClO}^{-}+\mathrm{Cl}^{-}+2 \mathrm{H}^{+} \rightarrow \quad \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$ Stand alone not consequential on (b) Ignore state symbols and \rightleftharpoons	Or multiples		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(d)	White/ misty/ steamy fumes Mauve/ purple/ violet/ (iodine) vapour/gas/ fumes Black solid Any two of above Ignore any yellow solid/ bubbling/fizzing Ignore non-visible observations e.g. getting hot	lilac	White smoke	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(e)(i)	$2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$	Or multiples		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4. (e)(ii)	Oxidation numbers all correct (1) Chlorine reduced as oxidation number decreases/ changes from +5 to -1 (1) Oxygen oxidised as oxidation number increases/ changes from -2 to 0 (1) Oxidation number mark may be awarded if included within explanations. Penalise omission of reference to oxidation or reduction once $2^{\text {nd }}$ and $3^{\text {rd }}$ marks are consequential on stated oxidation numbers.	Allow 5+, 2-, 1- Allow V, -II, -I Correct identification of O as oxidised and Cl as reduced scores (2) provided oxidation number change is in the correct direction for both even if actual numbers wrong.	$\mathrm{Cl}^{5+}, \mathrm{Cl}^{-1}, \mathrm{O}^{-2}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 . (a) (i)}$	The ability of an atom/ element/ species to attract the electrons (1)	"Power/ extent" instead of "ability" "pulls toward/ draws" instead of "attract"	Molecule	
in a covalent bond/ bond pair/ shared electrons (1)		2		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5. (a)(ii)	The molecule is symmetrical / tetrahedral (1) So bond polarity/ dipoles cancels OR centres of positive and negative charge coincide (1) - stand alone	Diagrams showing vectors	Too small a difference in electronegativity Charge cancels	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5 .}$ (a)(iii)	Dispersion/ Induced dipole / London OR temporary/ instantaneous dipole	van der Waals/ vdw	Dipole-dipole	

$\begin{aligned} & \hline \text { Question } \\ & \text { Number } \end{aligned}$	Correct Answer	Acceptable Answers	Reject	Mark
5.(b)(i)	Ignore sig. figs UNLESS rounded to 1SF $700 \mathrm{~g} \mathrm{TMP}=\frac{700}{114}(1)=6.14 \mathrm{~mol}$ Moles of oxygen $=12.5 \times 6.14(1)=$ 76.75 $\begin{aligned} \text { Volume of oxygen } & =12.5 \times 6.14 \times 24 \\ & =1842 \mathrm{dm}^{3}(\mathbf{1}) \end{aligned}$ Units essential Working must be checked i.e. $3.07 \times 25 \times 24=1842 \mathrm{dm}^{3}(2)$ $3.07 \times 12.5 \times 24=921 \mathrm{dm}^{3}(\mathbf{1})$ OR 228 g of TMP need $25 \times 24 \mathrm{dm}^{3}$ of oxygen (1) $\therefore 700 \mathrm{~g}$ of TMP need $\frac{25 \times 24 \times 700}{228}$ of oxygen(1) $=1842 \mathrm{dm}^{3} \mathbf{(1)}$ Units essential [Working must be checked]	$1840 / 1800 \mathrm{dm}^{3}$ 1830 if 6.14 rounded to 6.1	$\text { Moles } \begin{aligned} 2 \mathrm{C}_{8} \mathrm{H}_{18} & =\frac{700}{228} \\ & =3.07 \end{aligned}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5. (b)(ii)	Ignore sig. figs UNLESS rounded to 1SF Moles of $\mathrm{CO}_{2}=8 \times 6.14(\mathbf{1})=49.12$ Mass of $\mathrm{CO}_{2}=8 \times 6.14 \times 44=2161 \mathrm{~g}$ (1) Units essential but don't penalise if already penalised in (i) OR 228 g of TMP give $44 \times 16 \mathrm{~g} \mathrm{CO}_{2}$ (1) $\therefore 700 \mathrm{~g}$ of TMP give $\frac{44 \times 16 \times 700}{228} \mathrm{~g}$ of CO_{2} $=2161 \mathrm{~g}(\mathbf{1})$ Could be consequential on (i)	$\begin{aligned} & 2160 / 2200 \\ & \text { or } 2147 / 2150 / 2100 \end{aligned}$ $\text { if } 6.14 \text { rounded to } 6.1$		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 . (a)}$	Energy/ Enthalpy/ heat change per mole for the (1) Removal of one electron (per atom) (1) From 1 mole of gaseous atoms (1) If wrong equation given with a correct definition (max 2)	"Required" instead of change" score last 2 marks		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(b)	Increase in shielding/ screening (1) Increase in nuclear charge/ more protons/ atomic number (1)	Increase in distance (of outermost electron)/ larger atomic radius OR (increase in) shielding outweighs nuclear charge (increase) (1) Ignore references to: effective nuclear charge OR nuclear attraction	energy level	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(c)(i)	Na:Mg:Al metallic (structure) Si giant atomic (structure) P:S:Cl:Ar simple molecular All three correct 1 mark			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 . (c) (i i) ~}$	strong covalent bonds (1) (throughout the lattice and lots of energy) need to break many bonds (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(c)(iii)	Aluminium supplies more electrons (per atom)/ Al ion is more highly charged/ Al ion is smaller/ Al ion has a higher charge density (1)	Reverse for Na		
The (attractive) forces between the aluminium ions and the electrons are stronger/require more energy to break than in the case of sodium. (1)	Any reference to bonding other than metallic bond/ sea of electrons/ delocalised system	2		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 . (a)}$	bauxite			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	electrodes	Anode / cathode	A reducing agent Just "to form carbon dioxide"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)(i)	$\mathrm{Al}^{3+}+3 \mathrm{e}^{(-)} \rightarrow \mathrm{Al}$ Ignore state symbols unless (aq)	Multiples $\mathrm{Al}^{3+} \rightarrow \mathrm{Al}-3 \mathrm{e}^{(-)}$	Equilibrium	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)(ii)	Oxidation (1) Stand alone loss of electrons (from O 0^{2-} Conditional on first mark (1)	oxidisation	Oxidising / redox in terms of ox. no. Oxygen molecules or O_{2} or wrong formula for ion	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 . (d)}$	$900\left({ }^{\circ} \mathrm{C}\right)$	$800-1000\left({ }^{\circ} \mathrm{C}\right)$ any range or number within this range (inclusive) value in kelvin (1073-1273) provided unit given		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 . (e)}$	to dissolve the aluminium oxide/ alumina/ $\mathrm{Al}_{2} \mathrm{O}_{3}$ Or		To dissolve bauxite. Just "lowers melting point (of aluminium oxide)".	1
As a solvent	Any reference to catalysts scores 0.			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)	(Generation of) electricity/ or electrical energy. Ignore any reference to heat.		1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	$\mathrm{N} / \mathrm{N}_{2}$ goes from 0 to -3 = reduction (1) $\mathrm{H} / \mathrm{H}_{2}$ goes from 0 to $(+) 1=$ oxidation (1)	If "the oxidation number of N goes down hence reduced and the oxidation number of H goes up and hence oxidised" (max 1) If all O.N. correct but fails to state which is oxidation and which is reduction scores 1.	If all O.N. correct but both reactions misclassified, scores zero. Any answer not referring to nitrogen or hydrogen scores zero.	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(i)	Calculation of bonds broken 463×3+944/ $(=2252)(1)$ Calculation of bonds made $388 \times 6 /$ $(=2328)(1)$ $\Delta H=-76(\mathrm{~kJ} \mathrm{~mol}$ mark consequential on numerical values calculated above	Correct answer with some working scores 3 marks Correct answer alone scores 2 marks	3	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(ii)	Average / mean bond enthalpy used for N-H bond / ammonia	Just "average bond enthalpies used"	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(iii)	Thermodynamic: energy level of products lower than that of reactants OR energy released in bond formation $>$ energy used to break bonds (1) kinetic:	ΔH negative / reaction exothermic	3	
high activation energy (1)				
because strong N三N (1) [confusion between thermodynamic and kinetic loses first 2 marks].	(1) because N $\equiv N$ is 944/ total bond breaking energy is high/2252(kJ mol ${ }^{-1}$)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\begin{aligned} & \text { 2. (c)(i) } \\ & \mathbf{Q} \\ & \text { W } \\ & \text { C } \end{aligned}$	One way temperature increase therefore molecules have greater (average kinetic) energy (1) more molecules/ collisions have $\mathrm{E} \geq \mathrm{E}_{\text {act }}$ (1) Therefore a greater proportion of/ more of the collisions are successful (1) Ignore greater frequency of collision Another way addition of (iron) catalyst (1) provides alternative route of lower activation energy (1) EITHER: A greater proportion of / more of the molecules/ collisions have $\mathrm{E} \geq \mathrm{E}_{\mathrm{cat}} / \mathrm{a}$ greater proportion of collisions are successful OR provides (active) sites (where reactant molecules can bond / be adsorbed) (1) Ignore any answers referring to pressure or concentration. Do not penalise just " more collisions are successful" more than once	moving faster $E>E_{\text {act }}$ particles for molecules greater frequency of successful collisions/ more successful conditions per unit time platinum catalyst	just "more successful collisions" incorrect catalyst just "more successful collisions"	6

