

Mark Scheme (Results) January 2007

GCE

GCE Chemistry (6242/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

		EXPECTED ANSWER	ACCEPT	REJECT	MARK
			_		
1.	(a)	(i) H H H H H H-C-H H H H H-C-H H-C-H H H C-H H	CH ₃ in branches But do not allow bond directly to H i.e.	$\begin{array}{c c} - & - & - & - \\ - & - & - & - & - \\ - & - &$	
		н́н́	—С— СН ₃		(1 mark)
		(ii) H Br H H - C - C - C - H H O H	H Br H H—C—C—C—H H OH H	Bond pointing directly to H in OH i.e. —C— HO	
		Ĥ		Hs missing from carbons i.e. Br -C-C-C-C- Br OH	(1 mark)
	(b)	Isomer 1 $H_{C_2H_5}C=CH_3$ $H_{(1)}$	90 ° bond angles e.g C=C OR C=C 		
		Isomer 2 C_2H_5 H $C=C$ H_3 H (1)	ACCEPT CH ₃ C C ₂ H ₅ C		

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
1				(2 marks)
	If incorrect alkene eg but-2-ene, allow (1) for both cis and trans isomers			

		EXPECTED ANSWER	ACCEPT	REJECT	MARK
(c)	(i)	Nucleophile OR nucleophilic reagent IGNORE type of reaction e.g. substitution		Any answer containing: "free radical" "electrophile"	
		addition			(1 mark)
	(ii)	(free) radical IGNORE type of reaction e.g. substitution addition		Any answer containing: "nucleophile" "electrophile"	(1 mark)
	(iii)	Oxidising agent OR oxidant	oxidises ethanol/alcohol	"oxidation" on its own "reduced by ethanol" any answer containing "electrophile" "nucleophile" "free radical"	(1 mark)
				1	Total 7 marks

		EXPECTED ANSWER	ACCEPT	REJECT	MARK
2.	(a)	Enthalpy/heat/energy change for one mole of a compound/substance/ a product (1) NOT solid/molecule/species/element		"heat released or heat required" unless both mentioned	
		to be formed from its elements in their standard states (1) ALLOW normal physical state if linked to standard conditions		"natural state" "most stable state"	
		standard conditions of 1 atm pressure and a stated temperature (298 K) (1)		"room temperature and pressure"	(3 marks)
				"under standard conditions"	
	(b)	(i) Bonds broken Bonds made $N\equiv N (+)945$ 6N-H (-)2346 (1) and $3H-H (+)\underline{1308}$ (1) (+)2253 $\Delta H = 945 + 1308 - 2346$ = -93 sign and value (1) $\Delta H^{\Theta} = -\underline{93} = -46.5$ (kJ mol ⁻¹) sign and value q on 3 rd mark (1)	– 46.5 (kJ mol ⁻¹) with working (4)		
			+ 46.5 with working max (3) +93 with working max (2)		(4 marks)

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
(ii)	$(Enthalpy) \qquad \underbrace{\begin{array}{c} N_2 + (3)H_2 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	-46.5		
	Correct labelled levels (1)		"Reactants" and "Products" as labels	
	ΔH labelled (1) direction of arrow must agree with thermicity	double headed arrow		
	Diagram marks cq on sign and value of ΔH in (b)(i) IGNORE activation energy humps			(2 marks)
(iii)		any temperature or range within this range		
	higher temperature gives higher rate (1) but a lower yield because reaction is exothermic (1)	favours endothermic reaction more than exothermic so lower		
	OR Lower temperature give higher yield because reaction is exothermic (1) but rate is slower (1)	yield	Lower temp favours exothermic reaction	(3 marks)
		cq on sign of ΔH_f in (b)(i) or levels in (ii)		
(iv)	Iron / Fe (1) IGNORE any promoters no effect on yield (1)			(2 marks)

