edexcel ㅃ夫⿰口夫

Edexcel GCE
 Chemistry
 6243／ 02

J une 2006

Results Mark Scheme

Edexcel GCE
Chemistry
6243／ 02

(a) Gas

ammonia/ NH_{3}

Cation

ammonium/ $\mathrm{NH}_{4}{ }^{+}$
If formula given must be correct

Anion

Sulphate $/ \mathrm{SO}_{4}{ }^{2-} \quad$ OR Hydrogen sulphate $/ \mathrm{HSO}_{4}^{-}$

Formula of \mathbf{A}

$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \quad \mathrm{OR} \mathrm{NH} 4 \mathrm{HSO}_{4}$
IGNORE names

ALLOW $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{3}$ consequential on anion
(b) Cation

Sodium/ Na^{+}

Gas

Oxygen/ O_{2}

Anion

$\mathrm{Cl}^{-} /$Chloride NOT chlorine or Cl

Compound B

Sodium chlorate
OR sodium chlorate(III) / (V)/ (VII) ALLOW sodium chlorate(I) OR $\mathrm{NaClO}_{3} / \mathrm{NaClO}_{2} / \mathrm{NaClO}_{4} \quad$ ALLOW NaClO/ NaOCl

ALLOW correct name or formula for \mathbf{B} based on consequential cation, provided it gives a flame test.

ALLOW correct name or formula for \mathbf{B} based on consequential bromide anion.
(4 marks)
If chlorine given, can still get mark for \mathbf{B}.
If both name and formula of \mathbf{B} given, they must agree

(a) Carbon dioxide

lime water goes cloudy / milky/ white ppt (1)
IGNORE lighted splint extinguished

Sulphur dioxide

(potassium) dichromate((VI))/ chromate((VI)) (1)
goes green (1) ALLOW goes blue OR
(potassium) permanganate/ manganate((VII)) (1)
goes colourless (1)
(3 marks)
IGNORE any reference to litmus going red
(b) Route I
add solution of any soluble Group II compound (to both) (1)
$\mathrm{CO}_{3}{ }^{2-}$ white precipitate (1)
$\mathrm{HCO}_{3}{ }^{-}$no precipitate (1)
White precipitate on boiling (1)
Penalise once if an insoluble group II compound is used or solution not mentioned.

Route II

Use pH detection - pH meter/ pH paper/ Ul paper/ Ul solution/ named indicator $\mathrm{pK}_{\text {in }}>9$ / phenolphthalein (1)
$\mathrm{CO}_{3}{ }^{2-} \mathrm{pH} 11-14$ or correct colour (1)
$\mathrm{HCO}_{3}{ }^{-} \mathrm{pH} 7-9$ or correct colour NOT pH 7 alone (1)
Boil/ heat pH changes to 11-14/ rises/ increases (1)

Max 3 marks routes

Boil/ heat (1) NOT warm
$\mathrm{CO}_{3}{ }^{2-}$ no CO_{2} (1)
$\mathrm{HCO}_{3}{ }^{-}$correct test for CO_{2} NOT bubbles (1)
OR pH detection, as for Route II above, and boil (1)
$\mathrm{CO}_{3}{ }^{2-}$ no change (1)
$\mathrm{HCO}_{3}{ }^{-}$rises NOT changes (1)

Notes

- Allow magnesium ions/ calcium ions/ barium ions
- If use magnesium/ calcium max (3)
- No marks for tests for CO_{2} with acid
- Addition of any acid followed by tests on this solution (0)
- Addition of acid followed by tests on a fresh solution, IGNORE acid

3 (a) Cannot be weighed as it is a gas
ALLOW "measure" instead of "weigh"
(1 mark)
(b) Solution will not be $250 \mathrm{~cm}^{3} /$ will not know exact volume/ standard solutions contain mols per dm^{3} of solution.
(c) (i) 2 and 3 (1)
as these are within $0.2 \mathrm{~cm}^{3}$ of each other/ No. 1 is too far away from the others/ closest/ most similar/ concordant/ No. 1 is a rough titration (1)
(2 marks)
NOT consistent/ better agreement
(ii) $30.4(0)\left(\mathrm{cm}^{3}\right)$
consequential on part (i)
(1 mark)
(iii) $\underline{25.00} \times 0.0500=1.25 \times 10^{-3}(\mathrm{~mol})$

