Edexcel GCE
Chemistry
6242/01

June 2006
advancing leaming, changing lives
Results Mark Scheme

1. (a) (i) (aqueous) sodium hydroxide ALLOW formula
(ii) Cryolite/Sodium aluminofluoride $/ \mathrm{Na}_{3} \mathrm{AlF}_{6}$
(iii) Melting temperature/point is too/very high NOT "too much energy is required"
(b) (i) $\mathrm{Al}^{3+}+3 \mathrm{e}^{(-)} \rightarrow \mathrm{Al}$

IGNORE state symbols
(ii) liberated oxygen $\mathrm{OR} \quad 2 \mathrm{O}^{2-} \rightarrow \mathrm{O}_{2}+4 \mathrm{e}^{(-)}$(1)

If say O_{2} is liberated but equation wrong, give the mark, ignoring the equation

Oxidises/reacts with carbon anodes
OR burns away (1)
The carbon can come from an equation
Either $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
$\mathrm{OR} \quad \mathrm{C}+2 \mathrm{O}^{2-} \rightarrow \mathrm{CO}_{2}+4 \mathrm{e}^{(-)}$
$\mathrm{OR} \quad \mathrm{C}+\mathrm{O}^{2-} \rightarrow \mathrm{CO}+2 \mathrm{e}^{(-)}$
OR $\quad 2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}$
(3 marks)
(c)

Use	Property
Cans (1)	Does not corrode OR non-toxic (1)
Aeroplanes (1)	Low density OR high strength:weight ratio (1) NOT 'light'
Saucepans (1)	Good conductor of heat OR non-toxic (1)
Cooking foil (1)	Good conductor of heat OR non-toxic (1)
Car bodies/engines (1)	Does not corrode OR Does not oxidise OR low density (1)
Power cables (1) NOT electrical wiring - though this can score the second mark	High conductivity OR low density (1)
Window/greenhouse frames (1)	Does not corrode OR easily extruded (1) NOT 'do not rust' as synonym for 'corrode'
Bicycle frames/parts (1)	Low density (1)

2
(a)

	Isomer	Complete oxidation
Primary	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ (1) OR $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ OR $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH}$ (1) NOT $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}_{2} \mathrm{OH}$ etc NOT $\mathrm{OHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ (1) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$ (1) (1) ALLOW $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}$ OR ALLOW $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \mathrm{COOH}$ $-\mathrm{CO}_{2} \mathrm{H}$ allowable for COOH $\mathrm{C}_{2} \mathrm{H}_{5}$ allowable for $\mathrm{CH}_{3} \mathrm{CH}_{2}-$
Secondary	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ (1)	 ALLOW CH3 $\mathrm{CH}_{2} \mathrm{COCH}_{3}$
Tertiary	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ (1)	None (1) ALLOW "No structure" MUST be stated e.g. n/a OR no product OR repeat the test alcohol formula i.e. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ NOT just a line Stand alone mark
	Incorrect alcohol repeated $\mathbf{0}$ (out of 2)	

The oxidation products are stand alone marks
If three carbon alcohols shown, correct oxidation products only score
(b) (i) 1(-)iodopropane
(ii) Moist/wet/damp/aqueous/aq
IGNORE any reference to heat (1 mark)
(iii) Pl_{3}

ALLOW PI 5
NOT names
(c) (i) Ethanol/propanone/aqueous ethanol/alcohol (1)
heat (1)
OR warm (under reflux)
OR boil under reflux
ALLOW 'reflux'
If a temperature is stated must be between $30{ }^{\circ}$ and $80^{\circ} \mathrm{C}$
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$

ALLOW C2 $\mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CN}$
NOT $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CN}$
Cyanide group can be $-\mathrm{C} \equiv \mathrm{N}$ but not $-\mathrm{N} \equiv \mathrm{C}$ - if bond shown it must be correct
(iii) nucleophilic substitution
so more collisions per unit time OR greater collision frequency (between the peroxide and the catalyst) (1)
OR 'more active sites'
OR 'more likely for collisions to occur'
NOT 'more successful collisions'.
NOT 'more collisions' on its own
(b) (i) Axes labels (1)
i.e. $\begin{aligned} y \text {-axis } & =\text { Number/" } \mathrm{N} " / \text { fraction of molecules } \\ \mathrm{x} \text {-axis } & =(\text { kinetic }) \text { energy/E NOT potential energy }\end{aligned}$

Start at or going towards origin, asymmetric, asymptotic to x -axis, T_{1} line correct shape (1)
T_{2} line peak lower (1) and to the right (1)
T_{2} line must only cross T_{1}, line once, otherwise max (1)

IGNORE

WRONG

WRONG

(ii) Ea shown well to the right of both peaks (1)
larger area for T_{2} shown on diagram and related to number of collisions/molecules with $\mathrm{E} \geq \mathrm{Ea}(\mathbf{1})$ - need to refer to shading

Greater proportion of successful collisions
OR more of the collisions are successful
ACCEPT more successful collisions per unit time
NOT 'more successful collisions' alone
(iii) $E a_{(\text {cat) }}$ at a lower energy than $E_{a}(\mathbf{1})$ - check diagram, it is enough to draw it on the diagram