EXPECTED ANSWER ACCEPT REJECT MAR

	(v)	temp would have to be much higher for a reasonable rate then yield would be too low "lower activation energy" implies reasonable rate	rate too slow without catalyst at a temp giving a reasonable yield	to lower activation energy of reaction	(1 mark)
		OR Allows reaction at a lower temp at a reasonable/fast rate giving a reasonable yield.			
(c)	(i)	<u>advantage</u> higher (equilibrium) yield/more NH₃ in equilibrium mixture/equilibrium shifts to right (1)		Just "more ammonia"	
		because smaller number of (gaseous) moles/molecules on rhs (1) IGNORE any reference to change in rate			(2 marks)
	(ii)	disadvantage (plant more) expensive because thicker pipes would be needed	Stronger or withstand high pressure for thicker Vessel/container/plant /equipment/reaction vessels for pipes	"just more expensive" "just thicker pipes etc" apparatus	(1 mark)
		OR cost (of energy) for compressing the gases/cost of pump OR Cost of equipment/pressure not justified by higher yield			
				T	otal 18 marks

	EXPECTED ANSWER		ACCEPT	REJECT	MARK
			-	-	
3.	(a)	Step 1 NaOH/KOH/sodium hydroxide/potassium hydroxide (1) ethanol <u>and</u> heat/reflux/heat under reflux/boil/warm (1) condition dependent on correct reagent or hydroxide	Ethanolic/alcoholic/ alcohol/ethanol solution for ethanol	aqueous ethanol	(2 marks)
	(b)	Step 2 H ₂ / hydrogen (1) Ni / nickel and heat <i>OR</i> Pt/Pd/platinum/palladium <i>IGNORE reference to heat</i> (1)			(2 marks)

EXPECTED ANSWER ACCEPT REJECT MARK
--

4.	(a)	aluminium oxide/alumina/Al $_2O_3$ dissolved in (1)		bauxite	
		molten cryolite or cryolite at temp≥ 800 °C (1)			(2 marks)
	(b)	$Al^{3+} + 3e^{(-0)} \rightarrow Al$		(aq) as state symbol	(1 mark)
	(c)	graphite	carbon /C	charcoal	(1 mark)
	(d)	$C+O_2 \rightarrow CO_2$	Multiples or half		
		$\begin{array}{rcl} OR & 2C + O_2 & \rightarrow & 2CO \\ OR & C + 20^{2-} & \rightarrow CO_2 + 4e^- \\ OR & C + 0^{2-} & \rightarrow CO + 2e^- \end{array}$			(1 mark)
	(e)	mol Al = $\frac{1 \times 10^6}{27}$ = 3.7 x 10 ⁴ (1)			
		mol $Al_2O_3 = \frac{1}{2}$ mol Al (1)			
		mass $Al_2O_3 = mol \times 102$			
		= 1.9 x10 ⁶ g / 1.9t(1) value and unit required. If atomic numbers used max 2			
		If mol Al ₂ = $\frac{1 \times 10^6}{54}$ (0)			
		mol $Al_2O_3 = mol Al_2$ (1) mass $Al_2O_3 = 1.9 t$ (1) OR			
		54 g Al made from 102 g Al_2O_3 (1)			
		1g Al made from <u>102</u> = 1.9 g (1) 54			(3 marks)
		1 t Al made from 1.9 t / 1.9x10 ⁶ g (1)			
		IGNORE s.f.			

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
--	-----------------	--------	--------	------

(f)	(i)	(energy) to keep the electrolyte/alumina molten (1) OR		to keep aluminium molten to melt/heat the electrolyte	(1 mark)
		to produce heat energy to maintain temp 800-1000°C (1)		to metty near the electrolyte	
	(ii)	no (electricity needed for) electrolysis (1) energy only needed to melt A1 (1) OR Low melting point of Al (1) Compared to high melting point/800°C-100°C for electrolyte (1) OR No (electricity needed for) electrolysis (1) Low melting point of Al (1)	Cryolite for electrolyte	Bauxite aluminium oxide for electrolyte	(2 marks)
			Purification of bauxite not needed		
				T	otal 11 marks