1000
(1 mark)
(iv) $2 \times$ (iii)
(1 mark)
(v) Value from (iv) $\times 1000 /$ mean titre from (ii) (1)
[Should be $2.5 \times 10^{-3} \times 1000 / 30.40$]
$=0.0822 \mathrm{~mol} \mathrm{dm}^{-3}(\mathbf{1})$ - value, units and 3 sig figs
(2 marks) NOTE

- the value must be reasonable ie between 0.01 and 0.1
- if '1000' omitted in parts (iii) and (v), penalise once only

Total 9 marks

4 (a) To make sure the decomposition/ reaction is complete / all the carbon dioxide has been given off.
Reference to burning (0)
NOT " maximum CO_{2} "
IGNORE significant figures in (b) and (c)
(b) (i) $\quad 2.2(0)(\mathrm{g})$
(ii) $\underline{2.20}=0.05(00)$ mark is for $\div 44$
(iii) $0.05(00)$
(1 mark)
(iv) $\frac{5.75}{0.0500}$
(1) $=115\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$
(1 mark)
(v) $115-(12+48)=55$

Consequential BUT answer must be sensible
(c) (i) Molar mass error $=\underline{115 \times 0.91}=(\pm) 1(.05)(1)$ 100
Consequential on (b)(iv)
ALLOW a range of 2 x error
(1 mark)
(ii) 114 to 116

Consequential on (i)
(iii) 54 to 56

Consequential on (ii)
(iv) "Could be Mn or Fe"

Consequential on (iii)
MUST be metals and must give all possible in range

5 (a) $\mathrm{C}=\mathrm{C} /$ carbon carbon double bond (1)
ALLOW alkene
NOT just "double bond"
-OH/ hydroxyl/ OH (1)
NOT hydroxide
NOT OH^{-}
NOT alcohol (2 marks)
(b) Isomers of $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ - these could be Unsaturated alcohols
butanal or methylpropanal
butanone
Saturated cyclic alcohols
Unsaturated ethers
ALLOW cis-trans isomers
Any carbon carbon double bonds must be shown

NOTE penalise skeletal formulae with no H atoms once only
(2 marks)
Total 4 marks

6 (a) (i) To act as solvent/ allow mixing / to dissolve halogenoalkanes/ increase miscibility
(ii) It makes sure all solutions are the same temperature / heated equally
(iii) Too slow at room temp

OR High activation energy
OR (covalent) bond (energy) too strong to break at room temperature NOT to increase rate of reaction
(b) Chlorine/ chloride: white, bromine/ bromide: cream and iodine/ iodide: yellow(1) Add ammonia (1)

Cl : ppt soluble in dil ammonia
Br : ppt soluble in conc ammonia ALLOW partial in dilute

(1)
(3 marks)
(c) Use equal amounts (1)
of 1-bromobutane OR 1-bromo-2-methylpropane, AND 2-bromobutane,
AND 2-bromo-2-methylpropane (1) - stand alone
ALLOW names or structures
IGNORE incorrect names if structures are correct
at $60^{\circ} \mathrm{C}$ / heat to same temp (between 40 and $75^{\circ} \mathrm{C}$) (1)
add (equal volume of) silver nitrate(solution) to each (1)
observe time for ppt to be produced / order in which ppts form (1)
Shortest time equivalent to fastest rate/ vice versa (1)
If add NaOH , only first 3 marks available
If use $\mathrm{KMnO}_{4} / \mathrm{K}_{2} \mathrm{CrO}_{4} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ allow halogenoalkane names mark only
IGNORE statements of the expected result even if wrong

