

GCE

Edexcel GCE Chemistry (8080, 9080) 6246/02

Summer 2005

advancing learning, changing lives

Mark Scheme (Results)

Edexcel GCE Chemistry (8080, 9080)

Section A

1.	(a)	(i)	Points plotted correctly	(1)	
			Curve drawn	(1)	(2 marks)
		(ii)	Tangent drawn and at correct place	(1)	
			Calculation of Δy and Δx	(1)	
			$\Delta y \div \Delta x$ to give slope <i>(ignore sign of slope)</i>	(1)	
			Accuracy of answer: accept anything between 0.01 and 0.02	(1)	(4 marks)
	(b)	(i)	Rate = slope (or more accurately rate = - slope)		
			0.060 ÷ their slope (= 4 approximately)	(1)	
			so, when the concentration halves, the rate goes down by a factor of 4,	(1)	
		(ii)	so the reaction is second order (standalone mark) Any two of	(1)	(3 marks)
			I Rate = $k [S_2O_8^{2-}] [H_3AsO_3]$ II Rate = $k [S_2O_8^{2-}]^2$ III Rate = $k [H_3AsO_3]^2$	(2)	
			[Only penalise the omission of k or wrong type of [] once. Rate equations must be marked consequentially on their order in (i)]		
			Repeat experiment using double / different initial $[S_2O_8^{2-}]$ / initial $[H_3AsO_3]$, [H_3AsO_3], but keeping the [other] unchanged	(1) (1)	
			<i>E.g. Any one of the following, as applicable to their two chosen rate equations</i>		
			If initial rate doubles rate equation I is correct If initial rate quadruples with doubling $[S_2O_8^{2^-}]$, rate equation II is correct If initial rate does not alter with doubling/ changing $[S_2O_8^{2^-}]$, rate equation III is correct. If initial rate quadruples with doubling $[H_3AsO_3]$, rate equation III is correct If initial rate does not alter with doubling / changing $[H_2AsO_3]$, rate		
			equation II is correct.	(1)	(5 marks)
					Total 14 marks

SECTION B

2.	(a)	 (i) Step 1 hydrogen bromide / HBr / concentrated hydrobromic acid/KBr + concentrated H₂SO₄ 		(1)	
			Step 2 sodium/potassium hydroxide / NaOH / KOH	(1)	
			then any acid OR its formula OR H ⁺	(1)	
			Step 3 (potassium) (di)chromate((VI)) and sulphuric acid/acidified <i>OR</i> their formulae / Tollens' / Fehling's / Benedict's / acidified (potassium) manganate(VII)	(1)	(4 marks)
		(ii)			
			$\begin{array}{cccc} H & H_{3}C & C \\ H & COOH & H & H \end{array}$	(1)	
			Not enough energy/heat to break (and cause rotation) the (π / double) bond	(1)	(2 marks)
	(b)	(i)	CH₃CH(OH)CH(OH)COO ⁻ <i>OR structural formula drawn.</i> <i>ALLOW acid</i>		(1 mark)
		(ii)	CH ₃ C(OH)(CN)CH ₂ COOH <i>OR structural formula drawn</i>		(1 mark)
	(c)	(i)	$H_3C - C - CH_2 - C O - O - O - O - O - O - O - O - O -$		(1 mark)
0		(ii)	The acid is partially ionised <i>OR</i> equation HX (+H ₂ O) H ⁺ (H ₃ O ⁺) + X ⁻	(1)	
U W C			The salt is totally ionised <i>OR</i> equation NaX \rightarrow Na ⁺ + X ⁻	(1)	
			When OH ⁻ ions are added they react with the large reservoir of HX molecules	(1)	
			$OH^{-} + HX \rightarrow H_{2}O + X^{-}$ (or words), thus removing the added OH^{-} ions	(1)	
			Alternative 3rd and 4 th marks:	(1)	
			Causing further ionisation of large reservoir of HX	(1) (1)	(4 marks)