EXPECTED ANSWER	ACCEPT	REJECT	MARK

5.	(a)	(i)	$(C_2H_6 + Br_2) \rightarrow C_2H_5Br + HBr$ OR multiple substitution e.g.	CH ₃ C H ₂ Br or full structural formula	$\begin{array}{c} C_2H_6+3Br_2 \rightarrow 2C \\ +6HBr \end{array}$	
			$C_{2}H_{6} + 2Br_{2} \rightarrow C_{2}H_{4}Br_{2} / CH_{3}CHBr_{2}/CH_{2}BrCH_{2}Br + 2HBr$ $C_{2}H_{6} + 3Br_{2} \rightarrow C_{3}H_{3}Br_{3} + 3HBr \text{ etc}$			(1 mark)
		(ii)	$(C_2H_4 + Br_2) \rightarrow CH_2BrCH_2Br$		$C_2H_4Br_2$	(1 mark)
	(b)	(i)	ethane C- H bond <u>and</u> ethene C=C bond (1) ALLOW carbon-carbon if double in type of bond ethane type: σ /sigma <u>and</u> ethene type: π /pi (1) OR mark horizontally		Reject σ and π for ethene	(2 marks)
		(ii)	π/pi bond is weaker (than the σ/sigma bond) OR π/pi bond has higher electron density (than the σ/sigma bond)	 π/pi bond requires less energy to break OR π/pi bond has lower bond enthalpy π/pi bond has more accessible electron 	π breaks more easily π bond is weak	(1 mark)
				density		Total 5 marks

		EXPECTED ANSWER	ACCEPT	REJECT	MARK
6	(a)	Non-ber/ faction of molecules (with except E) Energy			
		(i) Axes labelled (1) Y: number/fraction of molecules/particles (with energy E) and X: (kinetic) energy Correct shape (1) starting at origin, and asymptotic to x-axis and not symmetrical V I_{GNORE} V_{RONG} V_{RONG} V_{RONG} V_{RONG}			(2 marks)
		(ii) line T _H with peak to the right of temp T and peak lower than temp T wrong because crosses twice			(1 mark)

	EXPECTED ANSWER		ACCEPT	ACCEPT REJECT	
	(iii)	vertical line well to the right of both peaks			(1 mark)
(b)	(i)	higher temp gives molecules higher (average kinetic) energy (1)			
		so increase in frequency of collisions (1)	more collisions per unit time	More collisions	
		area (under curve) to right of Ea greater at T_H (1)			
		more collisions have a greater energy ≥ Ea OR a greater proportion of collisions have energy ≥ Ea OR	molecules/particles for collisions		
		more of the collisions are successful OR a greater proportion of the collisions result in reaction /are		"more successful collisions" "increase in frequency of	(4 marks)
		successful (1)		successful collisions"	
	(ii)	Energy of collisions			(1 mark)
			I		Total 9 marks

EXPECTED ANSWER	ACCEPT	REJECT	MARK

7.	(a)	(i)	alcohol/OH	hydroxyl	Hydroxide/OH [−]	
					Any additional functional group	(1 mark)
		(ii)	W (CH ₃) ₃ COH (1)	full structural formulae		(2 marks)
		(iii)	Butanoic acid / CH ₃ CHeCH ₂ COOH but not if W is butan-1-ol OR (2) methylpropanoic acid/(CH ₃) ₂ CHCOOH but not if W is 2-methylpropan-1-ol if name and formula given, both must be correct			(1 mark)
	(b)		isomers (1) CH ₂ CH ₂ Br/ C ₂ H ₅ CH ₂ Br <u>and</u> CH ₃ CHBrCH ₃	full structural formulae H H H H-C-C-C-Br H H H H H H H H H H-C-C-C-H		
		iden	tification of 2-bromo as the major product (1)	Ĥ Br Ĥ		(2 marks)