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\begin{aligned} & \hline \text { 2.(c)(ii) } \\ & \mathbf{Q} \\ & \mathbf{W} \\ & \mathbf{C} \\ & \hline \end{aligned}$	Decrease temperature(1) because (forward) reaction exothermic (1) increase pressure (1) because more moles (of gas) on left (1)	Low temperature $\Delta \mathrm{H}$ is negative High pressure Molecules for moles	Answer based on endothermic reaction scores 0	4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)(i)	(cool to) condense / liquefy OR cool to below critical temperature		Just "cool"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)(ii)	Recycle (the unreacted gases) OWTTE			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(i)	2-bromobutane the "2" must be in front of "bromo" Ignore punctuation and capitals		1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(ii)	$\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{CH}_{3}+\mathrm{KOH} \rightarrow$ $\mathrm{CH}_{3} \mathrm{CHOHCH}_{2} \mathrm{CH}_{3}+\mathrm{KBr}$ OR^{2} $\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{CH}_{3}+\mathrm{OH}^{-} \rightarrow$ $\mathrm{CH}_{3} \mathrm{CHOHCH}_{2} \mathrm{CH}_{3}+\mathrm{Br}^{-}$	$\mathrm{C}_{2} \mathrm{H}_{5}$ instead of $\mathrm{CH}_{2} \mathrm{CH}_{3}$	eqns with NaOH	1
	Allow K+ as spectator ion			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(iii)	water / $\mathrm{H}_{2} \mathrm{O} /$ aqueous ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq}) /$ aqueous alcohol/ KOH(aq)/aqueous Do not penalise use of $\mathrm{NaOH}(\mathrm{aq})$ again	just "ethanol / ethanolic / alcoholic $(\mathrm{KOH}) "$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(iv)	nucleophilic substitution (both needed)	reasonable phonetic spelling	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
3.(b)(i)	$\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{CH}_{3}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$ $+\mathrm{H}_{2} \mathrm{O}+\mathrm{Br}^{-}$ OR $\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{CH}_{3}+\mathrm{OH}^{-} \rightarrow$ $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Br}^{-}$ Double bond need not be shown	Ignore spectator ions		1		
$\mathrm{C}_{2} \mathrm{H}_{5}$ instead of $\mathrm{CH}_{2} \mathrm{CH}_{3}$					\quad	
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3. (b)(ii)	Ethanol / $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	Alcohol OR Ethanolic/ alcoholic $\mathrm{KOH} / \mathrm{NaOH}$	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ Any mention of water/ aqueous	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(iii)	elimination ignore "nucleophilic"	electrophilic elimination	1	

Question	Correct Answer		Acceptable Answers	Reject	Mark
3. (c)(i)			bond to H of CH_{3} on left carbon structure with 90° bond angles		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)(ii)	no / restricted rotation around double bond / $\mathrm{C}=\mathrm{C} / \pi$ - bond (1) has two different groups joined to each C (of double bond) OR each (carbon of $\mathrm{C}=\mathrm{C}$) has a CH_{3} and a H (1)	limited rotation	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(d)(i)	nickel / Ni OR platinum / Pt OR palladium / Pd			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(d)(ii)	butane / $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	$\mathrm{C}_{2} \mathrm{H}_{5}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2}$	JUST " $\mathrm{C}_{4} \mathrm{H}_{10}$ "	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(e)(i)	$\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{CH}_{3}+2 \mathrm{NH}_{3} \rightarrow$ $\mathrm{CH}_{3} \mathrm{CHNH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{NH}_{4} \mathrm{Br}$ OR $\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{CH}_{3}+\mathrm{NH}_{3} \rightarrow$ $\mathrm{CH}_{3} \mathrm{CHNH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{Br}^{-}$	$\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{CH}_{3}+\mathrm{NH}_{3}$ $\rightarrow \mathrm{CH}_{3} \mathrm{CHNH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+$		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(e)(ii)	excess / concentrated / ethanolic ammonia	heat in sealed tube	Just "heat" Just "sealed tube"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
3.(e)(iii)	$\frac{74.4:}{12} \frac{14.7:}{1}: \frac{10.9}{14}(1)(=6.2: 14.7: 0.779)$	Correct answer alone scores (2)	dividing by atomic number scores zero	2		
	$\frac{6.2}{0.779}: \frac{14.7}{0.779}: \frac{0.779}{0.779}=8: 19: 1$					
so $\mathrm{C}_{8} \mathrm{H}_{19} \mathrm{~N}(1)$					\quad	
:---						

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)(i)	$\sum \Delta H_{f}\left(\right.$ products) $-\Sigma \Delta H_{f}($ reactants) / $[(-394)+(2 \mathrm{x}-242)]-(-75)(1)$	correct answer without working scores (2) $=-803\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1)$	any positive value scores zero $-561(\mathrm{~kJ} \mathrm{~mol}$ (1)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)(ii)	(under standard conditions) water condenses / is a liquid (more heat evolved)	Reverse argument Water is not in its standard state	Any answer in terms of average bond energies J ust "conditions are not standard"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\begin{aligned} & \text { 4.(a)(iii) } \\ & \mathbf{Q} \\ & \text { W } \\ & \text { C } \end{aligned}$	Any 4 of: H_{2} better because: cheaper per kJ (1) more energy per gram / less weight/ mass to carry for same energy (1) no CO_{2} / only $\mathrm{H}_{2} \mathrm{O}$ produced (at point of use) (1) H_{2} worse because: gas storage needs pressurised/ large containers (1) which are heavy (1) needs to be cooled to very low temperature to be liquefied (1) Ignore problems with refuelling	converse argument	Just "cheaper" J ust "more energy" Just "hard to store" Hydrogen is flammable/ dangerous/ explosive	4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(i)	 (1)	-OH for -O-H		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(ii)	structural formula of any tertiary alcohol (1) and its name (1) - must not contradict the formula and conditional on tertiary alcohol	$2^{\text {nd }}$ mark can be awarded if minor slip in formula or no formula given	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4. (c)	(concentrated) sulphuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$ OR phosphoric acid/ $\mathrm{H}_{3} \mathrm{PO}_{4}$ OR aluminium oxide/ $\mathrm{Al}_{2} \mathrm{O}_{3}$	pumice	Dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ Or $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ Or Dilute $\mathrm{H}_{3} \mathrm{PO}_{4}$ $50 \% \mathrm{H}_{2} \mathrm{SO}_{4}$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(d)(i)	$-\mathrm{CH}_{2} \mathrm{CH}_{2}-(1)$	$-\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)_{n}-$	$-\mathrm{CH}_{2}-$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(d)(ii)	bags / bottles / packaging / (food) containers / buckets / bowls	Electrical insulation / cling film/ water pipes	Clothing, light fittings, ropes	1

| Question
 Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 1.(a) | Observation
 (white) solid (re-)forms higher up tube /
 white smoke (1) | White fumes/misty/
 Gas/ precipitate | 3 |
| Inferences
 sublimes / sublimation (1)
 Ammonium / NH ${ }^{+}$(1)
 Ignore $\mathrm{NH}_{3} / \mathrm{HCl}^{2}$ | Can be awarded if given
 in observation
 White sublimate (2) | NH 4 Cl | |

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	Observation red \rightarrow blue (1) (and blue-no change) Inferences ammonia / $\mathrm{NH}_{3}(1)$ - must follow obs. ammonium / $\mathrm{NH}_{4}{ }^{+}(1)$ - must follow obs/ NH_{3}		Ignore $\mathrm{NH}_{4} \mathrm{CL}$ J ust alkaline gas $\mathrm{NO}_{3} / \mathrm{NO}_{2}$	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)	Observations white ppt / white suspension (1) dissolves / soluble / colourless solution (in ammonia) / disappears (1) Inference Cl^{-}/ chloride (1)	Goes cloudy/milky	Cream / yellow ppt Any "solution"	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)	It prevents other anions forming a precipitate OR (Nitric) acid destroys interfering anions.	Destroys carbonate /hydroxide/ sulphite	Just "makes it acidic"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(i)	$\frac{\text { Mean titre } \times 0.100}{1000}$			
Mark is for answer to >2 2sf. [Penalise sf once only in (i)-(iii)] Allow loss of 3re s.f. if it would be a zero lgnore units even if wrong	Answer with no working.		1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(ii)	Moles HCl in $25 \mathrm{~cm}^{3}=$ Answer to (i) Moles HCl in $250 \mathrm{~cm}^{3}=$ above moles x 10	Answer with no working.		
	Mark is for answer to > 2sf. [Penalise sf once only in (i)-(iii)] Allow loss of 3rd s.f. if it would be a zero lgnore units even if wrong		1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)(iii)	$1^{\text {st }}$ answer to (ii) $\times \frac{1000(1)}{2.5}$	Correct value with no wrking (2) $1 / 10$ of correct value with no working (1) $2^{\text {nd }}$ answer to (ii) $\times \frac{1000}{25}$ Correct value to And units (if given) correct (1)	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(i)	Titre will be very low / about $1 / 10^{\text {th }}$ of value obtained by student.(1) \%error increases (1) Must follow $1^{\text {st }}$ mark	Any indicator colour change reference. Less accurate	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(ii)	Water in pipette and/ or burette would dilute solution/ alter concentration (1) Water added to flask anyway so no effect on concentration of solution. (1)	Water does not affect amount HCl present.	Alter titre	2