(iii)	$\begin{array}{ll} \mathcal{K}_{a} = \underbrace{[H^{\pm}] \ x \ [salt]}_{[weak \ acid]} & \text{or} \ \ [H^{+}] = \underbrace{\mathcal{K}_{a} \ x \ [weak \ acid]}_{[salt]} & \text{or} \ \ \mathcal{K}_{a} = \underbrace{[H^{\pm}] \ [X^{-}]}_{[HX]} \\ \end{array}$	(1)
	$[H^+] = 10^{-pH} = 10^{-3.80} = 1.58 \times 10^{-4} \text{ (mol dm}^{-3}\text{)}$	(1)
	[salt] = $K_a x$ [weak acid] ÷ [H ⁺] = 2.63 x 10 ⁻⁴ x 0.500 ÷ 1.58 x 10 ⁻⁴ = 0.832 / 0.830 (mol dm ⁻³)	(1)
	mass of salt in 1000 cm ³ = 0.832(or 0.830) mol dm ⁻³ x 124 g mol ⁻¹ = 103 (g)	(1)
	mass of salt needed to be added to $100 \text{ cm}^3 = 10.3 \text{ (g)}$	(1)
	$\begin{array}{l} OR \\ pH = pK_a + \log \underline{[salt]} \\ [weak acid] \end{array} or pH = pK_a - \log \underline{[weak acid]} \\ [salt] \end{array}$	(1)
	$pK_a = -\log 2.63 \times 10^{-4} = 3.58$	(1)
	log [salt]/[weak acid] = pH - pK _a = 3.80 - 3.58 = 0.22 [salt]/[weak acid] = 10 ^{0.22} = 1.66 [salt] = 1.66 x 0.500 = 0.830 (mol dm ⁻³)	(1)
	mass of salt in 1 dm ³ = 0.830mol dm ⁻³ x 124 g mol ⁻¹ = 103 (g)	(1)
	mass of salt in 100 $cm^3 = 10.3$ (g)	(1) (5 marks)
		Total 18 marks

