

Mark Scheme (Results) Summer 2007

GCE

GCE Chemistry (6242) Paper 01

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

General Guidance on Marking

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge.

Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

The mark scheme gives you:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

- 1 / means that the responses are alternatives and either answer should receive full credit.
- 2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
- 3 [] words inside square brackets are instructions or guidance for examiners.
- 4 Phrases/words in bold indicate that the <u>meaning</u> of the phrase or the actual word is essential to the answer.
- 5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC*) in the mark scheme BUT this does not preclude others.

		EXPECTED ANSWER	ACCEPT	REJECT	MARK
1.	(a)	titanium OR Ti	graphite /C		(1)
	(b)	$\begin{array}{rcl} 2\text{Cl}^{\circ} & \rightarrow & \text{Cl}_2 \ + \ 2e^{\circ} \\ \text{OR} \\ \text{Cl}^{\circ} & \rightarrow & \frac{1}{2} \ \text{Cl}_2 \ + \ e^{\circ} \\ \end{array}$ there does not have to be a negative charge on the e IGNORE state symbols	$\begin{array}{rcccccccccccccccccccccccccccccccccccc$		(1)
	(c)	oxidation because chloride (ions)/Cl ⁻ /chlorine ions lose electrons OR oxidation because chloride (ions)/Cl ⁻ /chlorine ions lose 2 electrons OR oxidation because chloride (ions)/Cl ⁻ /chlorine ions lose 1 electron OR oxidation because ox no. chlorine/Cl goes up(by 1) OR oxidation because ox. no chlorine/Cl goes from -1 to 0		chlorine/Cl/Cl ₂ /it loses electrons just 'loss of electrons'	(1)
	(d)	Cations OR positive (ions)	Na ⁺ / sodium (ions) OR H ⁺ /hydrogen (ions)		(1)
	(e)	Hydrogen / H ₂ OR sodium hydroxide / NaOH / hydroxide ions/OH ⁻ OR both of these	H ₂ + 2OH ⁻ OR H ₂ + OH ⁻	$\begin{array}{c} H\\ 2H^{*} + 2e^{-} \rightarrow H_{2} \end{array}$	(1)

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
(f)	$\begin{array}{rcl} 2\text{NaCl} + 2\text{H}_2\text{O} & \rightarrow & 2\text{NaOH} + \text{Cl}_2 + \text{H}_2\\ \text{OR}\\ \text{NaCl} + \text{H}_2\text{O} & \rightarrow & \text{NaOH} + \frac{1}{2}\text{Cl}_2 + \frac{1}{2}\text{H}_2\\ \text{all species correct (1)}\\ \text{balancing (1) only if all species correct} \end{array}$	$2Cl^{-} + 2H_2O \rightarrow 2OH^{-} + Cl_2 + H_2$ Or half the above equation		(2)
(g)	treatment of (drinking) water OR to kill bacteria in water/swimming pools OR sterilisation of water OR as a disinfectant OR in production/manufacture/making of any one of: PVC bleaches herbicides insecticides/pesticides HCl/hydrochloric acid/hydrogen chloride named solvents bromine titanium paper chloroethene poly(chloroethene)	as a bleach OR in bleach	water purification OR swimming pools OR cleaning anything OR anything else	(1)
			Тс	otal 8 marks

			EXPECTED ANSWER	ACCEPT	REJECT	MARK
2	(a)	(i)	CI F CI		"Fl" for fluorine	(1)
		(ii)	C-F bond is stronger/ they are stronger/the bonds are stronger OR C-F higher bond energy/ enthalpy OR they have a higher bond energy/enthalpy	UV (photon) too low energy to break C-F bond	C-F or C-Cl as an ionic bond OR C-Cl bond is weaker OR any reference to difference in polarity or difference in electronegativity OR references to hydrogen bonding/van der Waals forces	(1)

EXPECTED ANSWER			ACCEPT	REJECT	MARK
	(iii)	neutral particles with an unpaired electron OR neutral species with an unpaired electron OR atoms/molecules with an unpaired electron (1) uv radiation (1) stand alone OR uv light OP	Higher frequency than visible light	ions/elements/substances with "unbonded electron/ free electron/ lone electron/ single electron" instead of "unpaired electron" homolytic fission OR description of atoms taking electron from	(2)
(b)	(i)	Solution sunlight $ \begin{pmatrix} CI & H \\ -C - C \\ -I \\ -I$	more than one repeat unit may be drawn but one repeat unit must then be clearly labelled or indicated by brackets, but only penalise this once	OR just "high frequency light" -C=C- OR "Fl" for fluorine	(2)