Greater proportion of molecules have energy greater than the new activation energy OR relates areas to frequency of successful collisions (1)

4 (a) Heat/enthalpy/energy change per mole of substance/compound/product OR
heat/enthalpy/energy change for the formation of 1 mol of substance/ compound/product (1)
"heat released" and "heat required" not allowed unless both mentioned NOT molecule
from its elements in their standard states (1)
at 1 atm pressure and a stated temperature/ 298 K (1)
NOT "room temperature and pressure"
NOT "under standard conditions"
(b) (i) $\quad(\Delta \mathrm{H}=-306-(-399))=(+) \underline{93}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

ALLOW kJ
Incorrect units lose mark otherwise
(ii) The equilibrium moves to right hand side OR amount of dissociation increases(1)

Because the (forward) reaction is endothermic (1)
Needs to be consistent with (i)
If (i) has a negative answer (exothermic)
equilibrium moves to left hand side (1)
Because (forward) reaction is exothermic (1)
If answer to (i) is +93 or 93 but state that this is exothermic
If reaction moves to left hand side (1)
If reaction moves to right hand side (0)
(iii) add chlorine (1)
which drives equilibrium to the left (1)
OR
increase the (total) pressure (1)
because there are fewer (gas) molecules on left hand side (1)
OR
add PCl_{3} (1)
Which drives equilibrium to the left (1)

5 (a) (i) \div Ar to give 1.06, 2.13 and 1.06 (1)
DO NOT ALLOW 1, 2, 1 for this mark
(divide by smallest to) to give $\mathrm{CH}_{2} \mathrm{Br}$ (1)
$\mathrm{CH}_{2} \mathrm{Br}$ on its own 1 (out of 2)
(2 marks)
(ii) $\mathrm{CH}_{2} \mathrm{Br}$ mass $=94$ (1)
(which is half 188) so MF is $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$ (1)
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$ on its own $\mathbf{1}$ (out of 2)
(2 marks)
(iii) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH}$
(1 mark)
ALLOW $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$
(iv) $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br} / \mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{Br}$

ALLOW $\mathrm{CH}_{3} \mathrm{CHBr}_{2}$ only if in (iii) they have $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})_{2}$.
No other consequential marking allowed
(1 mark)
(b) Strength of bonds $\mathrm{C}-\mathrm{I}<\mathrm{C}-\mathrm{Br}<\mathrm{C}-\mathrm{Cl}$ (1)

Must be bonds to carbon.
C-I bond is weakest because C-I bond longest
OR I largest atom (1) NOT ion
so E_{a} for the reaction with the iodide is lower (1)
NOT kinetically more stable
The marks can be awarded for the inverse argument based on the $\mathrm{C}-\mathrm{Cl}$ bond being the strongest because Cl is the smaller atom.

The $3^{\text {rd }}$ mark is stand alone
If electronegativity differences are used then they must be used correctly; so if electronegativity difference is said to increase rates in the same way as bond strength then $\mathbf{2}$ max

6 (a) (i) Concentrated/saturated sodium chloride OR concentrated/saturated brine
NOT sodium chloride on its own
NOT aqueous sodium chloride alone on its own
(ii) anode
$2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{(-)}$
OR halved
ALLOW -2e ${ }^{(-)}$on LHS

Cathode

$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{(-)} \rightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$
OR $2 \mathrm{H}^{+}+2 \mathrm{e}^{(-)} \rightarrow \mathrm{H}_{2}$ (1)
OR halved
IGNORE state symbols
NOT Cl for $1 / 2 \mathrm{Cl}_{2}$
NOT H for $1 / 2 \mathrm{H}_{2}$.
If these equations are interchanged then (1) if they are otherwise correct.
(iii) Water sterilisation/treatment NOT purification

Manufacture of anaesthetics
Bleaching
Bleach manufacture
Specified solvent manufacture
Papermaking
Manufacture of $\mathrm{HCl} /$ hydrochloric acid
Extraction of bromine from sea water
Manufacture of titanium
Manufacture of herbicides or insecticides.
NOT swimming pools on its own
NOT PVC manufacture
(iv) Permits passage of sodium ions/cations (1)

Does not allow Cl^{-}/anions through (1)
OR
selectively permeable (1) NOT semi-permeable
allows Na^{+}/does not allow Cl^{-}to pass (1)
NOT 'prevents hydrogen and chlorine from reacting'
NOT 'prevents chlorine and sodium hydroxide from reacting'
(b) Skeleton (1)-This must show a 2-carbon repeat unit although number of C's does not matter

Continuation bonds (1) - This is allowable if hydrogens are missed, or if a long chain is shown.

IGNORE any n

brackets not needed here
(2)

ACCEPT

If $C=C$ bond shown then ($\mathbf{0}$)
(c) resistant to chemical attack

OR
not biodegradable NOT "does not decompose" NOT rigidity
(d) produces toxic/poisonous/acidic fumes

ALLOW HCl instead of "fumes"
NOT chlorine
If a list is given and one item is wrong then (0)