Question Number	Correct Answer				Acceptable Answers	Reject	Mark
3. (a)	Table 2 Three temperatures recorded in correct spaces. (1) Each to at least 1 dp (1) Change in temperature correctly calculated to at least 1 d.p. but allow loss of d.p's if zero (1) Award marks for accuracy as follows. Home Centres Compare candidate's temperature change (corrected if necessary) with table					Negative value	6
	Range r $=$		5.5-8.0				
	Marks	$\checkmark 3$	$\checkmark 2$	$\checkmark 1$			
	Internationa Write superv Compare ca (corrected if	Centre sor's va didate' necess		ript change			
	Range	± 0.8	± 1.3	± 1.8			
	Marks	$\checkmark 3$	$\checkmark 2$	$\checkmark 1$			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(i)	$\frac{25 \times 1.0}{1000}=0.025$ ONLY	Answer with no working.		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(ii)	$\frac{50 \times 4.18 \times \Delta \mathrm{T}(\mathrm{kJ})}{1000}$OR $50 \times 4.18 \times \Delta \mathrm{T}(\mathrm{J})$ Mark is for method IGNORE sf, sign both of $\Delta \mathrm{T}$ and answer and units (even if wrong)Correct answer with no working		1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(iii)	Answer to (ii) Answer to (i) Value consequential on (ii). (1) If units given, must be kJ mol - or kJ Sign - negative only - stand alone (1) 2 sf - only award if correct method (1)		3	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(iv)	any two Use pipette / burette not measuring cylinder. (1) Use a more precise / more accurate / / digital thermometer (1) Use more concentrated solutions (1)	Add NaOH in small volumes \& plot volume /temp graph Lid on polystyrene cup	Repeat expt. Larger volumes	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.	Method 1 $\checkmark{ }^{1}$ Collect gas in gas syringe/ over water/ diagram (1) $\checkmark^{2} \mathrm{Mix} \mathrm{CaCO} 3+\mathrm{HCl} /$ reagents (1) ${ }^{3}$ When no more bubbles evolved / syringe stops moving/ reaction complete(1) $\checkmark{ }^{4}$ Record volume of gas collected (1) $\checkmark{ }^{5}$ Moles $\mathrm{CO}_{2}=\frac{\text { volume } \mathrm{CO}_{2}}{\left.24, \mathrm{~cm}^{3}\right)}$ OR Moles $\mathrm{CO}_{2}=\frac{\text { volume } \mathrm{CO}_{2} \mathrm{dm}^{3}}{24}$ \checkmark^{6} Moles $\mathrm{HCl}=2 \times$ moles CO_{2} (1) $\checkmark{ }^{7}$ Concentration $\mathrm{HCl}=\frac{1000 \times \text { moles } \mathrm{HCl}(1)}{\text { Vol HCl used }}$	No more CO_{2} evolved Record syringe volume (at start and end) for 2 marks	Unworkable diagram negates $1^{\text {st }}$ mark Adding a little at a time	7
	Method 2 $\checkmark{ }^{1}$ Weigh CaCO_{3} (1) $\checkmark^{2} \mathrm{Mix} \mathrm{CaCO} 3+\mathrm{HCl} /$ reagents (1) ${ }^{3}$ When reaction is complete / no more bubbles evolved / no more effervescence. (1) $\checkmark{ }^{4}$ Filter off, dry and weigh CaCO_{3} (1) ${ }^{5}$ Moles CaCO_{3} reacted $=\frac{\text { mass } \mathrm{CaCO}_{3}}{100 \text { or } \frac{\text { reacted }}{\mathrm{RMM}}(1)}$ ${ }^{6}$ Moles $\mathrm{HCl}=2 \times$ moles CaCO_{3} (1) $\checkmark{ }^{7}$ Concentration $\mathrm{HCl}=\frac{1000 \times \text { moles } \mathrm{HCl}}{\text { Vol HCl used }}(1)$	No more CO_{2} evolved	Adding a little at a time	
	Method 3 $\checkmark{ }^{1} \mathrm{Mix} \mathrm{CaCO} 33+\mathrm{HCl} /$ reagents (1) $\checkmark{ }^{2}$ Weigh immediately / tare balance (1) $\checkmark{ }^{3}$ When reaction is complete / no more bubbles evolved / no more effervescence / no more weight loss (1) \checkmark "Re-weigh flask + reaction mixture / record loss of mass if tared (1) \checkmark^{5} Moles $\mathrm{CO}_{2}=\underline{\text { mass } \mathrm{CO}_{2}} \frac{\text { loss in mass }}{44 / \mathrm{RMM}}$ (1) ${ }^{6}$ Moles $\mathrm{HCl}=2 \times$ moles CO_{2} (1) $\checkmark{ }^{7}$ Concentration $\mathrm{HCl}=\frac{1000 \times \text { moles } \mathrm{HCl}}{\text { Vol HCl used }}$	No more CO_{2} evolved	Adding a little at a time	

Materials

Each candidate will require:
(a) * 1.5 g of ammonium chloride labelled A . The identity of this compound is not to be disclosed to candidates;
(b)* $100 \mathrm{~cm}^{3}$ of aqueous hydrochloric acid of concentration $1.050 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution B for Questions 2 and 3. The concentration of this solution is not to be disclosed to candidates;
(c) * $200 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide of concentration $0.100 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ labelled Solution \mathbf{C};
(d) ${ }^{\text {* }} 50 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide of concentration $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ labelled Solution \mathbf{E};
(e) $6 \mathrm{~cm}^{3}$ of dilute sodium hydroxide; concentration approximately $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$;
(f) $2 \mathrm{~cm}^{3}$ of aqueous silver nitrate; concentration approximately $0.05 \mathrm{~mol} \mathrm{dm}{ }^{-3}$;
(g) $2 \mathrm{~cm}^{3}$ of dilute nitric acid; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(h) $10 \mathrm{~cm}^{3}$ of dilute aqueous ammonia; concentration approximately $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$;
(i) Phenolphthalein indicator;
(j) Red and blue litmus paper;
(k) A supply of distilled water.

Reject all titration methods

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 . (a)}$	From orange to green or blue	to blue-green or green- blue	Yellow	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(i)	Sulphur dioxide/ sulphur(IV) oxide/ SO_{2}	Sulfur dioxide Sulfur(IV) oxide		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1. (b)(ii)	any two of Butan-1-ol or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ (1) Butan-2-ol or $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}(1)$ 2-methyl propan-1-ol or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH}$ (1) or Full structural formulae	$\mathrm{C}_{2} \mathrm{H}_{5}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2}$ Partial names with correct formulae methylpropan-1-ol Penalise full structural formulae without H's once only in (b)(ii) and (iii) Penalise incorrect linkage (e.g. C-H-O) once in (b)(ii) and (b)(iii)	Butanol p-alcohol s-alcohol	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(iii)	2-methylpropan-2-ol OR full structural formula	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ methylpropan-2-ol Penalise full structural formulae without H's once only in (b)(ii) and (iii)	Penalise incorrect linkage once in (b)(ii) and (b)(iii)	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)(i)	Nitrate or NO_{3}^{-} OR Nitrite or $\mathrm{NO}_{2}{ }^{-}$	nitrate(V OR nitrate(III)	NO_{3} and NO_{2}	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)(ii)	Ammonia/ NH_{3}			
	ECF on $\mathrm{NH}_{4}{ }^{+}$only			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)(iii)	(gas) turns (damp red) litmus blue	White smoke with HCl (Universal) indicator/ pH paper goes blue	White fumes or white mist	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\begin{array}{\|l} \hline \text { 1.(d) } \\ \mathbf{Q} \\ \text { W } \\ \text { C } \\ \hline \end{array}$	Dip a nichrome or platinum or flame-testing wire or silica rod (1) in (conc.) hydrochloric acid then the solid and then into a (hot Bunsen) flame. (1) Lithium (gives) crimson (flame) (1) Sodium (gives) yellow (flame) (1)	Dissolve salt in HCl and then put in flame carmine or red or magenta or scarlet orange	Spatula chromium (wire) glass rod Into yellow or luminous (Bunsen) flame Heat	4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a) \mathbf{Q} W C	(Transfer solid to a beaker \&) dissolve in distilled or deionised water (1)	Dissolve in volumetric flask rather than beaker	Just 'water'	
Use of volumetric flask (1)	Standard or graduated flask	Flask		
Add washings from weighing bottle				
(and beaker) (1)				
Make up solution to the mark (1)				
Mix final solution (1)	to $250 \mathrm{~cm}^{3}$ or line			
If dissolved in $250 \mathrm{~cm}^{3} \mathbf{3 ~ m a x ~}$ rinse weighing bottle (1) Use of volumetric flask (1) Mix final solution (1)]	Invert flask meniscus to the			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	$\mathrm{M}_{\mathrm{r}}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=106$ (1) Amount $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right) \frac{2.45}{106}$ Conc. $=\frac{2.45}{106} \div 0.250(1)$ $=0.0925\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1)$ Answer must be to 3 SF	ECF for wrong M_{r} or amount Correct answer with some working 0.0924 and ECF		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(i)	From yellow to orange	Yellow to salmon pink Yellow to peach	Pink alone and any other colours	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(ii)	$\frac{(28.60+28.70)}{2}=28.65\left(\mathrm{~cm}^{3}\right)$	Correct answer without working	28.80 and 28.7 $\left(\mathrm{~cm}^{3}\right)$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)(iii)	Amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.0925 \times \frac{25.0}{1000}(1)$ Moles HCl in titre $=2 \times 0.0925 \times \frac{25.0}{1000}(1)$ Conc $\mathrm{HCl}=\frac{2 \times 25.0 \times 0.0925}{28.65 \text { or value from (ii) }}$ $=0.161\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1)$ [Penalise 1 SF only)] If alternative conc used: Amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $\begin{equation*} =\frac{1.50 \times 25.0}{1000} \tag{1} \end{equation*}$ Moles HCl in titre $=2 \times 1.50 \times \frac{25.0}{1000}(1)$ Conc. HCl $=2 \times 25.0 \times 1.50$ 28.65 or value from(ii) $=2.62\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1)$	Correct answer with some working and ecf (' M^{\prime} for $\mathrm{mol} \mathrm{dm}^{-3}$)		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(i)	Reaction exothermic or Reactants might evaporate	Prevent oxidation of ${\mathrm{HBr} \text { or } \mathrm{Br}^{-} \text {(to bromine }}_{\text {or } \mathrm{Br}_{2} \text {) }}$Vigorous or violent or Side reactions occur	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(ii)	Heated round or pear-shaped flask (1) Correct vertical condenser inc. water direction (1) Gas-tight joint \& open apparatus (1)	Heat Horizontal lines on flask (at joint) J ust arrows to indicate water direction	'ust 个 or just heat' or direct Bunsen or or a conical flask Horizontal lines at the top of condenser	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(iii)	Immiscible (with water) or do not mix	Immiscible with aqueous solution Insoluble in water	"Different densities" on its own	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(iv)	Drying agent or to dry product	To remove water	Dehydrate or Dehydrating agent	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3. (a)(v)	Either Use electrical heater or sand bath (1) 1-bromopropane is flammable (1) Or wear gloves (1) 1-bromopropane harmful by skin absorption (1) $2^{\text {nd }}$ mark conditional on $1^{\text {st }}$	Water bath Flammable mixture OR propan-1-ol flammable sulphuric acid corrosive (1)	Keep away from naked flame as 1-bromopropane is flammable Organic liquids flammable 1-bromopropane is harmful to skin	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(i)	Moles propan-1-0l $=\underline{7.55} \mathbf{6 0 . 0}(1)$	$7.55 \times \frac{123}{60.0}=15.5 \mathrm{~g}$		
Mass 1-bromopropane $=\left(123 \times \frac{7.55}{60.0}\right)$	scores full marks Correct answer with some working	15.4 (from $7.5 / 60$ or truncated)		
	IGNORE SF		2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(ii)	$100 \times 8.3 \div 123 \times \frac{7.55}{60.0}=53.6 \%$ IGNORE SF	$100 \times \frac{8.3}{15.5}=53.5 \%$ ECF	Yield $>100 \%$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(iii)	Transfer losses or other products formed or side reactions or (reaction) not complete	Experimental error or spillages Evaporation (from reflux)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)(i)	To determine the (minimum) volume of acid needed (for complete neutralisation of the alkali)	Amount of acid needed To ensure equal moles of acid \& alkali used	To find [HCl]	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)(ii)	Temperature equilibration or steady temperature	Same or settled or room temperature		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(i)	Mass $=25+22.75=47.75(1)$ or in equation below $47.75 \times 4.18 \times 10.5=2096(\mathrm{~J})(1)$ $(=2100(\mathrm{~J}))$ consequential on calculated mass	Correct answer with some working (2) Use of incorrect mass (e.g. $\mathrm{m}=$ $1 \mathrm{~g})$ can gain 2 $=$ mark Answer changed to kJ		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(ii)	$\begin{aligned} & \text { Moles (water) }=\frac{25 \times 1.5}{1000}=0.0375(1) \\ & \left.\begin{array}{rl} \triangle H & =(-) \frac{2096}{(1000 \times .0375)}(1) \\ & =-55.9(\mathrm{~kJ} \mathrm{~mol} \end{array}{ }^{-1}\right)(1) \end{aligned}$ both value, in $\mathrm{kJ} \mathrm{mol}^{-1}$, and sign needed [ignore SF]	Correct answer -55.9 or -56.0 $\mathrm{kJ} \mathrm{mol}{ }^{-1}$ with some working (3) $\begin{aligned} \Delta H & =(-) \frac{2100}{(1000 \times .0375)} \\ & =-56.0\left(\mathrm{k} \mathrm{~mol}^{-1}\right)(1) \end{aligned}$ scores full marks Conversion to kJ can be at final stage		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(c)	Any one of No heat is lost (to the surroundings) OR Polystyrene cup or thermometer have negligible heat capacity OR All the acid was transferred (from the beaker) to the polystyrene cup	Takes up negligible heat		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\begin{array}{\|l\|} \hline 5 . \\ \mathbf{Q} \\ \mathbf{W} \\ \mathbf{C} \\ \hline \end{array}$	Stated volume ($25-100 \mathrm{~cm}^{3}$) or equal volume (of solutions) used in each reaction (1) Calculated mass or equal mass of $\mathbf{M g}$ used in each reaction (1) Mix and stir (1) Measure initial and final temperature (1) Bigger $\triangle T$ (therefore bigger $\triangle H$), therefore bigger difference in reactivity (1)	$10-150 \mathrm{~cm}^{3}$ amount Temperature rise OR highest temperature References to specific reaction(s) (but these must be correct) e.g. biggest ΔT with CuSO_{4} or smallest ΔT with $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$	J ust 'excess Mg'	5

