Edexcel GCE
Chemistry
6241/ 01

J une 2006
advancing learning, changing lives
Results Mark Scheme

(a) $\quad .2 \mathrm{~s}^{2} 2 \mathrm{p}^{2} \quad O R 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2} \quad O R\left(1 \mathrm{~s}^{2}\right) 2 \mathrm{~s}^{2} 2 \mathrm{p}_{\mathrm{x}}{ }^{1} 2 \mathrm{p}_{\mathrm{y}}{ }^{1}$

ALLOW capitals and subscripts
(b) large gap/jump between $4^{\text {th }}$ and $5^{\text {th }}$ ionisation energies (so fifth in inner shell)
(c) 4 pairs of electrons around C atom (1) all Ione pairs shown (1)
Mark independently

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{x}}^{\mathrm{Cl}}{ }_{\mathrm{x}}^{\mathrm{x}} \\
& \text { XX XO } x X \\
& \mathrm{x}_{\mathrm{x}}^{\mathrm{Cl}} \mathrm{Cl}_{\mathrm{o}}^{\mathrm{x}} \underset{\mathrm{xo}}{\mathrm{C}} \underset{\mathrm{o}}{\mathrm{C}} \underset{\mathrm{xx}}{\mathrm{Cl}} \underset{\mathrm{x}}{\mathrm{x}} \\
& \mathrm{x}_{\mathrm{x}}^{\mathrm{X}} \underset{\mathrm{x}}{\mathrm{Cl}}{ }^{\mathrm{X}}
\end{aligned}
$$

ALLOW all dots/ crosses
Any attempt at an ionic diagram (0)
(d) (i) High energy/fast/gun electrons hit/strike OR bombarded by electrons (1)

Removes/knocks out electron (1)
OR equation e.g. $\mathrm{X} \rightarrow \mathrm{X}^{+}+\mathrm{e}^{(-)}$IGNORE state symbols
If knock out is mentioned, hit/strike is not required in $1^{\text {st }}$ mark
(ii) magnetic field/magnet/electromagnet/magnetic plates
(e) (i) mass of one atom (of the isotope) (1)
relative to $1 / 12^{\text {th }}$ of the mass of (1)
a carbon -12 atom (1)
OR $2^{\text {nd }}$ and $3^{\text {rd }}$ marks can be awarded as follows:
On a scale where $\mathrm{a}^{12} \mathrm{C}$ atom (1)
has a mass of 12 (NOT grams) (1)
Word "atom" need only be mentioned once
Word "mass" need only be mentioned once
If define R.A.M......max1
(ii) 162 IGNORE units
(iii) (atoms with) same no. of protons (1)

NOT same atomic number
"different number of electrons" loses $1^{\text {st }}$ mark but IGNORE "same number of electrons"
different number of neutrons (1)
NOT different mass number
Penalise incorrect reference to number of electrons
(iv) same number of electrons IGNORE "same number of protons"

OR same electronic configuration/pattern/structure
NOT same number in outer orbit
(i) Covalent
(ii) Induced-dipole(-induced dipole)/dispersion/London/v der Waals/vdw Temporary or instantaneous can be used instead of induced

NOT "dipole" forces
NOT permanent dipole
NOT dipole-dipole
(iii) polymer has stronger/more vdw/intermolecular forces (1)

ALLOW dipole forces
because it has more electrons/larger electron cloud/more contact area (1) NOT larger molecules/surface area
so more energy/heat needed to overcome/break these forces
OR so more energy/heat needed to separate these molecules (1)
NOT breaking bonds
$3^{\text {rd }}$ mark is NOT stand alone
(b) strong attraction between Mg ions $/ \mathrm{Mg}^{2+} /$ cations/metal ions (1)

NOT electrostatic forces/metallic bonds
and delocalised/sea of electrons (1)
Mark independently
(c) Ionic/electrovalent (1)
diagram shows alternating cations and anions in planar arrangement (1)
$2^{\text {nd }}$ mark

$$
\left\{\begin{array}{llll}
\mathrm{Na}^{+} \mathrm{Cl}^{-} & O R & \oplus \Theta & O R \\
\mathrm{Cl}^{-} \mathrm{Na}^{+} & & \Theta \oplus & + \\
\hline+
\end{array}\right.
$$

