Mark Scheme (Results) January 2007

GCE

GCE Chemistry (6242/01)

1. (a) $_{\text {(}}^{\text {(i) }}$

	EXPECTED ANSWER	ACCEPT	REJ ECT	MARK

2.	(a)		alpy/heat/energy change for one mole of a pound/substance/ a product (1) solid/molecule/species/element formed from its elements in their standard states (1) W normal physical state if linked to standard conditions dard conditions of 1 atm pressure and a stated temperature (298)		"heat released or heat required" unless both mentioned "natural state" "most stable state" "room temperature and pressure" "under standard conditions"	(3 marks)
	(b)	(i)	Bonds broken Bonds made $\mathrm{N} \equiv \mathrm{N} \quad(+) 945$ $6 \mathrm{~N}-\mathrm{H} \quad(-) 2346$ and $3 \mathrm{~B}-\mathrm{H} \quad(+) \underline{1308}$ (1) $(+) 2253$ $\Delta \mathrm{H}=945+1308-2346$ $=-93$ sign and value (1) $\Delta H^{\ominus}=-\underline{93}=-46.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ sign and value q on $3^{\text {rd }}$ mark (1) 2 and $\begin{aligned} & 3 \mathrm{H}-\mathrm{H} \quad(+) \underline{1308} \\ & \begin{array}{l} (+) 2253 \end{array} \\ & \begin{aligned} \Delta \mathrm{H}=945+1308-2346 \\ =-93 \text { sign and value (1) } \end{aligned} \\ & \Delta H^{\ominus}=-\underline{93}=-46.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & \text { sign and value q on } 3^{\text {rd }} \text { mark (1) } \\ & 2 \end{aligned}$	$-46.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ with working (4) +46.5 with working max (3) +93 with working max (2)		(4 marks)

	(ii)	Correct labelled levels (1) $\Delta \mathrm{H}$ labelled (1) direction of arrow must agree with thermicity Diagram marks cq on sign and value of ΔH in (b)(i) IGNORE activation energy humps	-46.5 double headed arrow	"Reactants" and "Products" as labels	(2 marks)
	(iii)	$350-500^{\circ} \mathrm{C} \text { (1) }$ higher temperature gives higher rate (1) but a lower yield because reaction is exothermic (1) OR Lower temperature give higher yield because reaction is exothermic (1) but rate is slower (1)	any temperature or range within this range favours endothermic reaction more than exothermic so lower yield cq on sign of ΔH_{f} in (b)(i) or levels in (ii)	Lower temp favours exothermic reaction	(3 marks)
	(iv)	Iron / Fe (1) IGNORE any promoters no effect on yield (1)			(2 marks)

	(v)	temp would have to be much higher for a reasonable rate then yield would be too low "lower activation energy" implies reasonable rate OR Allows reaction at a lower temp at a reasonable/fast rate giving a reasonable yield.	rate too slow without catalyst at a temp giving a reasonable yield	to lower activation energy of reaction	(1 mark)
(c)	(i)	advantage higher (equilibrium) yield/more NH_{3} in equilibrium mixture/equilibrium shifts to right (1) because smaller number of (gaseous) moles/molecules on rhs (1) IGNORE any reference to change in rate		Just "more ammonia"	(2 marks)
	(ii)	disadvantage (plant more) expensive because thicker pipes would be needed OR cost (of energy) for compressing the gases/cost of pump OR Cost of equipment/pressure not justified by higher yield	Stronger or withstand high pressure for thicker Vessel/container/plant /equipment/reaction vessels for pipes	"just more expensive" "just thicker pipes etc" apparatus	(1 mark)
		Total 18 marks			

\(\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline 3 . & \text { (a) } & \begin{array}{l}\text { Step 1 } \\
\mathrm{NaOH} / \mathrm{KOH} / \text { sodium hydroxide/potassium hydroxide (1) } \\
\text { ethanol and heat/reflux/heat under reflux/boil/warm (1) } \\
\text { condition dependent on correct reagent or hydroxide }\end{array}
$$ \& \begin{array}{l}Ethanolic/alcoholic/

alcohol/ethanol

solution for ethanol\end{array} \& aqueous ethanol\end{array}\right]\)| (2 marks) |
| :---: |

