GCE

Edexcel GCE
Chemistry (6241/ 01)

J anuary 2006

Mark Scheme (Results)

1	(a)	$\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$ formula $\mathrm{Ca}(\mathrm{OH})_{2}$ (1) correct equation (1) ignore state symbols incorrect symbol for calcium, penalise once		(2)	
		Any one from each line (max 2) Gets warm (1) Effervescence/ fizzing/ bubbles/ mist/ steam/ bobs up \& down (1) white ppt/ white solid/ cloudy/ milky/ white suspension (1) Ca disappears/ gets smaller / dissolves (1) If more than two answers given and one or more wrong max 1		(2)	(4 marks)
	(b)	Increases			(1 mark)
	(c)	(i)		(1) (1)	(2 marks)
		(ii)	Cation/ group 2 ion (radius) Iarger (1) same charge stated or shown (1) [lower charge density/ charge:size ratio of ion award (1) of first two marks] polarises/ distorts anion/ nitrate/ negative ion (1) NOT just "polarising" ALLOW LE of oxide and nitrate decrease down the group (1) LE of oxide decreases faster (1) So nitrate becomes more stable relative to oxide (1)		(3 marks)
					10 marks

\begin{tabular}{|c|c|c|c|c|c|}
\hline 2 \& (a) \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Trigonal pyramidal diagram \\
IGNORE Ione pair \\
If trigonal planar/ octahedral stated (-1) \\
Allow tetrahedral stated, \\
must be some attempt at 3D i.e. must NOT look planar \\
106-108 \({ }^{0}\) marked on diagram OR stated \\
4 pairs (of electrons)/ 3 bond pairs and 1 lone pair repel to maximum separation/ minimum repulsion \\
Ione pair(-bond pair) repulsion > bond pair(-bond pair) repulsion
\end{tabular}} \& (1)

(1)
(1)
(1) \& (4 marks)

\hline \& (b) \& N m elec Dipo mol char ALL \& | re electronegative than H / N and H different ronegativity / ($\mathrm{N}-\mathrm{H}$) bonds polar/ $\delta^{-} \delta^{+}$ N - H |
| :--- |
| es do not cancel/ dipoles not symmetrical (ALLOW cule not symmetrical)/ centres of positive and negative ge do not coincide so polar molecule |
| W vector diagram (1) explanation (1) | \& (1)

(1) \& (2 marks)

\hline \& (c) \& | amm |
| :--- |
| pho |
| disp |
| IGNO |
| Hyd |
| sepa |
| Com | \& | onia has H bonding (but PH_{3} does not) |
| :--- |
| phine has induced dipole(-induced dipole) / |
| rsion/ London/ van der Waals |
| RE dipole-dipole |
| ogen bonding stronger so more energy/heat needed (to ate ammonia molecules) |
| parison mark only if two forces correctly identified. | \& | (1) |
| :--- |
| (1) |
| (1) | \& (3 marks)

\hline \& (d) \& (i) \& lone pair on \mathbf{N} forms dative / co-ordinate bond with \mathbf{H}^{+} \& $$
\begin{aligned}
& \text { (1) } \\
& \text { (1) }
\end{aligned}
$$ \& (2 marks)

\hline \& \& (ii) \& \[
$$
\begin{aligned}
& p=11 \\
& e=10
\end{aligned}
$$

\] \& | (1) |
| :--- |
| (1) | \& (2 marks)

\hline \& \& \& \& \& al 13 marks

\hline
\end{tabular}

3	(a)	(i)	```moles \(\mathrm{Na}=92 / 23=4=\) moles NaCl mass \(\mathrm{NaCl}=4 \times 58.5=234(\mathrm{~g})\) Penalise use of atomic numbers once Incorrect answer scores (1) only if moles (NaCl) mentioned OR \(23 \mathrm{~g} \mathrm{Na}=58.5 \mathrm{~g} \mathrm{NaCl}\) (1) Mass \(\mathrm{NaCl}=\frac{92 \times 58.5}{23}=234(\mathrm{~g})(1)\)```	$\begin{aligned} & \hline(1) \\ & (1) \end{aligned}$	(2 marks)
		(ii)	$\begin{aligned} & \frac{4}{10}=0.40 \mathrm{~mol} \mathrm{dm}^{-3} \quad \text { OR } \frac{234}{10}=23.4 \mathbf{g ~ d m}^{-3} \\ & \text { consequential on (a)(i) } \\ & \text { units required } \end{aligned}$		(1 mark)
		(iii)	```moles chlorine \(=2\) \(\mathrm{vol}=2 \times 24=48\left(\mathrm{dm}^{3}\right)\) Consequential on (a)(i) Correct answer (some working) (2) Correct answer (no working) (1) Incorrect answer scores (1) only if moles of \(\mathrm{Cl}_{2}\) mentioned```	$\begin{aligned} & \hline \text { (1) } \\ & \text { (1) } \end{aligned}$	(2 marks)
	(b)	Reg in AL ele an NO	lar pattern or lattice of (sodium) ions sea of electrons / delocalised electrons WW "cloud of electrons" trons are mobile / free to move (under an applied potential so conduct electricity) 'free' on its own or carry the charge	(1) (1) (1)	(3 marks)
	(c)	$\begin{aligned} & \mathrm{NaCl} \\ & \mathrm{ALLC} \\ & \\ & \mathrm{Cl}_{2}: \\ & \text { Lond } \\ & \mathrm{NOT} \\ & \\ & \text { Ionic } \\ & \text { (allo } \\ & 3^{\text {rd }} \mathrm{m} \end{aligned}$: attraction between (oppositely charged) ions OW ionic bonds intermolecular forces/ dispersion / van der Waals / don/ induced dipole(-induced dipole) dipole-dipole bonds stronger than intermolecular forces so more energy w heat) needed (to separate particles) mark dependent on correctly identifying the two forces	(1) (1) (1)	(3 marks)