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
(ii)	<u>PVC</u> (1)		packaging	
	electrical insulation		buckets	
	pipes		bowls	
	gutters/drainpipes		plastic bags	
	window frames / door frames		clothing	
	flooring		for either polymer	
	waterproof clothing/waterproof footwear			
	artificial leather (for clothing, handbags etc)			
	rigid drink bottles			
	toys			
	fixtures for interiors of aeroplanes			
	car seats / dashboards			
	fencing / railings / decking / gates			
	roofing membrane			
	cladding (for houses) / fascia boards			
	wallcovering			
	credit cards			(2)
	<u>PTFE</u> (1)			
	burette taps			
	non-stick coating on saucepans			
	plumbers tape			
	Goretex lining			
	ski coating			
	cable insulation			
	catheter tubing			
	sewing thread / fibres (for socks) / hosiery			
	tubing and piping in the semiconductor industry			
	wiper blades			
	leashes and collars			
	harnesses / belts			
	bicycle lubricants			
	as a fabric protector			
	coating for machine parts			
	weatherproofing outdoor signs			
			То	tal 8 marks

			EXPECTED ANSWER	ACCEPT	REJECT	MARK
3.	(a)	Igno prop alco 3-ma alka	re missing hyphens or addition of commas in both names an-2-ol (1) hol (1) ignore secondary / 2 ^y / 2° ethylpentane (1) ne (1) ignore branched	2-propanol OR propane-2-ol	2-hydroxypropane primary OR tertiary OR OH 2-ethylbutane	(4)
	(b)	(i)	$H_{C} = C_{L} H H_{C} = C_{L}$ $H_{C} = C_{L$		Molecules where the double bond is not shown	(2)
		(ii)	1,2-dichloroethene OR structure (cis or trans) (1) as it has different atoms/functional groups on both (π bonded) C OR restricted/limited rotation about C=C OR the π bond restricts rotation (1) 2 nd mark conditional on the correct identification Ignore "each carbon has the same two groups" in combination with any correct answer.	"both" if both cis and trans of 1,2 isomer and no 1,1 isomer is drawn in (i) no rotation about C=C/ π bond	No free rotation about C=C/ π bond Just "each carbon has the same two groups"	(2)
	(C)	(i)	electrophilic addition			(1)
		(ii)	nucleophilic substitution		Nuclearphilic substitution	(1)
	(d)	C₅H ₁	0			(1)
					Tota	al 11 marks

		EXPECTED ANSWER	ACCEPT	REJECT	MARK
4.	(a)	Correct answer 73.1 g <u>with</u> some working (2) There are several ways of achieving this	73.05 g / 73.06 g / 73 g		
		e.g. (molar mass) $CH_4 = 16$ (g mol ⁻¹) OR (molar mass) $CH_4 = 12+4$ (g mol ⁻¹) (1)			
		$\frac{1000 \times 16}{219} = 73.1 \text{ g (1)}$			
		OR			(2)
		219 kJ is produced from 16 g of CH ₄ (1) 1000 kJ is produced from <u>1000 x 16</u> = 73.1 g (1) 219			
		OR Number of moles $CH = 1000 = 4.57$ (1)			
		$\frac{1000}{219} = 4.57 (1)$			
		The mass of $CH_4 = 4.57 \times 16 = 73.1 \text{ g}$ (1)	80 g max 1		
		2 nd mark is consequential on their molar mass			
		Ignore sig figs in final answer BUT units essential			

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
(b)	CHUMZCIZ AHL CHUMCI	or	Activation energy hump shown as straight lines	
QWC	 CH₄ + (2)Cl₂ and C + (4)HCl at correct levels (1) ΔH correct / -219 (1) activation energy hump (does not need to be labelled) (1) Explanation: Reaction/it has a high activation energy (1) IGNORE reactants/methane and chlorine are kinetically stable in combination with high activation energy uv provides energy to break Cl-Cl bonds (1) OR Cl radicals are produced in the presence of uv IGNORE any references to thermodynamic stability 	double headed arrow	Reactants and products -ΔH UV provides the reactants with energy to overcome the Ea	(5)

