Mark Scheme (Results) January 2007

GCE

GCE Chemistry (6243/02)

1	(a)	Lilac (flame/colour) Ignore any references to blue glass	mauve/purple	Any other colour on its own or in combination with lilac	(1 mark)
	(b)	Add nitric acid/ HNO_{3} and silver nitrate (solution)/ $\mathrm{AgNO}_{3}(\mathrm{aq}$)	given in either order If put these two in and then add ammonia allow		(1 mark)
	(c)	Sulphur dioxide/ SO_{2} (1) Sulphite / sulphate(IV) / $\mathrm{SO}_{3}{ }^{2-}(\mathbf{1})$	$\mathrm{HSO}_{3}{ }^{-} /$hydrogensulphite	Error carried forward e. gCO_{2}	(2 marks)
	(d)	White precipitate/solid/suspension		Goes milky/cloudy	(1 mark)
	(e)	Aluminium/Al/Devarda's Alloy (1) ignore any references to foil or powder or turnings and sodium hydroxide (solution) $/ \mathrm{NaOH}((\mathrm{aq})) / \mathrm{KOH}((\mathrm{aq}))(\mathbf{1})$	given in any order		(2 marks)
	(f)	(red then) bleached/goes white/ goes colourless			(1 mark)
			Total 8 marks		

2	Notes: candidates may achieve answer with two tests. If they carry out more than two tests penalise those tests that are wrong If minor error in the test allow correct observation e.g inaccuracy in formula						
			Test	Observation			
		P	Any carbonate or Group 1 hydrogencarbonate as solid or in solution OR correct formula for above including anions ions	Gas evolved that turns limewater cloudy(1)	esterification i.e. Test: Add alcohol + conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathbf{1})$ Obs: smell (1) Fizzing/effervescence/ bubbles		
	OR	P	Add magnesium (1)	Gas evolved burns (with 'pop') (1)	Fizzing/effervescence/ bubbles	Gas evolved	
	OR	P	add blue litmus paper add litmus solution add pH indicator paper add universal indicator paper or solution Use pH meter (1)	(Blue litmus) goes red (1) goes red goes yellow/orange/red pH below 6			(2 marks)
		Q	Add bromine water(1) Bromine in non-aqueous solvent or stated e.g hexane	(Brown/red-brown/orange solution) decolourised/goes colourless (1)	esterification i.e. Test: Add carboxylic acid + conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1) Obs: smell (1)	Add PCl_{5} Bromine	
	OR	Q	Add (acidified /alkaline) potassium manganate(VII)/permang anate OR Add(neutral) solution of potassium	(Purple solution goes) colourless if acidified green if alkaline	If not specified as acidic or alkaline or neutral, accept colourless or brown (ppt) for observation		(2 marks)

3	Magnesium ions/ Mg^{2+} magnesium compound / contains magnesium OR NOT $\mathrm{Ca}^{2+} \mathrm{Ba}^{2+} \mathrm{Sr}^{2+}$ (ALL THREE) or $\mathrm{Ca}^{2+} \mathrm{Ba}^{2+} \mathrm{Sr}^{2+}$ ABSENT	Be ions/Be ${ }^{2+}$ / beryllium compound / contains beryllium	Mg^{+}	(1 mark)
	lodine produced /contains iodine OR Z is an lodide /iodide ions /I-		bromide iodine ions	(1 mark)
	Mgl_{2} Consequential marking: Allow cq on metal stated provided it is Group 2 and not barium No cq on halide	Bel_{2} if Be^{2+}	Name e.g. magnesium iodide	(1 mark)

