

Mark Scheme (Results) January 2007

GCE

GCE Chemistry (6241/01)

General Guidance on Marking

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge, and for critical and imaginative thinking. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

Using the mark scheme

The mark scheme gives you:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

[] words inside square brackets are instructions or guidance for examiners.

Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.

CQ (consequential) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

There is space at the bottom of each page of this mark scheme for examiners to write their notes.

Note:

If a candidate has crossed out an answer and written new text, the crossed out work should be ignored. If the candidate has crossed out work, but written no new text, the crossed out work for that question or part question should be marked, as far as it is possible to do so.

			EXPECTED ANSWI	ER	ACCEPT	REJECT	MARK
1	(a)		Neutrons	Electrons	Words or numbers		
		24 12Mg		12			
		26 12Mg	14				
		24 12Mg ²⁺	4				
		1 mark each num	ber				3 marks
	(b)						
		1s 2s	2p	3s 3p			
	(i)	Mg	<u>↑</u> ↓	<u>†</u>			
		1s 2s	2p	3s 3p			
	(ii)	CI	↑ ↑ ↑ ↑		Both arrows up or both down	Numbers	
		Arrows can b	е				2 marks
		1 for 1					2
		1 for ↑ 1 for ↓					

(c)	$Mg(s) + Cl_2(g) \rightarrow MgCl_2(s)$	Multiples $Mg^{2+}(Cl^-)_2(s)$	"Mg ²⁺ + 2Cl ⁻ " for MgCl ₂	
	Formulae (1)	///S (Ct) ₂ (3)	(0 mark)	
	State symbols (1) - only if formulae correct or near miss for MgCl ₂			2 mar
	(e.g. MgCl/Mg ₂ Cl)			
(d)	$\frac{(56.25x70) + (37.50 \times 72) + (6.25x74)}{100} $ (1)		Use of Ar (0 mark)	
	= 71 (1)	Answer ≥ 2 SF	Just "71" with no	
	Any unit max 1 2 nd mark consequential on fraction provided 70, 72 and 74 used	7 5	working (0 mark)	
				2 ma

ACCEPT

Consequential if wrong

71 used when (d) incorrect

answer to (d) used.

Answer ≥ 2 SF

REJECT

No or incorrect unit of

volume (loses 1 mark)

MARK

2 marks

EXPECTED ANSWER

NOTES:

(e) <u>4.73</u> moles (1)

 $X 30.6 = 2.04 \text{ dm}^3 (1)$

Answer with no working 1 max

71

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
(f)	Type - Metallic(1)			
	Attraction between Mg ²⁺ (1)	Cations/positive ions /magnesium ions	atoms/nuclei/ions "force between" if used instead of "attraction"	3 mark
	And (surrounding) sea of electrons/delocalised electrons (1)			
(g)	Stand alone Ionic (1)			
	$\begin{bmatrix} \begin{smallmatrix} & oo \\ o & Mg & o \\ o & oo \end{bmatrix}^{2+} 2 \begin{bmatrix} \begin{smallmatrix} & oo \\ o & Cl & o \\ o & oo \end{bmatrix}^{-}$	Diagram without brackets Mg with no electrons shown	Any suggestion of electrons being shared	
	OR OO	ie [Mg] ²⁺	[Mg*] ⁺	
	Correct charges and number of ions (1) Correct electronic structures (1) Stand alone			3 mark
			To	tal 17 mark

tons in
tons
1 mai
tons
1
1 ma
2 mar

EXPECTED ANSWER

ACCEPT

REJECT

MARK

EXPECTED ANSWER		ACCEPT	REJECT	MARK
(ii)	F (1)			
	Third after noble gas/C (1)	first mini dip after big drop	just "electron in p orbital"	
		lowest after Group 1/D in		
	Or	same period (1)	just "s orbitals shield p"	2
	first element in period with p electron (1)	(In F, e ⁻ removed from) p		2 mar
		orbital is at a higher energy		
		level than s orbital (in E)		
(iii)	Increase in (effective) nuclear charge (1)	Number of protons/atomic	Same distance from	
		number	nucleus	
	Same shielding		increased size of	2 mar
	OR same number of electrons in inner shell/orbitals (1)		nucleus	Z man
	Stand alone		Same number of shells	
			Electrons in same shell	
			Т	otal 8 mar

	EXPECTED ANSWER		EXPECTED ANSWER	ACCEPT	REJECT	MARK		
3	(a)	(i)	2Na + $O_2 \rightarrow Na_2O_2$ IGNORE state symbols	$4Na + O_2 \rightarrow 2Na_2O$ or	NaO			
			TONORE State symbols	multiples		1 mark		
		(ii)	Ba + $2H_2O \rightarrow Ba(OH)_2 + H_2$ IGNORE state symbols	multiples	$Ba + H_2O \rightarrow BaO + H_2$	1 mark		
		(iii)		multiples	HNaSO ₄	Tillark		
			IGNORE state symbols			1 mark		
	(b)	(i)	Green/pale green/apple green	yellow-green	Any mention of blue e.g. blue green			
					OR Any other colour	1 mark		
		(ii)	Red	deep/dark red / carmine/crimson /scarlet	Lilac Any mention of lilac e.g. lilac-red			
					OR any other colour	1 mark		