EXPECTED ANSWER		EXPECTED ANSWER	ACCEPT	REJECT	MARK
(C)	(i) Q	Stand alone marks			
	C	IGNORE any reference to rate			(2)
		More (gaseous) molecules on rhs / fewer (gaseous) molecules on lhs (1)		Equilibrium move left / reverse reaction favoured, if no reference to yield	
	(ii) Q W C	 Higher yield / more hydrogen produced (1) - if this is only explained in general terms of increasing rate of the reaction, do not award the mark (Forward) reaction is endothermic / absorbs heat (1) 		If forward reaction is exothermic (0 out of 2)	(2)
	(iii)	No effect			(1)
				Т	otal 12 marks

		EXPECTED ANSWER	ACCEPT	REJECT	MARK
5.	(a) Q W C	enthalpy / energy / heat change when 1 mol of a substance (1)	Heat / energy / enthalpy released Both "element and compound" instead of substance	Energy etc required "Reactant" instead of substance	
		is burnt in excess/burns completely in air/oxygen (1)	Complete combustion with air/oxygen OR Reacts completely with air/oxygen	Reacts with oxygen	(3)
		conditions of 1 atm/ 100 kPa/101 kPa pressure and specified temperature/298 K (1)		Room temperature	
	(b)	(i) Bottom box $2CO_2(g) + 3H_2O(l)$ balance and state symbols (1) $\frac{\text{Left arrow label}}{2\Delta H_c C + 3\Delta H_c H_2}$ OR (2x-394)+(3x-286) (kJ) units not essential OR -788-858 OR -1646 kJ (1) $\frac{\text{right arrow label}}{\Delta H_c C_2 H_5 OH}$ OR -1371 (kJ) (1)			(3)
		 (ii) ΔH_fC₂H₅OH = (2x-394) + (3x-286) -(-1371) (1) = -275 (kJ mol⁻¹) (1) OR 1 mark for their left hand arrow minus their right hand arrow 1 for correct consequential sign and answer 		Wrong unit negates last mark (but allow kJ)	(2)

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
(c)	Step 1 I ₂ / iodine (1) (moist red) phosphorus (1) IGNORE any solvent or heat Step 2 KCN /potassium cyanide OR NaCN / sodium cyanide (1) IGNORE any solvent or heat	PI₃ (1) CN ⁻ / cyanide ions	lodide PI₅ cyanide / HCN	(3)
			Tot	al 11 marks

			EXPECTED ANSWER	ACCEPT	REJECT	MARK
6.	(a)	(i)	$4NH_3 + 5O_2 $ $4NO + 6H_2O$	Multiples or half		(1)
		(ii)	Platinum OR Pt (1) IGNORE Rh OR rhodium		Rb OR rubidium in combination with Pt/platinum	(1)
		(iii) Q W C	(lowered rate because) particles / molecules have less (kinetic) energy (1) fewer molecules have energy > Ea (1)	fewer (of the) collisions have energy > Ea		
			smaller proportion of collisions result in reaction/are successful OR fewer of the collisions result in reaction/are successful (1)		fewer successful collisions per unit time just "Fewer successful collisions"	(3)
			IGNORE the effect on the yield		"fruitful"/"effective" instead of successful	
	(b)	cool N	NO/ the mixture (1)			
		(then) react with (excess) air / oxygen (1)	add/mix with (excess) air /oxygen	oxidised if air/oxygen not mentioned	
		to for	m NO ₂ /N ₂ O ₄ OR nitrogen dioxide/dinitrogen tetroxide (1)	$2NO+O_2 \rightarrow 2NO_2/N_2O_4$ (or half this) scores 2^{nd} and 3^{rd} marks		(4)
		react	with water			
		OR	$4NO_2 + 2H_2O + O_2 \rightarrow 4HNO_3$			
		OR	$3NO_2 + H_2O - 2HNO_3 + NO$	dissolves/absorbed into/mixes		
		OR	$3N_2U_4 + 2H_2U + 4HNU_3 + 2NU$	with/ pass into water		
		UR	$2NO_2 + \Pi_2 O \rightarrow \Pi NO_3 + \Pi NO_2 \qquad (1)$	If there is an attempted		
		any e	quation on its own must be correct	with $NO_2/N_2O_4 + H_2O$ on LHS and HNO ₃ on RHS		

	EXPECTED ANSWER		ACCEPT	REJECT	MARK
	(c)	making any one of: fertilisers explosives nylon flares rocket propellants dyes ammonium nitrate OR in metal processing		any item from the 'making' list on its own OR in fertilisers etc	(1)
Total 10 marks					