Total 3 marks

5	(a)	(from) colourless (to) pink		pale red	(From) clear to....... ORto magenta/ purple/cerise	(1 mark)
	(b)	The first titre is outside the $0.2\left(\mathrm{~cm}^{3}\right)$ limit usually set for volumetric analysis OR the first titre is rough/trial		not concordant closest too far out /overshot	Very similar Not accurate	(1 mark)
	(c)	$23.40 \mathrm{~cm}^{3}$		23.4		(1 mark)
	(d)	(i)	$\left.\frac{(25.00}{(1000)} \times 0.110\right)=0.00275 \mathrm{~mol} / 2.75 \times 10^{-3} \mathbf{(1)}$	0.0028	$\begin{aligned} & 0.003 \\ & 0.0027 \end{aligned}$	(1 mark)
		(ii)	$\begin{aligned} & \left.\frac{(23.40}{(1000)} \times 0.235\right)=0.005499 \mathrm{~mol} / 5.499 \times 10^{-3}(\mathbf{1}) \\ & \mathrm{cq} \text { on }(\mathrm{c}) \end{aligned}$	0.0055		(1 mark)
		(iii)	(Answer (ii)) (1) (Answer (i)) ie $\frac{0.005499}{0.00275}=2$ Cq on (i) and (ii) used to at least 2 sig figs.			(1 mark)
		(iv)	2 consequential on (iii) as long as rounded to interger and sensible $>.8$ rounded up $₹ .2$ rounded down	Allow mark if no answer to (iii) but (i) and (ii) are correct	Any number that is not an integer Any number > 4	(1 mark)

6	(a)	IGNORE sig figs provided 2 or better in (i) and (ii)				
		(i)	$\Delta \mathrm{T}=26^{\circ} \mathrm{C}$ (1) STAND ALONE Heat change $=104 \times 26.0 \times 4.09=11060 \mathrm{~J}(\mathbf{1})$ ignore sign at this point The second mark may be appearing in part (ii)	If use 100 g answer is 1063(4) And gives 355 as the final answer If use 4 g gives 425.2 and gives $14.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$		(2 marks)
		(ii)	$\text { Moles }=\frac{4.00}{133.5}(\mathbf{1})=0.02996$ $\frac{\text { Answer in (i) }}{\text { moles }} \times \frac{1}{1000}$ (1) $=-369\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1})$ Error carried forward if wrong Mr	0.03 -369 ($\mathrm{kJ} \mathrm{mol}^{-1}$) with some working (3) $-369000 \mathrm{~J} \mathrm{~mol}^{-1}(\max 2)$	$-369000 \mathrm{~kJ} \mathrm{~mol}^{-1}$ does not score $3^{\text {rd }}$ marking point	(3 marks)
	(b)	Rec reco (Plo Extr tem Not An clea a ve and mar	rd temp of water at intervals add solid (and stir), continue ding temperature (1))graph(1) this could be implied apolate back to time of adding solute (to find actual erature change) (1) nnotated sketch graph showing time intervals and temperature plots tical line at correct point evidence at what point the solid was added score all three s		Methods based on increasing insulation alone	(3 marks)
						tal 8 marks

7	Weigh crucible empty and with solid/ find mass of solid / take known mass of solid(1) Heat (,cool) and reweigh (1) Reheat and reweigh/ heat to constant weight / make sure no gas is being evolved (1) to ensure reaction is complete (1) Compare ratio of mass produced OR Mass taken (1) mass produced If $\frac{168}{106}$ reaction I etc OR Calculate actual mass of product or mass lost based on a stated mass taken e.g 10 g gives 6.7 or less of 3.3 10 g gives 4.8 or loss of 5.3 10 g gives 3.7 or loss of 6.3 (1) for calculation Relate answer to which solid taken (1) Could measure volume of gas produced but it breaks down if temp not above $100{ }^{\circ} \mathrm{C} \max 3$ (the first $\mathbf{3}$ marks) since this is not the question asked	Compare ratio of mass of product with mass of reactant (1) If rxn I: mass of product $=$ mass of $\mathrm{NaHCO}_{3} \times 106$ If rxn II: mass of product $=$ mass of $\mathrm{NaHCO}_{3} \times 40$ (1) 84 If rxn III: mass of product $=$ mass of $\mathrm{NaHCO}_{3} \times 62$ 2×84	If say take equal amounts do not give first mark since this indicates a misunderstanding of the whole exercise.	(6 marks)