	(d)	(i)	Energy (allow enthalpy) required per mole to remove 1 electron (per atom) from gaseous atoms OR $X(g) \rightarrow \mathrm{X}^{+}(\mathrm{g})+\mathrm{e}$ Species (1) State symbols (1) - only on correct equation Electron affinity defined (0)	(1) (1) (1)	
	(ii)chlorine has more protons / nucleus more positive Same shielding / same number of inner electrons/ atomic radius less ALLOW outer electron(s) in same shell (so more energy required) OR effective nuclear charge increases (1)	(1) marks)			

4	(a)	Substance which accepts/ gains electrons (from another species) / which removes electrons			(1 mark)
	(b)	(i)	Fluorine/ F_{2} ACCEPT Flourine / Flurine / Florine NOT F or Fl_{2}		(1 mark)
		(ii)	Chlorine/ Cl_{2} NOT Cl		(1 mark)
		(iii)	(Red/ brown/ orange (or combination) and/ or volatile) liquid		(1 mark)
	(c)	Red/ brown / orange or combinations of these colours NOT yellow or any other colours Steamy/ misty (fumes) NOT white If incorrect product linked to observation (0)			(1 mark)
	(d)	$\begin{aligned} & \hline+1 / 1+/+1 / \mathrm{l} / \mathrm{l} \\ & +5 / 5+/+\mathrm{V} / \mathrm{V}+/ \mathrm{V} \\ & "+\text { " can be sub or superscript } \end{aligned}$		(1) (1)	(2 marks)
	(e)	$2 \mathrm{OH}^{-}+\mathrm{Cl}_{2} \rightarrow \mathrm{Cl}^{-}+\mathrm{OCl}^{-}+\mathrm{H}_{2} \mathrm{O}$ OR $6 \mathrm{OH}^{-}+3 \mathrm{Cl}_{2} \rightarrow 5 \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$ Chlorine species ie $\mathrm{Cl}_{2}, \mathrm{Cl}^{-}, \mathrm{OCl}^{-}$or $\mathrm{Cl}_{2}, \mathrm{Cl}^{-}, \mathrm{ClO}_{3}^{-}$(1) ALLOW Cl $2, \mathrm{NaCl}, \mathrm{NaOCl} / \mathrm{NaClO}_{3}$ Balancing (1) Correct ionic equation only, spectator ions (0) Explanation in terms of oxidation number e.g. chlorine (allow $\mathrm{Cl}_{2} / \mathrm{Cl}$) is oxidised 0 to +1 (1) and is reduced from 0 to -1 (1) ALLOW If chlorine "goes" from 0 to +1 and 0 to -1 (1 out of 2) Consequential on the disproportionation equation			(4 marks)
	(f)	(i)	$\begin{aligned} & \mathrm{Cl}(\mathrm{~g})+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}(\mathrm{g}) \\ & \text { species (1) } \\ & \text { state symbols (1) - only for correct equation and } \\ & \mathrm{X}(\mathrm{~g})+\mathrm{e}^{-} \rightarrow \mathrm{X}^{-}(\mathrm{g}) \max \mathbf{1} \end{aligned}$		(2 marks)
		(ii)	(ion and electron) both negatively charged OR electron added to a negative ion (energy required to overcome) repulsion	(1) (1)	(2 marks)
				Total 15 marks	

5	(a)	(i)	(1s $\left.s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$		(1 mark)
		(ii)	$3^{\text {rd }}$ IE roughly in line with first two in third row (including lines) $4^{\text {th }}$ IE well above this line \geq difference between $2^{\text {nd }}$ and $3^{\text {rd }}+$ two squares	(1) (1)	(2 marks)
	(b)	(i)	$\mathrm{Al} \rightarrow \mathrm{Al}^{3+}+3 \mathrm{e}^{-}$ OR - $3 \mathrm{e}^{-}$on LHS ALLOW multiples IGNORE state symbols		(1 mark)
		(ii)	$\mathrm{O}_{2}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{O}^{2-}\left(\mathrm{NOT} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{O}^{2-}\right)\left(\mathrm{NOT}_{2} \rightarrow 2 \mathrm{O}^{2-}-4 \mathrm{e}^{-}\right)$ ALLOW multiples IGNORE state symbols		(1 mark)
		(iii)	$4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3} \quad$ ALLOW multiples Stand alone NOT consequential on bi and ii NOT $4 \mathrm{Al}^{3+}+60^{2-}$		(1 mark)
				Total 6 marks	
			TOTAL FOR PAPER: 60 MARKS		

