

GCE

Edexcel GCE
Chemistry (6242/01)

January 2006
advancing learning, changing lives
Mark Scheme (Results)

Edexcel GCE
Chemistry ($6242 / 01$)

1.	(a)	Dynamic - reaction continuing (all the time) (1) ALLOW rate forward $=$ rate back Equilibrium - concentrations (of the substances) do not change/remain the same(1) NOT 'concentrations all equal' NOT 'amounts do not change'		(2 marks)
	(b)	(i)	$\begin{aligned} & 350-450{ }^{\circ} \mathrm{C} \text { OR } 620-720 \mathrm{~K} \mathrm{(1)} \\ & >1 \leq 5 \mathrm{~atm}(1) \\ & \text { Values can be given in } \mathrm{kPa} \text { or } \mathrm{kNm}^{-2} \end{aligned}$	(2 marks)
		(ii)	High yield favoured by low temperature (1) High rate favoured by high temperature (1) So, temperature used is a compromise (1) - conditional on first two marks ACCEPT correct inverse argument	(3 marks)
		(iii)	Too costly for extra yield OR Position of equilibrium is well to right under these conditions OR Corrosion problems at high pressure $O R$ Only need elevated pressure in practice to push gases through system OR Capital cost high OR Maintenance cost high OR High energy cost $O R$ Sulphur dioxide liquefies. NOT "too costly" without explanation NOT too dangerous	(1 mark)
	(c)	(i)	$\begin{aligned} & \Delta H=2 \Delta H_{f}\left(\mathrm{SO}_{3}\right)-2 \Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{SO}_{2}\right)=(-395 \times 2)-(-297 \times 2)(1) \\ & =-196\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1)-\text { IGNORE units } \\ & -196\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \text { with some working (2) } \end{aligned}$ No consequential mark other than failing to multiply by two to get $-98 \mathrm{~kJ} \mathrm{~mol}^{-1} \max (1)$ Any positive answer (0)	(2 marks)
	QWC	(ii)	ΔH_{f} is defined as formation from elements OR ΔH_{f} of an element is defined as 0 (in its standard state) $O R$ all elements are given the value zero 'It is an element' on its own (0)	(1 mark)

	(d)	(i)	$\mathrm{V}_{2} \mathrm{O}_{5}$ OR V205 NOT name NOT $\mathrm{V}^{2} \mathrm{O}^{5}$. If name and formula given, ignore name.	(1 mark)
		(ii)	ALLOW endothermic intermediates ALLOW single hump for catalysed pathway: (energy) If the diagram shows ΔH endothermic, then can score the first two marks. If y-axis label is wrong $3^{\text {rd }}$ mark can not be awarded Catalysed and uncatalysed labels missing scores $3^{\text {rd }}$ mark only If two diagrams drawn, full credit can be given if the catalysed E_{a} is clearly less than the uncatalysed. If ΔH and E_{a} confused, then max 2	(3 marks)
QWC		(iii)	Changes mechanism to one of lower E_{a} $O R$ to a different route with lower E_{a} NOT "Lowers E_{a} " alone. Reactants (chemically) adsorb on catalyst surface OR (at given T) more collisions have $E>E_{\mathrm{a}}$ so more successful collisions (1)	(2 marks)
- (e)		Forms (a difficult to condense) mist/fog/smoke/too violent/too exothermic NOT "extremely reactive"		(1 mark)
			Total 18 marks	

2	(a)	Heat/enthalpy/energy change (for a reaction)/ ΔH (1) is independent of the pathway/route (between reactants and products) OR depends only on its initial and final state Both marks can score from a diagram and equation		(2 marks)
	(b)	(i)	$\begin{aligned} & \Delta H=\{(4 x+435)+(2 x+498)\}(1) \\ & +\{(2 x-805)+(4 x-464)\}(1) \end{aligned}$ IGNORE signs for first two marks, ie marks for total enthalpies of bonds broken and made. $=-730\left(\mathrm{kJmol}^{-1}\right)(1)$ $3^{\text {rd }}$ mark is consequential on their values for first two marks $+730\left(\mathrm{kJmol}^{-1}\right)(\max 2)$	(3 marks)
		(ii)	(Enthalpy of) combustion DO NOT penalise "standard"	(1 mark)
		(iii)	At 1 atm pressure $O R \quad 101 / 100 \mathrm{kPa}$ OR $1 \mathrm{bar}(1)$ stated temperature (1) ACCEPT $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$	(2 marks)
			Reaction has $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ (rather than $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$) (1) So not standard conditions (1)- $2^{\text {nd }}$ mark is conditional on the $1^{\text {st }}$ Average bond enthalpies used (so not specific) (1 max)	(2 marks)
QWC	(c)	(Exothermic so) products are at lower energy than reactants (1) Reactants are therefore thermodynamically unstable (with respect to products) (1) Consequential on $1^{\text {st }}$ mark NOT 'reaction' or 'system' is thermodynamically unstable Can argue from point of view of products. E_{a} is high (for noticeable reaction at room temperature) NOT ' E_{a} high' on its own So reactants are kinetically stable (with respect to products) (1) Consequential on $3^{\text {rd }}$ mark If "reaction" instead of reactants is used (3 max)		(4 marks)
		Total 14 marks		