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 . (a) (i) ~}$	Ionic	Giant ionic or electrovalent		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(ii)	Covalent	Giant covalent	Convalent	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(i)	Basic	Base or alkali or alkaline		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(ii)	Acidic	Acid Weakly acidic Weak acid	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)(i)	$3 \mathrm{Na}_{2} \mathrm{O}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 2 \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{HPO}_{4}+\mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{Na}_{2} \mathrm{O}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 2 \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \quad$ (1) Ignore state symbols		1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)(ii)	$\mathrm{SiO}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SiO}_{3}+\mathrm{H}_{2} \mathrm{O}$ (1) Ignore state symbols	$\mathrm{SiO}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{SiO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O}$		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)	First mark: $\begin{equation*} \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~S})}+6 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{Al}^{3+}{ }_{\text {(aq) }}+3 \mathrm{H}_{2} \mathrm{O}_{(1)} \tag{1} \end{equation*}$ This mark is for correct species and balancing Second mark: $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{OH}_{(\mathrm{aq})}^{-}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{4(\mathrm{aq})}^{-}$ OR $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+6 \mathrm{OH}_{(\mathrm{aq})}^{-}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 2 \mathrm{Al}(\mathrm{OH})^{3-}{ }_{6(\mathrm{aq})}$ OR $\begin{equation*} \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{OH}^{-}(\mathrm{aq)}) \rightarrow 2 \mathrm{AlO}_{2(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \tag{1} \end{equation*}$ This mark is for correct species and balancing Third mark is for the state symbols species must be correct. This mark may be awarded from an unbalanced equation.	Two correct 'molecular' equations with correct state symbols scores (2)		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)	$\mathrm{PbO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{PbCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Ignore state symbols	$\mathrm{PbO}_{2}+6 \mathrm{HCl} \rightarrow \mathrm{H}_{2} \mathrm{PbCl}_{4}$ $\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)	First mark:			2
	Tin more stable in the +4 oxidation state (than the +2 oxidation state) whereas lead more stable in the +2 oxidation state (than in the +4 oxidation state) OR +2 oxidation state becomes more stable relative to +4 oxidation state as group descended. (1) Second Mark: (So) I_{2} reduced to $\mathrm{I}^{-}\left(\right.$by $\left.\mathrm{Sn}^{2+}\right)$ OR $\mathrm{Sn}^{2+}+\mathrm{I}_{2} \rightarrow \mathrm{Sn}^{4+}+2 \mathrm{I}^{-}$ OR Therefore tin(II) is a strong(er) reducing agent (than lead(II))	redox reaction between Sn^{2+} and I_{2} OR Sn^{2+} oxidised (to Sn^{4+}) OR Sn (II) acts as (a strong) reducing agent	Sn^{2+} ions less stable than Pb^{2+} OR $\mathrm{Pb}(\mathrm{II})$ is more stable than Sn (II)	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	```IGNORE 'alkane' in any answer X: ester (1) Y : both alkene and alcohol or hydroxyl (1) Z : both alcohol or hydroxyl and aldehyde (1)```	carbon-carbon double bond "hydroxy" "hydroxy"	carbonyl $\mathbf{O H}^{-}$or "hydroxide" $\mathbf{O H}^{-}$or "hydroxide" or "carbonyl" J ust the formula	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2. (c)(i)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COONa} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-} \mathrm{Na}^{+} /$ (1) Allow $\mathrm{C}_{3} \mathrm{H}_{7} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}_{2}$	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-} / \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Na}^{-} \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-} \mathrm{Na}^{+} \end{aligned}$	Carboxylic acid Or $. . \mathrm{O}^{-}-\mathrm{Na}^{+}$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2. (c)(ii)	 (1) / $\mathrm{CH}_{2} \mathrm{CHCOONa} / \mathrm{CH}_{2} \mathrm{CHCO}_{2} \mathrm{Na}$ / $/ \mathrm{CH}_{2} \mathrm{CHCOO}^{-} \mathrm{Na}^{+} / \mathrm{CH}_{2} \mathrm{CHCO}_{2}^{-} \mathrm{Na}^{+}$ $/ \mathrm{CH}_{2}=\mathrm{CHCOONa} / \mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{Na}$ $/ \mathrm{CH}_{2}=\mathrm{CHCOO}^{-} \mathrm{Na}^{+} / \mathrm{CH}_{2}=\mathrm{CHCO}_{2}{ }^{-} \mathrm{Na}^{+}$(1)	$\mathrm{CH}_{2} \mathrm{CHCOO}^{-}$ Allow carboxylic acid as product e.g. $\mathrm{CH}_{2} \mathrm{CHCOOH}$		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2. (c)(iii)				1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(i)	To slow down the reaction/ to stop the reaction OR to quench the reaction OR to freeze the (position of) equilibrium OWTTE (1) so that the (equilibrium) concentrations/amounts do not change (1)	To stop equilibrium shifting to the left	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(ii)	First mark: $\left[H_{2(g)}\right]=\left[I_{2(g)}\right]$ OR Use of $\left(5.0 \times 10^{-4}\right)^{2}$ Second mark: $\left[H I_{(g)}\right]^{2}=\frac{\left(5.0 \times 10^{-4}\right)^{2}}{0.019}$ OR $\left.0.019=\frac{\left(5.0 \times 10^{-4}\right.}{\left[\mathrm{HI}_{(\mathrm{g})}\right)^{2}}\right)^{2}$ OR $\begin{equation*} [\mathrm{HI}(\mathrm{~g})]=\int\left(\frac{\left(5.0 \times 10^{-4}\right)^{2}}{0.019}\right) \tag{1} \end{equation*}$ Third mark: $\begin{equation*} \left[H I_{(g)}\right]=3.6 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$ Correct answer scores 3 marks. Ignore state symbols. Ignore units unless wrong. Ignore s.f.	If [HI] not squared, first mark only.	If first mark not awarded, total (0).	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(i)	$K_{p}=\frac{p_{H I}^{2}}{p_{H_{2}} \times p_{I_{2}}}$			
	Ignore position of any ()			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3. (b)(ii)	Each step of this calculation must be looked at. $1^{\text {st }}$ mark is for calculating equilibrium moles $\begin{align*} & \mathrm{H}_{2}=0.2 \\ & \mathrm{I}_{2}=0.2 \\ & \mathrm{HI}=1.6 \tag{1} \end{align*}$ $2^{\text {nd }}$ mark is for dividing these by 2 (to get mole fractions) $\begin{align*} & x_{H_{2}}=\frac{0.2}{2.0}=0.1 \\ & x_{I_{2}}=\frac{0.2}{2.0}=0.1 \\ & x_{H I}=\frac{1.6}{2.0}=0.8 \tag{1} \end{align*}$ $3^{\text {rd }}$ mark is for multiplying by 1.1 (to get partial pressures) $\begin{align*} \mathrm{P}_{\mathrm{H}_{2}} & =\frac{0.2}{2.0} \times 1.1 \\ & =0.11(\mathrm{~atm}) \\ \mathrm{P}_{\mathrm{I}_{2}} & =\frac{0.2}{2.0} \times 1.1 \\ & =0.11(\mathrm{~atm}) \\ \mathrm{P}_{\mathrm{HI}} & =\frac{1.6}{2.0} \times 1.1 \\ & =0.88(\mathrm{~atm}) \tag{1} \end{align*}$ $4^{\text {th }}$ mark is for substituting into their expression and calculating K_{p} $\begin{align*} K_{P}= & \frac{(0.88)^{2}}{(0.11) \times(0.11)} \\ = & 64 \tag{1} \end{align*}$ Ignore s.f. Correct answer with no working scores (1)	Mark consequentially Mark consequentially Mark consequentially If moles HI given as $0.8, K_{p}=16$ max (3)		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(iii)	Same number of moles on each side	'Powers cancel'	'Partial pressures	1
	OR	OR	cancel'	
	(Total) pressure cancels	'They cancel'	OR	'mol dm ${ }^{-3}$ cancel'
	OR	OR		
	(Pressure) units cancel			
	(May be shown by crossing out etc. in			
b(ii))	'Same number of	molecules on each		
side'				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)(i)	ΔH_{6}			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)(ii)	$\frac{\Delta H_{5}}{2} O R \frac{1}{2} \Delta H_{5}$		ΔH_{5}	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)	Either $\Delta \mathrm{Hf}=\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}+\Delta \mathrm{H}_{4}+\Delta \mathrm{H}_{5}+\Delta \mathrm{H}_{6}$ OR $\begin{aligned} & \Delta \mathrm{Hf}=(+178)+(1735)+2 \times(+218)+2 \times \\ & (-73)+(-2389) \end{aligned}$ $\begin{equation*} =-186\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ Correct answer with no working (2) Ignore kJ	[First mark only if doubles both $\Delta H_{a t}$ and electron affinity for hydrogen] [2nd mark is only consequential on failure to multiply either ΔH at or electron affinity or both giving: -404/-113/-331 (kJ mol-1)]	+186 scores (0) +404 / +113 / +331 scores (0)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(c)	EITHER First mark: Magnesium/ Mg ion smaller (radius) than calcium/ Ca ion Or the sum of the ionic radii in MgH_{2} smaller (than in CaH_{2}) (1) Second mark: but charges the same (1) Third mark: (so) stronger (forces of) attraction between ions (in MgH_{2}) [Correct reverse arguments can score both marks] OR First and second mark combined: Mg^{2+} (ion) or Mg^{2+} (cation) smaller (radius) than Ca^{2+} Third mark: (so) stronger (forces of) attraction between ions (in MgH_{2}) (1) [Correct reverse arguments can score both marks] Ignore references to polarisation of the hydride ion or "covalent character" in the hydrides. Ignore references to "energy required to separate ions/ break bonds"	Magnesium ion has greater charge density than calcium ion for first mark. "stronger ionic bonding" for $3^{\text {rd }}$ mark in either case.	Reference to 'atoms' or 'molecules' or ' H_{2} ' scores zero overall. If " H^{+}ions" or "hydrogen ions" referred to, $3^{\text {rd }}$ mark cannot be awarded in either case If just "stronger bonding in MgH_{2} ", $3^{\text {rd }}$ mark cannot be awarded in either case	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(d)(i)	Enthalpy/ energy/ heat change when 1 mol of gaseous ions (1) Is dissolved in (a large) excess of water Or Is dissolved until further dilution causes no further heat change (1) Ignore any reference to "standard conditions" Mark independently	Heat released..... $X^{+}(g)+a q \rightarrow X^{+}(a q)$ and statement of energy change per mole for first mark. "Added to water" or "reacts with water" instead of "dissolved" "Infinitely dilute solution" "Is completely surrounded by water molecules"	Any implication of endothermic, do not award $1^{\text {st }}$ mark "Dissolves completely"	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(d)(ii)	$\delta^{\circ} 0$ (in water) attracted to positive ions/ cations (1) $\delta^{+} \mathrm{H}$ (in water) attracted to negative ions/ anions (1)	'forms (dative) bonds' instead of 'attracted' J ust "attraction between water (molecules) and ions" (1 max)	Reference to full charges on water molecules scores zero overall "energy required" or implication of an endothermic process scores (0) overall. Dipole-dipole attractions and/ or "polarisation" scores zero overall	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(i)	One acid: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}^{\prime}(\mathrm{aq})$ Conjugate base: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}(\mathrm{aq)}$ (1) Other acid: $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ Conjugate base: $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad(1)$ Ignore state symbols	Accept correct acids with conjugate bases in either order	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(ii)	WEAK: dissociates/ionises to a small extent (1) OWTTE	'Few molecules dissociate' 'Incomplete' or 'partial' dissociation "Does not fully dissociate"	"ions partially dissociate"	2
	ACID: proton donor (1)	Produces $\mathrm{H}_{3} \mathrm{O}^{+} /$ hydrogen / H^{+}ions	Just "contains $\mathrm{H}_{3} \mathrm{O}^{+}$ $\ldots .$.	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(b)(i)	$\mathrm{Ka}=\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}$	$\left[\mathrm{H}^{+}\right]$instead of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	Any expression containing $\left[\mathrm{H}_{2} \mathrm{O}\right]$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5. (b)(ii)	$\left(\left[\mathrm{H}^{+}\right]=3.63 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \quad\right.$ (1) Or $10^{-3.44}$ $\begin{aligned} & {\left[\mathrm{CH}_{3} \mathrm{CH} \mathrm{H}_{2} \mathrm{COOH}\right]=} {\left[\mathrm{H}^{ \pm}\right]^{2} } \\ & 1.30 \times 10^{-5} \end{aligned}$ Or $\begin{equation*} \left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]=\frac{\left(3.63 \times 10^{-4}\right)^{2}}{1.30 \times 10^{-5}} \tag{1} \end{equation*}$ ASSUMPTIONS: First assumption mark: negligible $\left[\mathrm{H}^{+}\right]$from ionisation of water $\begin{equation*} \mathrm{Or}\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]=\left[\mathrm{H}^{+}\right] \tag{1} \end{equation*}$ Second assumption mark: Ionisation of the (weak) acid is negligible Or $\mathrm{x}-\left[\mathrm{H}^{+}\right] \approx \mathrm{x}$ where x is initial concentration of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ Or $[\mathrm{H}+]<4 \mathrm{HA}]$	If K_{a} expression incorrect in (b)(i) or $\left[\mathrm{H}^{+}\right]$not squared, only $1^{\text {st }}$ mark available "No other source of H^{+} ions" "Very slight ionisation ..." "the initial $[\mathrm{HA}]=$ equilibrium [HA]"	J ust " $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}=$ $\mathrm{H}^{+\prime \prime}$ (ie no square brackets) Any mention of nonstandard conditions or 'temperature not at $298 \mathrm{~K}^{\prime}$	5