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
(c)	Electrons (absorb heat/energy) and are promoted to higher energy levels (1)	"excited/go" instead of "promoted"	If any reference to absorption spectra e.g. light absorbed (0)	
	as they drop back/down (1)	"orbitals/shells" instead of "energy levels"	e.g. tight absorbed (b)	
	Emit radiation (of characteristic colour) OR emit light (1)		(produce) colours (0)	3 marks
(d)	Percentage oxygen (=45.1) (1) \div Ar (1) Empirical formula = KO_2 (1) e.g. Percentage of oxygen = 45.1 (1) $K \qquad O \\ \frac{54.9}{39} \qquad \frac{45.1}{16} \qquad (1) \\ 1.41 \qquad 2.82$	Use of atomic numbers 2 max use of "O ₂ " Mr ~ 32 but only if give formula KO ₂ (for 3 marks)	Mole calculation - then inverted, no consequential marking on formula	
	KO ₂ (1)			3 marks

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
(e)	Sigma: end on overlap between s and s <i>OR</i> s and p <i>OR</i> p and p orbitals	or or Overlap of hybrid orbitals for	$\bigcirc\bigcirc\bigcirc\rightarrow\bigcirc$	1 mark
	Pi :sideways overlap between p and p orbitals One or both explanations wrong but correct diagrams (or vice versa) (1)	P .	88 → O	
			To	1 mark

			EXPECTED ANSWER	ACCEPT	REJECT	MARK		
4	(a)	(i)	Minimum of one shaded blob and one clear blob labelled (1) Labels are:		Na and Cl			
			Na ⁺ or sodium ion and Cl ⁻ or chloride ion		(ie no charge)			
			ind of socialition and ct of chorace for		sodium	ļ		
					chlorine	1 mark		
		(ii)	Strong (force of) attraction between (oppositely charged)	Held together by strong ionic	Any reference to atoms			
			ions (1)	forces/bonds	or molecules			
					Or covalent bonds			
				"attraction" may be implied	Or intermolecular forces	2 marks		
				by "breaking bonds"	Or metallic bonds			
					(scores zero)			
			a lot of energy needed to separate ions (1)	a lot of energy implies				
				"strong"	All the bonds need to be broken			
				break ionic bonds				
				break lattice				
	(b)	Cova	alent between carbon atoms in plane (1)		Giant covalent			
					delocalised e ⁻			
		Van	der Waals' between planes of carbon atoms (1)	Induced dipole/ dispersion/				
		l		London forces/temporary				
		Nam	nes not linked to bonds (max 1)	dipoles		2 marks		

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
(c)	Covalent Label not needed		Giant covalent BUT do not penalise twice	1 mark
(d)	Covalent bonds in diamond are shorter than the distance between layers in graphite (1) The atoms in diamond are packed closer together (1)	Layers in graphite are far apart (1)		2 marks
		•		Total 8 marks

			EXPECTED ANSWER	ACCEPT	REJECT	MARK
	•					
5	(a)	HF	hydrogen bonding /H bonding (1)		just "hydrogen"	
		HCl HBr HI	van der Waals' } (1) - all three needed	Induced dipole/ dispersion/ London/temporary dipole forces any combination	dipole-dipole	2 marks
	(b)	b) (The boiling temperature of HF is higher) because the hydrogen bonding between HF molecules is stronger than the intermolecular forces in HCl (1)		H bonding strongest/strong	Any mention of ions, ionic bonds or covalent bonds (scores 0)	
	The rise from HCl to HI is because the strength of the van der Waals' forces (etc) increases (1)					
		with in	ncrease in number of electrons (1)		Bigger mass/size for 3 rd mark	3 marks
					1	otal 5 marks

			EXPECTED ANSWER	ACCEPT	REJECT	MARK
6	(a)	(i)	$2ClO^{-} + 4H^{+} + 2e^{(-)} \rightarrow Cl_{2} + 2H_{2}O (1)$	Any multiples		1 mark
		(ii)	$2Cl^- \rightarrow Cl_2 + 2e^{(-)}$ (1)	Any multiples		1 mark
	(b)	ClO	+ $2H^+ + Cl^- \rightarrow Cl_2 + H_2O$ (1) - stand alone	Any multiples		
	not consequential on wrong equation in (a)		consequential on wrong equation in (a)			1 mark
	(c)	(i)	$Cl_2 + 2Br^- \rightarrow 2Cl^- + Br_2$ (1) Ignore states	Any multiples		1 mark
		(ii)	Oxidising agent Ignore "displaces" Mark independently of (c)(i)	To oxidise bromide (ions)	just "oxidation"	1 mark

	EXPECTED ANSWER	ACCEPT	REJECT	MARK
(d)	Moles of BCl ₃ = $\frac{12.3}{117.5}$ mol (1) = 0.1046/0.105 amount of water = 3 x moles BCl ₃ (1) = 0.3154/0.315	Any alternative method e.g 1 mol BCl ₃ reacts with 3 mol H ₂ O (1)		
	Mass of H_2O = moles H_2O x 18 = 5.65/5.67(g) (1)	117.5 g BCl ₃ reacts with 54 g H_2O (1)		
	Answer = 5.4 (g) or 5 (g) - from rounding to 1 s.f. max 2	12.3 g BCl ₃ reacts with 54×12.3 g H ₂ O		
	Correct answer with some working scores 3 marks	117.5 = 5.65 g (1)		3 marks
	Mass H ₂ O only (1 max)	Answer ≥ 2 SF		
(e)	Hydrogen ions/ $H^+/H_3O^+/oxonium$ ions formed (from HCl and H_3BO_3)(1)	presence of/contains H ⁺ ions	HCl/H ₃ BO ₃ is an acid	
		Hydroxonium ions	H ⁺ ions from water	
			just "H⁺ ions"	1 mark
			•	Total 9 marks