

Edexcel GCE Chemistry 6241/01

June 2006

Results Mark Scheme

advancing learning, changing lives

Edexcel GCE Chemistry 6241/01

(a)		2p ² OR 1s ² 2s ² 2p ² OR (1s ²)2s ² 2p _x ¹ 2p _y ¹ OW capitals and subscripts	(1 mark)
(b)	large	(1 mark)	
(c)	all Io Mark × CI × X	irs of electrons around C atom (1) ine pairs shown (1) x <i>independently</i> x CI x x CI x x C x x CI x x CI x x CI x x CI x x CI x x X x x CI x x X x x CI x x x x x x X x x x X x x x X x x x x X x x x x	
		DW all dots/crosses attempt at an ionic diagram (0)	(2 marks)
(d)	(i)	High energy/fast/gun electrons hit/strike <i>OR</i> bombarded by electrons (1)	
		Removes/knocks out electron (1) OR equation e.g. $X \rightarrow X^+ + e^{(-)}$ IGNORE state symbols If knock out is mentioned, hit/strike is not required in 1 st mark	(2 marks)
	(ii)	magnetic field/magnet/electromagnet/magnetic plates	(1 mark)
(e)	(i)	mass of one atom (of the isotope) (1) relative to 1/12 th of the mass of (1) a carbon -12 atom (1)	
		OR 2 nd and 3 rd marks can be awarded as follows: On a scale where a ¹² C atom (1) has a mass of 12 (<i>NOT</i> grams) (1)	
		Word "atom" need only be mentioned once Word "mass" need only be mentioned once If define R.A.M max1	(3 marks)
	(ii)	162 IGNORE units	(1 mark)
	(iii)	(atoms with) same no. of protons (1) NOT same atomic number <i>"different number of electrons" loses 1st mark but IGNORE "same number electrons"</i>	of
		different number of neutrons (1) <i>NOT</i> different mass number <i>Penalise incorrect reference to number of electrons</i>	(2 marks)
	(iv)	same number of electrons IGNORE "same number of protons"	
		OR same electronic configuration/pattern/structure <i>NOT</i> same number in outer orbit	(1 mark) Total 14 marks

(a)	(i)	Covalent	(1 mark)
	(ii)	Induced-dipole(-induced dipole)/dispersion/London/v der Waals/vdw Temporary or instantaneous can be used instead of induced	
		NOT "dipole" forces NOT permanent dipole NOT dipole-dipole	(1 mark)
	(iii)	polymer has stronger/more vdw/intermolecular forces (1) ALLOW dipole forces	
		because it has more electrons/larger electron cloud/more contact area (1) NOT larger molecules/surface area	
		so more energy/heat needed to overcome/break these forces <i>OR</i> so more energy/heat needed to separate these molecules (1) <i>NOT</i> breaking bonds <i>3</i> rd mark is NOT stand alone	(3 marks)
(b)		ng attraction between Mg ions /Mg ²⁺ /cations/metal ions (1) ⁻ electrostatic forces/metallic bonds	
		delocalised/sea of electrons (1) k independently	(2 marks)

(c) Ionic/electrovalent (1)

diagram shows alternating cations and anions in planar arrangement (1)

2nd mark

2

{ 1	Va ⁺	a-	OR	Ð	Θ	OP	+	
{ (Cr ⁻	Na ⁺	UK	Θ		~~	-	+

OR labelled "blobs" - minimum labelling is "Na/sodium ion" and "chloride ion"

in 3-D structure/at least 2 (part) layers shown (1)

If only one of them given (1)

(3 marks)

Total 10 marks

(a)	(i)	Red/brick-red/orange-red (1) <i>NOT</i> 'Orange' <i>on it</i> s <i>own</i>	
		Yellow (1) ALLOW orange	(2 marks)
	(ii)	electrons promoted (by heat/flame to a higher level) (1) <i>NOT</i> electrons excited	
		fall back down/return (1)	
		emit light (1)	(3 marks)
(b)	(i)	2Na + 2H ₂ O \rightarrow 2NaOH + H ₂ OR ½ this OR multiples of this IGNORE state symbols	(1 mark)
	(ii)	Na ₂ O + H ₂ O \rightarrow 2NaOH OR $\frac{1}{2}$ this OR multiples of this IGNORE state symbols	(1 mark)
(c)	Bubl float melt gets burn <i>IGN</i>		
		ORE explodes/ignites	(2 marks)
(d)	KO₂ OR ((1 mark)
			Total 10 marks

(a) (i) -1/-I, 0 -1/-I. 0 minus can be either side, sub or superscript iodine no's correct (1) chlorine no's correct (1) (2 marks) (ii) chlorine oxidation number goes down/goes from 0 to -1, so reduced (1) iodine oxidation number goes up/goes from -1 to 0, so oxidised (1) Mark consequentially on (a)(i) (2 marks) moles Nal= <u>30.0</u> = 0.2 **(1)** 150 (iii) moles $I_2 = 0.1$ (1) mass of $I_2 = 0.1 \times 254 = 25.4$ (g) (1) OR 300g Nal (1) => 254g l₂ (1) $30.0 \times \frac{254}{300} = 25.4(g)$ (1) Correct answer with some working (3) Use of atomic numbers 2 max (3 marks) Penalise wrong units (iv) $vol = 0.1 \times 24 = 2.4 (dm^3)$ If not 2.4, check for consequential on (a)(iii) (1 mark) (b) black/grey/grey-black (1) (i) NOT blue-black NOT purple IGNORE shiny/silvery Solid (1) (2 marks) $I(g) \rightarrow I^{+}(g) + e^{(-)}$ OR $I(g) - e^{(-)} \rightarrow I^{+}(g)$ (ii) species (1) state symbols (1) - award state symbols mark only if species correct and in correct place, or if wrong halogen used If $I_2 OR \frac{1}{2}I_2$ (0) (2 marks) (iii) nuclear charge increases/more protons (1) (but) more shielding/screening OR extra shells between outer shell/valence/electrons and nucleus (1) outer electron further from nucleus/iodine's outer electron in higher energy level/shell (therefore less energy). (1) ACCEPT "electron being removed" instead of "outer" (3 marks) **Total 15 marks**

4

(a)	(i)				
		so electron pairs arranged tetrahedrally OR			
		Arranged to give maximum separation/minimum repulsion (1)	(2 marks)		
	(ii)	103 – 105 ^(°) (1)			
		lone pair repulsion> bond pair repulsion (1)	(2 marks)		
(b)	(i)	trigonal planar diagram (1) e.g two opposite wedges gets (1) three wedges of two types gets (1) one wedge only gets (0) IGNORE name			
		120 ^(°) marked on diagram (1) – <i>stand alone</i>	(2 marks)		
	(ii)	B and CI have different electronegativities / CI more electronegative than B OR different electronegativities explained	(1 mark)		
	(iii)	 Dipoles (or vectors) cancel/symmetrical molecule/centres of positive and negative charges coincide IGNORE polarity cancels 			
	(iv)	Induced-dipole(-induced dipole)/dispersion/London/v der Waals/vdw Temporary or instantaneous can be used instead of induced			
		<i>NOT</i> "dipole" forces <i>NOT</i> permanent dipole <i>NOT</i> dipole-dipole	(1 mark)		
(c)	<u>14.9</u> 31	$= (0.481)$ $\frac{85.1}{35.5} = (2.40)$ (1)			
	<u>0.48</u> 0.48				
	Use	of atomic number max 1	(2 marks)		

5

Total 11 marks

Paper Total: 60 Marks