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(c)	$\begin{align*} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}=/ \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \\ & +\mathrm{OH}^{-} \\ & \mathrm{Or} \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons / \rightarrow \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NaOH} \tag{1} \end{align*}$ OH^{-}ions produced cause the solution to be alkaline (1) Mark independently	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}^{+} \rightleftharpoons$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ and causes the following eqm to shift to the right $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$ Causing an excess of OH^{-}ions (1)	" OH^{-}ions from water"	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(d)(i)	Ignore "A solution of known pH which...." maintains nearly constant pH OR resists change in pH (1) OWTTE on adding small amounts of acid or alkali (1) Mark independently		2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5. (d)(ii)	Working MUST be checked First mark: $\begin{equation*} \left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \times \frac{[\mathrm{acid}]}{[\text { salt }]} \tag{1} \end{equation*}$ Second mark: Correct [acid] $=0.0025$ and [salt] $=$ 0.00375 Third mark: Calculation of pH correct consequential on [acid] and [salt] used. $\begin{align*} {\left[H^{+}\right] } & =1.30 \times 10^{-5} \times \frac{0.0025}{0.00375} \\ & =8.67 \times 10^{-6}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ \mathrm{pH} & =5.06 \tag{1} \end{align*}$ Ignore sig fig OR First mark: $\begin{equation*} p H=p K_{a}-\log _{10} \frac{[\text { acid }]}{[\text { salt }]} \tag{1} \end{equation*}$ Second mark: Correct [acid] $=0.0025$ and [salt] $=0.00375$ Third mark: Calculation of pH correct consequential on [acid] and [salt] used. $\begin{align*} p H & =4.89-\log _{10} \frac{[0.0025]}{[0.00375]} \tag{1}\\ & =4.89-(-0.18) \\ & =5.07 \tag{1} \end{align*}$ Ignore sig fig	$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{ \pm}\right] \times[\text {salt }]}{[\text { acid }]}$ If [salt] and [acid] inverted, pH is 4.71 (2 marks) Inverted with the original concentrations, $\mathrm{pH}=5.19$ (1 mark) In both cases, if [acid] = [0.0100] and [salt] $=[0.00500]$, $\mathrm{pH}=4.59$ (2 marks)		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(a)(i)		Delocalised carboxylate group with a negative charge shown	Compressed structural formula	1
Positive charge must be on the N atom The minus charge must be on the O in the $\mathrm{C}-\mathrm{O}$ if no delocalisation shown				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{6 . (a) (i i)}$	$\left(\mathrm{H}^{+}\right.$from) COOH (group) protonates the $-\mathrm{NH}_{2}$ (group)	Transfer of H^{+}from COOH to NH_{2} Or "self-protonation"	Just "protonation" Just "acid-base reaction"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(a)(iii)	Read the whole answer! High energy needed to overcome (strong) ionic attractions (1)"ionic bonds" or "ionic lattice" instead of "ionic attractions"	Just "intermolecular forces" Or H bonding Or van der Waals' forces etc award zero overall	2	
between zwitterions (1)				
Ignore reference to "molecules" if clearly used in the context of attraction between ions	between adjacent species			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(b)(i)	${ }^{+} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COOH} /{ }^{+} \mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{COOH} /$ ${ }^{+} \mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{COOH}$ OR written right to left	$-\mathrm{CO}_{2} \mathrm{H}$ OR $-\mathrm{NH}_{3}^{+} \mathrm{Cl}^{-}$ Or $-\mathrm{NH}_{3} \mathrm{Cl}$	Molecular formula	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(b)(ii)	$\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-} / \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-} /$	-COONa	Molecular formula	1
	or	$-\mathrm{COO}^{-} \mathrm{Na}^{+}$		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6. (b)(iii)	$\mathrm{CH}_{3} \mathrm{CONHCH}_{2} \mathrm{COOH} /$	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CONHCH}_{2} \mathrm{CO}_{2} \mathrm{H} \\ & \text { OR } \\ & \text { 'no reaction' (1) } \end{aligned}$	Molecular formula	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(b)(iv)	$\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3} /$	$\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6.(c)(i)	(Glutamic acid molecule) has four different groups attached to a C (atom) Or	Contains an asymmetric carbon (atom) (Glutamic acid molecule) has four different groups attached to a chiral centre	Or molecule has no plane of symmetry centre"	Or chiral Just "the molecule is asymmetrical"
OR has mirror images which are not superimposable		1		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6. (c)(ii)	(the isomers) rotate the plane (or polarisation) of (plane-) polarised light (1) in opposite directions (1) Ignore any reference to polarimeter	".... rotate plane polarised light"	Just "in different directions"	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6. (d)	$\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}(1)$ $\mathrm{ClOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COCl} /$ (1) [Monomers can be given in either order]	$\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$ $\mathrm{COOH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$ Or $\mathrm{COCl}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COCl}$		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(i)				1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(ii)	octahedral (1)	diagram for name		3
	6 electron pairs around Cr (ion) (1) these repel to a position of minimum repulsion / maximum separation (1)	6 bonds, could be drawn on diagram	bonds/atoms repelling	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(iii)	(gelatinous) green ppt (1) (dissolves) to green solution (1)	green solid any shade of green		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)(iv)	$\begin{aligned} & {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow} \\ & \mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{OR} \\ & {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}+} \\ & 6 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})^{2} \\ & \mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+3 \mathrm{OH}^{-} \rightarrow \\ & {\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}+3 \mathrm{H}_{2} \mathrm{O}} \\ & \mathrm{OR} \\ & \mathrm{Cr}(\mathrm{OH})_{3}+3 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-} \quad \mathbf{(1)} \end{aligned}$ Ignore state symbols	equations with NaOH eg 3 NaOH on LHS $3 \mathrm{Na}^{+}$on RHS If $3 \mathrm{H}_{2} \mathrm{O}$ is missing from RHS of both equations, allow (1) for both correct Cr species on RHS	$\mathrm{Cr}^{3+}(\mathrm{aq})$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(i)	Reactant (1) Product (1) Formula of a: Formula of a: primary alcohol \rightarrow aldehyde primary alcohol \rightarrow carboxylic acid secondary alcohol \rightarrow ketone aldehyde \rightarrow carboxylic acid		molecular formulae names with no formulae COH for aldehyde, unless structure shown as well	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)(ii)	E cell ${ }^{\theta}$ for MnO_{4}^{-}reacting with Cl^{-} $=(+) 0.15(\mathrm{~V})(\mathbf{1})$ E cell ${ }^{\theta}$ for $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ reacting with Cl^{-} $=-0.03(\mathrm{~V})$ OR E^{0} cell for Cr^{3+} reacting with Cl_{2} $=(+) 0.03(\mathrm{~V})(\mathbf{1})$ $\mathrm{MnO}_{4}{ }^{-}$will oxidise $\mathrm{Cl}^{-} / \mathrm{HCl}$ so HCl cannot be used OR $\begin{aligned} & 2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+10 \mathrm{Cl}^{-} \rightarrow 2 \mathrm{Mn}^{2+}+ \\ & 8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Cl}_{2} \end{aligned}$ so HCl cannot be used (1) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ will not oxidise $\mathrm{Cl}^{-} / \mathrm{HCl}$ so HCl can be used (1)			4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark		
$\mathbf{1 . (b) (i i i) ~}$	oxidation number of Cr remains at +6 ALLOW this mark if the oxidation numbers are written under the species in the equation	gain or loss of electrons	1			
oxidation number						
does not change if it						
is not specified or is						
incorrect					\quad	
:---						