4.	(a)	aluminium oxide/alumina/ $\mathrm{Al}_{2} \mathrm{O}_{3}$ dissolved in (1) molten cryolite or cryolite at temp $\geq 800^{\circ} \mathrm{C}$ (1)		bauxite	(2 marks)
	(b)	$\mathrm{Al}^{3+}+3 \mathrm{e}^{(-0)} \rightarrow \mathrm{Al}$		(aq) as state symbol	(1 mark)
	(c)	graphite	carbon /C	charcoal	(1 mark)
	(d)	$\begin{aligned} & \mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \\ & O R 2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO} \\ & O R \mathrm{C}+20^{2-} \rightarrow \mathrm{CO}_{2}+4 \mathrm{e}^{-} \\ & O R \mathrm{C}+\mathrm{o}^{2-} \rightarrow \mathrm{CO}+2 \mathrm{e}^{-} \end{aligned}$	Multiples or half		(1 mark)
	(e)	```\(\mathrm{mol} \mathrm{Al}=\frac{1 \times 10^{6}}{27}=3.7 \times 10^{4}\) (1) mol \(\mathrm{Al}_{2} \mathrm{O}_{3}=1 / 2 \mathrm{~mol} \mathrm{Al}\) (1) mass \(\mathrm{Al}_{2} \mathrm{O}_{3}=\mathrm{mol} \times 102\) \(=1.9 \times 10^{6} \mathrm{~g} / 1.9 \mathrm{t}(\mathbf{1})\) value and unit required. If atomic numbers used \(\max 2\) If \(\mathrm{mol} \mathrm{Al}_{2}=\frac{1 \times 10^{6}}{54}\) (0) \(\mathrm{mol} \mathrm{Al}_{2} \mathrm{O}_{3}=\mathrm{mol} \mathrm{Al}_{2}\) (1) mass \(\mathrm{Al}_{2} \mathrm{O}_{3}=1.9 \mathrm{t}\) (1) OR 54 g Al made from \(102 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}\) (1) 1 g Al made from \(\frac{102}{54}=1.9 \mathrm{~g}\) (1) 1 t Al made from \(1.9 \mathrm{t} / 1.9 \times 10^{6} \mathrm{~g}\) (1)``` IGNORE s.f.			(3 marks)

5.	(a)	(i)	$\left(\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Br}_{2}\right) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr}$ OR multiple substitution e.g. $\begin{aligned} & \mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{6}}+\mathbf{2} \mathrm{Br}_{\mathbf{2}} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2} / \mathrm{CH}_{3} \mathrm{CHBr}_{2} / \mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{Br}+2 \mathrm{HBr} \\ & \mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{6}}+\mathbf{3} \mathrm{Br}_{\mathbf{2}} \rightarrow \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{Br}_{3}+3 \mathrm{HBr} \text { etc } \end{aligned}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$ or full structural formula	$\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{6}+3 \mathrm{Br}_{2} \rightarrow 2 \mathrm{C} \\ & +6 \mathrm{HBr} \end{aligned}$	(1 mark)
		(ii)	$\left(\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2}\right) \rightarrow \mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{Br}$		$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$	(1 mark)
	(b)	(i)	ethane $\mathrm{C}-\mathrm{H}$ bond and ethene $\mathrm{C}=\mathrm{C}$ bond (1) ALLOW carbon-carbon if double in type of bond ethane type: $\sigma /$ sigma and ethene type: $\pi / \mathrm{pi} \quad(\mathbf{1})$ OR mark horizontally		Reject σ and π for ethene	(2 marks)
		(ii)	π / pi bond is weaker (than the $\sigma /$ sigma bond) OR π / pi bond has higher electron density (than the $\sigma /$ sigma bond)	π / pi bond requires less energy to break OR π / pi bond has lower bond enthalpy π / pi bond has more accessible electron density	π breaks more easily π bond is weak	(1 mark)
						al 5 marks

EXPECTED ANSWER			ACCEPT	REJ ECT	MARK
	(iii)	vertical line well to the right of both peaks			(1 mark)
(b)	(i)	higher temp gives molecules higher (average kinetic) energy (1) so increase in frequency of collisions (1) area (under curve) to right of Ea greater at $\mathrm{T}_{\mathrm{H}}(\mathbf{1})$ more collisions have a greater energy $\geq \mathrm{Ea}$ OR a greater proportion of collisions have energy $\geq \mathrm{Ea}$ OR more of the collisions are successful OR a greater proportion of the collisions result in reaction /are successful (1)	more collisions per unit time molecules/particles for collisions	More collisions "more successful collisions" "increase in frequency of successful collisions"	(4 marks)
	(ii)	Energy of collisions			(1 mark)
					al 9 marks

7.	(a)	(i)	alcohol/OH	hydroxyl	Hydroxide/ OH^{-} Any additional functional group	(1 mark)
		(ii)	$\mathbf{w}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ (1) IGNORE $\mathbf{x}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$ must be conseq on their W (1)	full structural formulae		(2 marks)
		(iii)	Butanoic acid / $\mathrm{CH}_{3} \mathrm{CHeCH}_{2} \mathrm{COOH}$ but not if W is butan-1-ol OR (2) methylpropanoic acid/ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$ but not if W is 2-methylpropan-1-ol if name and formula given, both must be correct			(1 mark)
	(b)		isomers (1) $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br} \text { and } \mathrm{CH}_{3} \mathrm{CHBrCH}_{3}$ tification of 2-bromo as the major product (1)	full structural formulae		(2 marks)