$K_{c} = [\underline{ester \ or \ its \ formula] \ x \ [H_{2}O]^{2}} [HOCH_{2}CH_{2}OH] \ x \ [CH_{3}COOH]^{2}$	(1)	(1)		
both molar masses	(1)			
$HOCH_2CH_2OH$ + 2CH ₃ COOH = Ester + 2H ₂ O				
Moles at start 24.8/62 = 0.400 66.0/60 = 1.10	(1)			
Moles at equilibrium0.400 - 0.320 = 0.0801.10 - 0.640 = 0.4600.3200.640	(1)			
Concentration at equilibrium divide above by 0.0900 dm^3 $0.080/0.0900 = 0.889$ 5.11 3.56 7.11 OR explain why volume cancels in this case	(1)			
$K_{\rm c} = \frac{(3.56) \times (7.11)^2}{(0.889) \times (5.11)^2} = \frac{180}{23.2}$				
= 7.76 / 7.8 / 7.74 etc.	(1)			
There are no units for K	(1)	(7 marks)		
Amount of ethan-1,2-diol = $1054/62 = 17 \text{ mol}$ Amount of ethene = $\frac{560}{28} = 20 \text{ mol}$ or $\frac{1054 \text{ x}}{1240} \times 100$	(1)			
Yield = 17 x 100 ÷ 20 = 85%	(1)	(2 marks)		
(i) Any acid with two COOH groups or its acid dichloride or its dimethyl ester	(1)			
Accept HOOCCOOH				
$ \begin{array}{c} \hline C \\ -R \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \hline C \\ -C \\ 0 \\ -C \\ -C \\ -C \\ -C \\ -C \\ -$				
for correct ester linkage drawn out	(1)			
for remainder with continuation	(1)	(3 marks)		
(ii) No, because the acid would hydrolyse / is a catalyst for the hydrolysis of the ester.	j.			
Ок Yes, not hydrolysed at low temperature / only hydrolysed at high temperature		(1 mark)		
	$K_{c} = \frac{[\text{ester or its formula]} \times [\text{H}_{2}\text{OI}]^{2}}{[\text{HOCH}_{2}\text{CH}_{2}\text{OH}] \times [\text{CH}_{3}\text{COOH}]^{2}}$ both molar masses $HOCH_{2}\text{CH}_{2}\text{OH} + 2\text{CH}_{3}\text{COOH} = \text{Ester} + 2\text{H}_{2}\text{O}$ Moles at start $24.8/62 = 0.400 66.0/60 = 1.10$ Moles at equilibrium $0.400 - 0.320 = 0.080 1.10 - 0.640 = 0.460 0.320 0.640$ Concentration at equilibrium divide above by 0.0900 dm ³ $0.080/0.0900 = 0.889 5.11 3.56 7.11$ OR explain why volume cancels in this case $K_{c} = (3.56) \times (7.11)^{2} = 180$ $(0.889) \times (5.11)^{2} = 23.2$ $= 7.76 / 7.8 / 7.74 \text{ etc.}$ There are no units for K Amount of ethan-1,2-diol = 1054/62 = 17 mol Amount of ethane = $\frac{560}{28} = 20 \text{ mol}$ $Tilde = 17 \times 100 \div 20 = 85\%$ (i) Any acid with two COOH groups or its acid dichloride or its dimethyl ester $Accept HOOCCOOH$ $\left(-\frac{C}{O} - \frac{C}{O} - \frac{C}{H_{2}} - \frac{O}{-} \right)$ $(Where R = the hydrocarbon part of their diacid).$ for correct ester linkage drawn out for remainder with continuation (ii) No, because the acid would hydrolyse / is a catalyst for the hydrolysis of the ester. OR $Yes, not hydrolysed at low temperature / only hydrolysed at high temperature$	$K_{c} = \frac{[\text{ester or its formula] x [H_{2}0]^{2}}{[\text{HOCH}_{2}\text{CH}_{3}\text{OOH}]^{2}}$ (1) both molar masses (1) HOCH ₂ CH ₂ OH + 2CH ₃ COOH = Ester + 2H ₂ O Moles at start 24.8/62 = 0.400 66.0/60 = 1.10 (1) Moles at equilibrium 0.400 - 0.320 = 0.080 1.10 - 0.640 = 0.460 0.320 0.640 (1) Concentration at equilibrium divide above by 0.0900 dm ³ 0.080/0.0900 = 0.889 5.11 3.56 7.11 OR explain why volume cancels in this case $K_{c} = \frac{(3.56) \times (7.11)^{2}}{(0.889) \times (5.11)^{2}} = \frac{180}{23.2}$ = 7.76 / 7.8 / 7.74 etc. (1) There are no units for K (1) Amount of ethan-1,2-diol = 1054/62 = 17 mol Amount of ethan-1,2-diol = 1054/62 = 17 mol Amount of ethene = <u>560</u> = 20 mol or <u>1054 \times 100</u> (1) 28 (1) Yield = 17 x 100 + 20 = 85% (1) (1) (1) Any acid with two COOH groups or its acid dichloride or its dimethyl ester (1) Accept HOOCCOOH $\left(\bigcup_{i=0}^{i=0} \bigcup_{i=0}^{i=0} \bigcup_{i=0}^{i=0} (1)$ (Where R = the hydrocarbon part of their diacid). for correct ester linkage drawn out for remainder with continuation (1) (i) No, because the acid would hydrolyse / is a catalyst for the hydrolysis of the ester. OR Yes, not hydrolysed at low temperature / only hydrolysed at high temperature		

	(d)	The ester cannot form (intermolecular) hydrogen bonds but the acid can	(1)	
Q W C		The ester does not have a δ +hydrogen atom OR the acid has δ +hydrogen / polar OH / O and H have a large difference in electronegativities	(1)	
		thus less energy / heat is required to separate molecules of the ester	(1)	
		but as ethanoic acid has fewer electrons than propanoic acid,	(1)	
		it has weaker intermolecular instantaneous induced dipole/ induced dipole forces / van der Waals / dispersion / London forces	(1)	
		Allow vdW		(5 marks)
				Total 18 marks

4. (a) (i)

Q W C

$$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

(c)	The three gases are:		
	hydrogen bromide bromine sulphur dioxide	} OR formulae	(1) (1) (1)
	•		• •

The hydrogen chloride / CaCl2 / chloride evolved is not a strong enoughreducing agent to reduce / cannot reduce the concentrated sulphuric acid (orsulphuric not a strong enough oxidising agent to ...)(1) (4 marks)

Total 18 marks TOTAL FOR PAPER: 50 MARKS