2. \quad ACCEPT NAMES OR FORMULAE FOR REAGENTS IF BOTH ARE GIVEN, BOTH MUST BE CORRECT. CONDITION MARKS ARE ONLY AVAILABLE FOR CORRECT REAGENTS

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)(i)	concentrated nitric acid (1)	concentrated + formulae concentrated sulphuric acid (1) [penalise lack of "concentrated" once] temperature $40-60^{\circ} \mathrm{C}$ (1) stand alone	(1) any temperature or range of temperatures within this range	more than $40^{\circ} \mathrm{C}$ less than $60^{\circ} \mathrm{C}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)(ii)	$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-}$ $+\mathrm{NO}_{2}{ }^{+}$(1) Can be shown in two stages OR $\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}+$ $\mathrm{NO}_{2}{ }^{+}(1)$ Curly arrow from ring towards (space between C in ring and) N in $\mathrm{NO}_{2}{ }^{+}$(1) Correct intermediate (1) Curved arrow from $\mathrm{C}-\mathrm{H}$ bond back into ring (1)	arrow to or from charges Kekule structures if HSO_{4}^{-}is used in the last step, arrow must come from O curly arrow from within ring		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	tin and conc hydrochloric acid (1) IGNORE heat or any stated temperature reduction OR loss of oxygen and gain of hydrogen (1)	Fe or Zn and conc HCl $\mathrm{H}_{2}+\mathrm{Pt} / \mathrm{Ni} / \mathrm{Pd}$	LiAlH_{4}	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)	sodium nitrite/ NaNO_{2} and hydrochloric $\mathrm{acid} / \mathrm{HCl}(\mathrm{aq})(\mathbf{1)}$	sodium nitrate(III) dilute or concentrated acid any temperature or range of temperatures within this range	just "HCl" temperature value qualified by "below"/ "above"	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2. (d)	collect gas in gas syringe/over water in graduated apparatus or diagram (1) measure volume of gas at regular time intervals (1) label volume and time on axes (1) sketch including horizontal finish/final volume (1) $1^{\text {st }}$ half life is time taken to half final volume, $2^{\text {nd }}$ half life is time from half to $3 / 4$ these could be shown on graph (1) Half lives constant (therefore $1^{\text {st }}$ order) (1) STAND ALONE ALTERNATIVE FOR LAST 4 MARKS measure final volume and calculate $\left(V_{\text {final }}-V_{t}\right)(1)$ Label $\left(\mathrm{V}_{\text {final }}-\mathrm{V}_{\mathrm{t}}\right)$ and time on axes (1) sketch (1) find at least 2 half lives, first order if half lives are constant (1) OR collect gas in gas syringe/over water in graduated apparatus or diagram (1) find volume of gas after fixed time and calculate rate = vol/time (1) repeat for different values of $[\mathrm{X}]$ (1) label rate and [X] on axes (1) sketch straight line (1) rate proportional to $[\mathrm{X}]$, so first order (1) Mass loss method could be applied to any of above	If [BDC] measured only the following marks are available: Label [BDC] and time on axes (1) Sketch (1) find at least 2 half lives, first order if half lives are constant (1) For pH method only the following marks are available: use a pH probe (1) measure pH at regular time intervals (1) half lives constant (1) If candidate mixes answers, mark them as if separate and award the highest mark		6

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3. (a)	vapour and liquid lines reasonably drawn with no maximum or minimum (1) Sloping up to the right (1) areas labelled (1)	If diagram slopes up to left, could still score other two marks If $109^{\circ} \mathrm{C}$ labelled at lower temp than $82^{\circ} \mathrm{C}$, can only score liquid and vapour mark	Straight liquid or vapour line	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)	draws more than 1 tie line, starting at 0.75, connected by verticals (and heading correctly towards the lower bp component) (1) states that (equilibrium) vapour is richer in the more volatile component / propan-1-ol (1) STAND ALONE describes repeated distillations (with correct reference to tie lines) (1) give rise to (first) distillate of pure propan-1-ol / 2-methylpropan-1-ol left in the flask (1)		4	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 . (a)}$	Ester(s) (1)	triester(s) triglyceride(s)	Ether(s) lipid(s)	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(i)	Any example e.g. (1) [R can be any group/atom other than hydrogen, R can be the same or different] both hydrogen atoms on the same side OR both larger groups on the same side (1)			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)(ii)	saturates pack more closely together than unsaturates (due to cis isomers) (1)	breaking single / double / o/ m bonds saturates have higher/stronger dispersion/Van der Waals' forces than unsaturates (so more energy is required to melt) (1)		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4. (c)(i)	$\begin{aligned} & 3 \mathrm{RCOONa} / \mathrm{RCOO}^{-} \mathrm{Na}^{+}(\mathbf{1}) \\ & \mathrm{CH}_{2} \mathrm{OHCH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}(\mathbf{1}) \end{aligned}$	$\mathrm{RCO}_{2} \mathrm{Na}$ Full structural formulae	Covalent bond shown between O and Na . RCOOH $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{2}$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(c)(ii)	Making/manufacture of: soap/soapy detergents or soap production (1)	saponification	1	

Question	Correct Answer			Acceptable Answers	Reject	Mark
4. (d)(ii)	Any one from:			Benedicts Ammoniacal AgNO_{3} $\mathrm{MnO}_{4}^{-} / \mathrm{H}^{+}$with correct colour changes		3
	Reagent (1)	Propanal obs (1)	Propanone obs (1)			
	Fehlings'	blue to red ppt	no change			
	Tollens'	silver mirror/ppt	no change			
	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{H}^{+}$	orange to green/blue/ brown	no change			
	$\mathrm{I}_{2}+\mathrm{NaOH}$	no change	yellow ppt			
	Observation marks conditional on correct reagent IGNORE references to heat					