3	(a)	(i)	(Free) radical ACCEPT homolytic radical NOT radical ion	(1 mark)
		(ii)	$\mathrm{CH}_{3} \mathrm{CH}_{3}+\mathrm{Br}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{HBr}$ OR $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr}$ ACCEPT multiple substitution only if the equation balances Can be full structural formula If H_{2} is one product then (0)	(1 mark)
	(b)	(i)		(2 marks)
		(ii)	1,2 (-) dibromoethane only - mark independently of (i) IGNORE punctuation	(1 mark)
QWC	(c)	Ethene has a π / double bond (1) Ethane has σ only / single only / no п / no double bond (1) π (in ethene) weaker than $\mathrm{C}-\mathrm{H}$ (in ethane) / high electron density in $\mathrm{C}=\mathrm{C}$ relative to C-H bond (1)		(3 marks)
		Total 8 marks		

4	(a)	(i)	 (1) (1) Can show C in straight line if H's clearly cis or trans. If H is missing once but bond is shown, no penalty. If all H's missing then (1) only awarded for both structures ALLOW	(2 marks)
		(ii)	(Both have) no/restricted rotation about $\mathrm{C}=\mathrm{C}$ (rotation would require π bond to break) (1) but but-1-ene has two identical groups on a doubly bonded carbon atom (1) but-2-ene does not(1) OR other way round	3 marks)
		(iii)	 OR $O R$ AKLOW Do not need to show all bonds eg can be $-\mathrm{CH}_{3},-\mathrm{C}_{2} \mathrm{H}_{5}$	(1 mark)
	(b)	(i)	 Skeleton (1) Indication of continuation conditional on a two carbon saturated chain in the skeleton. (1)	(2 marks)
		(ii)	Unreactive $O R$ non-biodegradable (1) So occupies/fills site $O R$ remains in the site $O R$ causes visual pollution (1) $2^{\text {nd }}$ mark consequential on $1^{\text {st }}$ NOT "Do not decompose/decay" for $1^{\text {st }}$ mark but allow $2^{\text {nd }}$ mark	(2 marks)
				10 marks

5	(a)	(i)		(1 mark)
		(ii)	Potassium dichromate((VI)) (1) + sulphuric acid (1) - conditional on an oxidising agent being there ALLOW conc sulphuric acid ALLOW (dilute) hydrochloric acid OR (dilute) nitric acid [NOT conc] ACCEPT formulae ALLOW acidified dichromate ions (2) ALLOW H ${ }^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ (2) ALLOW acidified potassium/sodium dichromate(VI) (2) ALLOW Acidified dichromate 1 (out of 2) NOT potassium manganate(VII) for potassium dichromate(VI) NOT potassium(VI) dichromate Heat/boil (under reflux)/warm (1) - conditional on an oxidising agent being there ALLOW reflux	(3 marks)
		(iii)	Heat/boil/reflux/warm in aqueous (ethanolic) (1) NOT 'ethanolic' alone potassium / sodium hydroxide (1) ALLOW $\mathrm{OH}^{-}(\mathrm{aq}) /$ hydroxide ions NOT "hydroxide" on its own	(2 marks)
		(iv)	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$	(1 mark)
	(b)	$\left(\mathrm{CH}_{3}\right.$	COH	(1 mark)
	(c)	(i)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	(1 mark)
		(ii)	Use of ethanol as solvent (instead of water) NOT 'presence of ethanol' alone.	(1 mark)
			Total 10 marks	
			TOTAL FOR PAPER: 60 MARKS	