OR labelled "blobs" - minimum labelling is " Na /sodium ion" and "chloride ion"
in 3-D structure/at least 2 (part) layers shown (1)
$2^{\text {nd }}$ and $3^{\text {rd }}$ marks

(2)

OR

(2)

If only one of them given (1)
(a) (i) Red/brick-red/orange-red (1)

NOT 'Orange' on its own
Yellow (1) ALLOW orange
(ii) electrons promoted (by heat/flame to a higher level) (1)

NOT electrons excited
fall back down/return (1)
emit light (1)
(b) (i) $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$ OR 112 this OR multiples of this
IGNORE state symbols
(ii) $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$

OR 112 this OR multiples of this
IGNORE state symbols
(c) Bubbles/fizz/effervescence (1) float/move about (on surface) (1) melts/forms sphere (1) gets smaller/disappears (1) burns with yellow flame (1) IGNORE dissolves OR gets hot IGNORE explodes/ignites
(d) KO_{2} $O R \mathrm{O}_{2} \mathrm{~K}$
(a) (i) -1/-I, $0 \quad-1 /-\mathrm{I}, 0$
minus can be either side, sub or superscript
iodine no's correct (1)
chlorine no's correct (1)
(ii) chlorine oxidation number goes down/goes from 0 to -1 , so reduced (1)
iodine oxidation number goes up/goes from -1 to 0, so oxidised (1)
Mark consequentially on (a)(i)
(iii) moles $\mathrm{NaI}=\frac{30.0}{150}=0.2$ (1)
moles $\mathrm{I}_{2}=0.1$ (1)
mass of $\mathrm{I}_{2}=0.1 \times 254=25.4(\mathrm{~g})(1)$
OR
$300 \mathrm{~g} \mathrm{Nal}(1)=>254 \mathrm{~g} \mathrm{I}_{2}(1)$
$30.0 \times \frac{254}{300}=25.4(\mathrm{~g})(1)$

Correct answer with some working (3)
Use of atomic numbers 2 max
Penalise wrong units
(iv) $\mathrm{vol}=0.1 \times 24=2.4\left(\mathrm{dm}^{3}\right)$

If not 2.4, check for consequential on (a)(iii)
(b) (i) black/grey/grey-black (1)

NOT blue-black
NOT purple
IGNORE shiny/silvery

Solid (1)
(ii) $\quad \mathrm{I}(\mathrm{g}) \rightarrow \mathrm{I}^{+}(\mathrm{g})+\mathrm{e}^{(-)} \quad$ OR $\quad \mathrm{I}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{I}^{+}(\mathrm{g})$
species (1)
state symbols (1) - award state symbols mark only if species correct and in correct place, or if wrong halogen used
If I_{2} OR $1 / 2 \mathrm{l}_{2}(0)$
(iii) nuclear charge increases/ more protons (1)
(but) more shielding/ screening
OR extra shells between outer shell/ valence/ electrons and nucleus (1)
outer electron further from nucleus/ iodine's outer electron in higher energy level/ shell (therefore less energy). (1)
ACCEPT "electron being removed" instead of "outer"
(a) (i) 4 pairs of electrons $/ 2$ lone pairs and 2 bond pairs (1)
so electron pairs arranged tetrahedrally
OR
Arranged to give maximum separation/minimum repulsion (1)
(ii) $103-105^{\left({ }^{(}\right)}$
(1)
lone pair repulsion> bond pair repulsion (1)
(b) (i) trigonal planar diagram (1)
e.g two opposite wedges gets (1)
three wedges of two types gets (1)
one wedge only gets (0)
IGNORE name
$120{ }^{\left({ }^{\circ}\right)}$ marked on diagram (1) - stand alone
(ii) B and Cl have different electronegativities / Cl more electronegative than B OR different electronegativities explained
(iii) Dipoles (or vectors) cancel/symmetrical molecule/centres of positive and negative charges coincide IGNORE polarity cancels
(iv) Induced-dipole(-induced dipole)/dispersion/London/v der Waals/vdw Temporary or instantaneous can be used instead of induced

NOT "dipole" forces
NOT permanent dipole
NOT dipole-dipole

Use of atomic number max 1