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(e)(i)	Each arrow (1) (1) (1) both arrows	```CN- or }\mp@subsup{}{}{-}\textrm{CN arrows start from negative charge on O or C arrow to }\mp@subsup{\textrm{H}}{}{+}\mathrm{ or to HCN in 2 nd step```		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(e)(ii)	higher $\left[\mathrm{H}^{+}\right]$(1)		2	
	(so) lower $\left[\mathrm{CN}^{-}\right]$and rate slower (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(i)	electrode - platinum/Pt (1)			3
Fe^{2+} and Fe ${ }^{3+}$ (1) 1 mol dm being present				

Question Number	Correct Answer	Reject	Mark	
5.(a)(ii)	to bring the solutions to the same potential/connect solutions without setting up a p.d. (1)	to allow the movement of ions OR to complete the circuit	to allow flow of electrons	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(iii)	(saturated) potassium chloride OR (saturated) potassium nitrate (1)	Formulae Sodium nitrate or chloride	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(iv)	$x-0.34=0.43$ (1) $x=+0.77 \mathrm{~V} \mathrm{(1)}$ Correct answer with some working (2)			2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(v)	$\begin{aligned} & \mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+} \\ & \mathrm{OR} \\ & \mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightleftarrows \mathrm{Fe}^{2+}(\mathbf{1}) \\ & \mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \\ & \mathrm{OR} \\ & \mathrm{Cu} \quad \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \\ & \mathrm{OR} \\ & \mathrm{Cu}-2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}^{2+} \\ & \mathrm{OR} \\ & \mathrm{Cu}-2 \mathrm{e}^{-} \rightleftarrows \mathrm{Cu}^{2+}(\mathbf{1}) \\ & {[\text { not } \mathrm{oq} \text { on (iv) }]} \end{aligned}$	e for electron		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(a)(vi)	$\mathrm{Cu}+2 \mathrm{Fe}^{3+} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{Cu}^{2+} \mathbf{(1)}$	$2 \mathrm{Fe}^{2+}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}+$ $2 \mathrm{Fe}^{3+}$ if both half equations in opposite direction in (v)		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(b)	$1 / 2 \mathrm{O}_{2}+2 e^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons / \rightarrow 2 \mathrm{OH}^{-}$ species (1) balance (1) ignore state symbols	multiples	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5.(c)	Moles $\left.\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=\frac{(16.5}{1000}\right) \times 0.1=1.65 \times 10^{-3}$ (1) (Moles $\mathrm{I}_{2}=\frac{1.65 \times 10^{-3}}{2}=8.25 \times 10^{-4}$) Moles $\mathrm{Cu}^{2+}=1.65 \times 10^{-3}$ (1) Conc $\mathrm{CuSO}_{4}=1.65 \times 10^{-3} \times\left(\frac{1000}{25}\right)=$ $0.066\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $0.066\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ (1) Penalise incorrect unit			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)	Observation: green (1) Inference: d-block (1)	Transition series/metals	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	Observation: white ppt in limewater (1) black (residue) (1) Inference: Carbon dioxide/ $\mathrm{CO}_{2}(1)$ Carbonate/ $\mathrm{CO}_{3}{ }^{2-}(1)$	Goes cloudy/ milky	4	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)	green solution and effervescence		$\mathbf{C O}_{\mathbf{2}}$ evolved	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)(i)	Observation: Any blue ppt (1) (Deep/ Dark) blue solution (1) Inference: copper(II)/ Cu² $/$ copper (2+) (1)	Copper/copper (II) hydroxide		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(d)(ii)	Observation: Brown (precipitate) (1) Black (coloration) (1) Inference: lodine / / $\mathrm{I}_{2}(1)$ Redox (1)	Blue/ black	Blue alone \mathbf{I}	Oxidation/ reduction of S/ Cu

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)(i)	CuCO_{3}	$\mathrm{Cu}\left(\mathrm{HCO}_{3}\right)_{2} \mathrm{cq}$ on 1(b)	Copper carbonate	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)(ii)	O.N. in S: +2 (1) O.N. in product of test (d) (ii): +1	(1)	$I I / 2 / 2+/ \mathrm{Cu}^{2+}$ $\mathrm{I} / 1 / 1+/ \mathrm{Cu}^{+}$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	Observation: Orange/ yellow ppt (1) Inference: Carbonyl/ $>C=0 / \mathrm{C}=$ O/ aldehyde or ketone (Both needed) (1)	Orange/ yellow solid	Goes orange/ goes yellow	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	Observation: Remains orange (1) Inference: Not oxidised (1) Ketone (1) No consequential marking	No change No (observable) reaction	"nothing"	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)	$\mathrm{M}^{+}=86$ (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)	2 environments for protons/ hydrogen (atoms) (1)		1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(e)(i)	 (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(e)(ii)	Because there are 6 H atoms in one environment and 4 in the other the ratio of H atoms in different environments is 6:4 (1) Dependent on 2 (e) (i)		1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)	Check subtractions and averaging arithmetic, correcting if necessary All volumes read to $0.05 \mathrm{~cm}^{3}$ All subtractions complete $\checkmark \checkmark$ top RHS of Table 1 Mean titre For correct averaging of chosen values/ choosing identical values and for recording the average correct to 2 or 3 dps or to nearest $0.05 \mathrm{~cm}^{3}$ [unless already penalised] Allow loss of $2^{\text {nd }} \mathrm{dp}$ if zero \checkmark by the mean titre Accuracy If the candidate has made an arithmetical error in Table 1 volumes used in the mean or in averaging, the examiner must calculate a new average. - For an averaging error simply calculate a new value using the candidate's chosen titres - If a wrongly subtracted titre has been used in the mean then choose any two identical titres or take an average of the closest two titres Calculate the difference between the candidate's mean titre and that of the examiner or supervisor Record the difference on the scripts as $d=* * *$ Examiner's titre TO BE CONFIRMED BY LOCAL SUPERVISOR Examiner to write $S R=$ titre value on each script Award marks for accuracy as follows:	Allow 1 slip but withhold this mark if any readings are in the wrong boxes Accept 0; 0.0; 0.00 as initial volume	Reject 50 as initial volume	10

	Difference ± 0.20 (4) Difference ± 0.30 (3) Difference ± 0.40 (2) Difference ± 0.60 (1) Difference >0.60 (0) Range Award a mark on the range of titres used by the candidate to calculate the mean. The range (r) is the difference between the outermost titres used to calculate the mean. If the examiner has corrected titres because of incorrect subtraction then award the range mark on the corrected titres used by the examiner to recalculate the mean. $\begin{array}{ll} \text { Range } \pm 0.20 & (3) \\ \text { Range } \pm 0.30 & \text { (2) } \\ \text { Range } \pm 0.50 & \text { (1) } \\ \text { Range }>0.50 & \text { (0) } \end{array}$ Examiner to show the marks awarded for accuracy and range as $\begin{aligned} & d=\checkmark 4 \max \\ & r=\checkmark 3 \text { max } \end{aligned}$			
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3. (b)	Calculations Moles $\mathrm{MnO}_{4}^{-}=5.00 \times 10^{-4}(\mathrm{~mol})$ Moles of $\mathrm{NO}_{2}^{-}=1.25 \times 10^{-3}(\mathrm{~mol})$ Molar conc. $=\frac{1.25 \times 10^{-3}}{\text { titre } / 1000}$ $\mathrm{mol} \mathrm{dm}^{-3}$ Mass conc. $=$ molar conc. $\mathrm{X} 69 \mathrm{~g} \mathrm{dm}^{-3}$ (1) [cq. on third mark]	Final answers to >2 sig fig		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)(i)	Blue solution (1) Brown gas (1)		2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(c)(ii)	titre value too low (1) Because NO_{2} lost / sodium nitrite decomposed (by acid) (1) Dependent on 3 (c) (i)	goes down/ becomes smaller	Reject "titre wrong/ inaccurate"	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4. (a)	low hydrogen:carbon ratio	It is not $\mathrm{C}_{n} \mathrm{H}_{2 n+2} /$ Too few hydrogen atoms.		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)	equal masses/ amounts (of $\mathrm{C}_{9} \mathrm{H}_{12}$) (1) react with bromine water/ solution (1) expect equal volumes/ amounts (1) for bromine colour to remain/ until no more decolourisation (1)	Allow equal volumes	4	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(c)				

Materials

Each candidate will require:
(a) 1 g of basic copper carbonate, $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$ labelled S . The identity of this must not be disclosed to candidates;
(b) $1 \mathrm{~cm}^{3}$ of aqueous potassium iodide; concentration approximately $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$;
(c) $200 \mathrm{~cm}^{3}$ of aqueous potassium manganate(VII), labelled Solution R ; concentration $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$;
(d) $200 \mathrm{~cm}^{3}$ of aqueous sodium nitrite, labelled Solution Q ; concentration $4.00 \mathrm{~g} \mathrm{dm}^{-3}$. The concentration of this must not be disclosed to candidates;
(e) $200 \mathrm{~cm}^{3}$ of dilute sulphuric acid; concentration approximately $1 \mathrm{~mol} \mathrm{dm}^{-3}$. This is to be used in both Question 2 and Question 3;
(f) $5 \mathrm{~cm}^{3}$ of limewater;
(g) $2 \mathrm{~cm}^{3}$ of aqueous potassium dichromate(VI); concentration approximately $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$;
(h) $4 \mathrm{~cm}^{3}$ of propanone, labelled \mathbf{P}. The identity of this must not be disclosed to candidates. \mathbf{P} is being used to represent another ketone;
(i) $15 \mathrm{~cm}^{3}$ of dilute hydrochloric acid; concentration approximately $1 \mathrm{~mol} \mathrm{dm}^{-3}$;
(j) $10 \mathrm{~cm}^{3}$ of dilute aqueous ammonia; concentration approximately $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$;
(k) a supply of distilled water;
(1) $1 \mathrm{~cm}^{3}$ of aqueous starch indicator; concentration approximately $1 \% \mathrm{w} / \mathrm{v}$;
(m) $2 \mathrm{~cm}^{3}$ of 2,4-dinitrophenylhydrazine reagent. This may be made as follows: Suspend the powdered 2,4-dinitrophenylhydrazine (1 g) in a mixture of concentrated hydrochloric acid $\left(80 \mathrm{~cm}^{3}\right)$ and water ($100 \mathrm{~cm}^{3}$). Warm gently on a water bath. Cool the solution and add water $\left(120 \mathrm{~cm}^{3}\right)$. Filter if necessary. Centres may use an alternative preparation provided the reagent gives a precipitate with the propanone.

NOTES

Materials S, R, Q and P must be measured into dry, stoppered containers. Further quantities may be issued to candidates without penalty.

Containers should be labelled with the name, but not necessarily the concentration, of the reagent unless otherwise instructed.

Candidates may be supplied with laboratory reagent bottles containing these solutions if these are available.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 . (a)}$	$\mathrm{CH}_{3} \mathrm{COOH}$ $+\mathrm{H}_{2} \mathrm{O}$ (1)$+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightleftarrows \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ \rightarrow $\mathrm{CH}_{3} \mathrm{CH}_{2}$ for $\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{CH}_{3} \mathrm{OCOC}_{2} \mathrm{H}_{5}$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	catalyst / speed up reaction (1)		dehydrating agent	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 . (c)}$	flask with still head (1)		3	
condenser and a receiver (1)				
thermometer at correct place (1)				
penalty of (1) if apparatus sealed or open at the wrong place or doesn't work for some other reason.				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1. (d)	$\begin{aligned} & \text { mol ethanoic acid }=\frac{12.6(0)}{60}=0.21(1) \\ & \text { (mol ethyl ethanoate }=0.21) \\ & \text { theoretical mass ethyl ethanoate }= \\ & 0.21 \times 88=18.48 \mathrm{~g} \text { or } 18.5 \mathrm{~g}(1) \\ & \% \text { yield }=\frac{10.60}{18.48} \times 100=57(\mathbf{1}) \end{aligned}$ Allow 57.29 or 57.36 or 57.4 OR Theoretical mol ethanoic acid $=\frac{12.60}{60}$ $=0.21(1)$ (mol ethyl ethanoate $=0.21$) actual moles of ethyl ethanoate $=\frac{10.6}{88}$ $=0.12$ (1) $\%$ yield $=\frac{0.12}{0.21} \times 100=57(1)$ Allow 57.1 or 57.14 CQ ON FORMULAE IN (a) but these must be possible compounds. IGNORE S.F.			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)(i)	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COCl}$ $\rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{HCl}(\mathbf{1})$	$\mathrm{CH}_{3} \mathrm{CH}_{2}$ for $\mathrm{C}_{2} \mathrm{H}_{5}$ \rightleftarrows	$\mathrm{CH}_{3} \mathrm{OCOC}_{2} \mathrm{H}_{5}$	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)(ii)	Reaction with ethanoic acid reaches equilibrium/ is reversible OR Reaction with ethanoyl chloride is not reversible/ goes to completion (1)		Reaction with ethanoic acid is incomplete	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)(i)	(Phenyl benzoate) must be soluble in the hot solvent and less/ almost insoluble in cold solvent (1)		1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)(ii)	to remove insoluble/un-dissolved impurities (1)		1	

| Question
 Number | Correct Answer | Acceptable Answers | Reject |
| :---: | :---: | :---: | :---: | Mark

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)(iv)	to wash away remaining solution/ soluble impurities / remove surface impurity. (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 . (\mathbf { f) (v) ~ }}$	measure melting temperature (1) check value same as data book/ sharp melting point (1)		Mix with known sample and measure melting temperature.	2
OR	Use gas-liquid chromatography (1) Showing only one peak (1)	Anstrumental method.		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 . (a)}$	ionic lattice (1) Na+ ions have 6 nearest neighbours of Cl^{-}ions and vice-versa / 6:6 co-- ordination (1)	Labelled sketch can score both marks but must have some 3D extension.	2	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	electrostatic attractions (in solid NaCl) overcome (1) by the attractions between the ions and dipoles in water (1) ; this can be shown in a diagram.	Attractions overcome by solvation of ions scores (1) only	2	
OR				
Water has a high dielectric constant/ relative permittivity (1) which reduces the forces of attraction between ions in the solution (1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)	Arrows labelled with names or values (1) Check arrow direction agrees with label/ sign of the value $\begin{aligned} \Delta H_{\text {soln }} & =-406-364-(-771) \\ & =+1\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1) \end{aligned}$ + sign not essential		Negative value	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)	lodium hydroxide/ $\mathrm{NaOH}(\mathbf{1})$ hydrogen $/ \mathrm{H}_{2}(\mathbf{1})$ anode 2 $\mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{e}^{(-)}$ OR $2 \mathrm{Br}^{-}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{Br}_{2}(\mathbf{1})$ or halved.		H	3
Br				

| Question
 Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 . (e) (i)}$ | | | | |

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 . (e) (i i) ~}$	initial attack (on ethene) is by an electrophile/ $\mathrm{Br}^{\delta+}(\mathbf{1})$ no $\mathrm{Cl}^{+} / \mathrm{Cl}^{\delta+}$ available as the electrophile (so no dichloroethane formed) (1) then (nucleophilic) attack by $\mathrm{Br}^{-1(1)}$ Cl can replace Br^{-}(as nucleophile, so 1-bromo-2-chloroethane is formed) (1)		4	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(i)	$\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}\right]$ increases by 1.5 while [OH $]$ remains constant, rate increases by 1.5 OR In expts A and B, $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}\right]$ increases by 1.5 and rate increases by 1.5 (1) so first order (1)			3
$\left[\begin{array}{lll} \\ {\left[\mathrm{OH}^{-}\right] \text {zero order, with some }} \\ \text { explanation (1) }\end{array}\right.$				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3. (a)(ii)	(1) arrow (1) both ions $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+} \sqrt{(}:\right) \mathrm{OH}^{-} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}$ (1) arrow Must be $\mathrm{S}_{\mathrm{N}} 2$ mechanism if $1^{\text {st }}$ order wrt OH^{-}in (i):		$\mathrm{S}_{\mathrm{N}} 1$ mechanism if [OH^{-}] first order	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(i)				1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3. (b)(ii)	alkene (aqueous) bromine (1) orange to colourless(1)OR(aqueous) potassium manganate(VII) (ignore alkaline/ acid) (1) purple to colourless/ brown (1)aldehyde any one matching pair from: reagent (1)\quadobservation (1): Fehling's solution Tollens' reagent blue (soln) to red/brown ppt silver mirror or black ppt	Benedict's, same observation. Ammoniacal AgNO_{3}, same obs.	Purple to green. 2,4 DNP	4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3. (b)(iv)	$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}+14 \mathrm{O}_{2} \rightarrow 10 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}(1)$ Ignore any state symbols $\begin{aligned} \text { Moles citronellal } & =1.0 / 154(\mathbf{1}) \\ & =6.49 \times 10^{-3} \end{aligned}$ Moles $\mathrm{CO}_{2}=10 \times 6.49 \times 10^{-3}$ (1) $=6.49 \times 10^{-2}$ Volume $\mathrm{CO}_{2}=24 \times 6.49 \times 10^{-2}$ $=1.56 \mathrm{dm}^{3}(1) \text { allow } 1.6$ Allow cq from incorrectly balanced equation. Ignore sf OR 154 g citronellal gives $240 \mathrm{dm}^{3} \mathrm{CO}_{2}$ (1) Vol CO2 from $1 \mathrm{~g}=240 / 154$ (1) $=1.56 \mathrm{dm}^{3}(\mathbf{1})$			4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)	silicon-giant atomic/ giant covalent / giant molecular/macromolecular (1) phosphorus and chlorine - (simple) molecular (1)		5	
covalent bonds broken in Si are stronger than intermolecular/ dispersion/ Van der Waals'/ London/ induced dipole forces (1) phosphorus is P4 and chlorine is $\mathrm{Cl}_{2}(\mathbf{1)}$				
P4 has more electrons (per molecule) so stronger dispersion (etc) forces (1)				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)	PCl_{4}^{+}tetrahedral (1) PCl_{6}^{--}octahedral (1) 4 or 6 pairs of electrons as far apart as possible to minimise repulsion (1)	correct 3-D diagrams		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(c)	name of any specific alcohol (1) $\mathrm{ROH}+\mathrm{PCl}_{5} \rightarrow \mathrm{RCl}+\mathrm{HCl}+\mathrm{POCl}_{3}$ (1) [R must apply to the specific alcohol] OR name of any specific carboxylic acid (1) $\mathrm{RCOOH}+\mathrm{PCl}_{5} \rightarrow \mathrm{RCOCl}+\mathrm{HCl}+$ $\mathrm{POCl}_{3}(1)$ [R must apply to the specific acid]	equation with ' R ' if mark lost for not giving a specific example	Just 'alcohol' Just 'acid'	2

Question	Correct Answer	Acceptable Answers	Reject	Mark
4.(d)		If eqm moles $\mathrm{PCl}_{5}=$ 0.67 and $\mathrm{PCl}_{3}=\mathrm{Cl}_{2}=0.33$ answer $=0.5$ and can score last 3 marks If 1.6 used here then final answer is 3.24		5

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(e)(i)	$\mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{HPO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ $\mathbf{(1)}$ OR $\mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{OH}^{-} \rightarrow \mathrm{HPO}_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O}$ (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 . (e) (i i)}$			1	

Further copies of this publication are available from Edexcel UK Regional Offices at www.edexcel. org.uk/ sfc/ feschools/ regional/ or International Regional Offices at www.edexcel-international.org/ sfc/ academic/ regional/

For more information on Edexcel qualifications, please visit www.edexcel-international.org/ quals Alternatively, you can contact Customer Services at www.edexcel.org.uk/ask or on + 441204770696

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

