GCE
Edexcel GCE
Chemistry (8080, 9080)
6245/ 01

Summer 2005

Mark Scheme (Results)

1 (a) (i)

Skeleton (1)
NOT $\mathrm{C}_{3} \mathrm{H}_{7}$
NOT just R for side chain unless specify $\mathrm{R}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$
Brackets are not essential

Extension (1) - conditional on first mark $\mathrm{OR}_{3} \mathrm{H}_{7} / \mathrm{R}$

ROOR \rightarrow 2RO*

```
\(\mathrm{ROCH}\left(\mathrm{CH}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{CH}_{2}^{*}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \rightarrow\) \(\mathrm{ROCH}\left(\mathrm{CH}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{CH}_{2}{ }^{-}\)
```

Second propagation step consequential on first step
ALLOW $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OR} \mathrm{CH}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$
ALLOW any representation of the alkene eg $\mathrm{RCH}=\mathrm{CH}_{2}$
A correct use of single headed curly arrow
IGNORE additional incorrect arrows
IGNORE termination steps
(b) (i)

(1) for both arrows
(1) for structure of intermediate

(1) Arrow

Lone pair not essential, but if it is shown the arrow must start from it ALLOW arrow from negative charge
ALLOW arrow to +if written below the C
ALLOW $\mathrm{C}_{3} \mathrm{H}_{7} / \mathrm{R}$
If ethene is used MAX $\mathbf{2}$ for curly arrows
(ii) Structures of the $\mathbf{2}$ intermediate carbocations / intermediate cation giving 2bromopentane is secondary and primary for 1-bromopentane
(1)

Secondary cation is more stable than primary CONDITIONAL on reference to cations (1)
(c) (i) Sample in polarimeter / use of crossed polaroids / pass polarised light through sample (1)

Rotates the plane of (polarisation of plane)-polarised (monochromatic) light (1)

NOT deflection
NOT reflection
(ii) intermediate (carbocation) planar (1)
equal (probability of) attack from either side (1)
(leads to) racemic/ 50:50 / equimolar mixture (1) - stand alone

2 (a) (i) $\frac{\mathrm{Fe} \quad[\mathrm{Ar}]}{3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}}$
or $3 \mathrm{~d}_{6} 4 \mathrm{~s}_{2}$
or 3d64s2
or $4 s^{2} 3 d^{6}$ (1)
$\frac{\mathrm{Fe}^{2+}}{3 \mathrm{~d}^{6}}[\mathrm{Ar}]$
or $3 \mathrm{~d}_{6}$
or $3 d^{6} 4 s^{0}(\mathbf{1})$
Letter d must be lower case
Any additional letters or numbers (0)
(ii) The mark is for the shape

OR

OR

Instead of dotted line
ALLOW bond to H of $\mathrm{H}_{2} \mathrm{O}$ (except on left side if OH_{2} is given) IGNORE charge unless incorrect
(iii) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]+2 \mathrm{H}_{2} \mathrm{O}$

OR
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O}$
OR equations with 2 NaOH as reactant and $2 \mathrm{Na}^{+}$as product
IGNORE state symbols
(iv) Green precipitate/ solid \rightarrow foxy-red / red-brown/ brown/ orange Both colours and precipitate/ solid needed NOT darkens
(v) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow / \rightleftharpoons 2 \mathrm{NH}_{3}$

ALLOW ${ }^{\ominus}+\mathrm{Br}_{2} \rightarrow{ }^{-8 r}+\mathrm{HBr} \quad$ OR equation with Cl_{2}
(b) (i) Emf of cell / potential difference of cell containing Fe^{2+} and Fe (1)
and standard hydrogen electrode/ half cell NOT 'SHE' OR hydrogen electrode and $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{H}^{+}$and 1 atm H_{2}
$1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Fe}^{2+}$
(1)

IGNORE temperature

QWC * (ii) Emf of hydrogen electrode is zero - stated or implied (e.g. if calculate $\mathrm{E}_{\text {cell }}=$ +0. 44 (V))
(1)
$\mathrm{Fe}+2 \mathrm{H}^{+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{H}_{2}(\mathbf{1})$ - equation stand alone
Potential for the reaction is positive so reaction is feasible (1)
OR
H^{+}and $(1 / 2) \mathrm{H}_{2}$ has a more + +ve electrode potential than Fe^{2+} and Fe (1)
H^{+}will oxidise $\mathrm{Fe} / \mathrm{H}^{+}$is an oxidising agent / Fe is a reducing agent for H^{+}/ other correct redox statement (1)
$\mathrm{Fe}+2 \mathrm{H}^{+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{H}_{2}(\mathbf{1})$ - stand alone
(iii) High E_{a} so slow reaction / reactants are kinetically stable IGNORE any mention of non-standard conditions
(c) $2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2}$ or words $\mathrm{E}^{0}=(+) \mathbf{0 . 2 3} \mathrm{V}$ (1)

So I^{-}would reduce $\mathrm{Fe}^{3+} / \mathrm{Fe}^{3+}$ would oxidise $\mathrm{I}^{-} / \mathrm{E}^{0}$ positive so reaction $L \rightarrow R(1)$

OR reverse argument (2)
OR
Fe^{3+} and Fe^{2+} has a more positive electrode potential than I_{2} and I^{-}(1) I^{-}will reduce $\mathrm{Fe}^{3+} / \mathrm{Fe}^{3+}$ will oxidise I^{-}(1)

ALLOW correct names or formulae. If both given, both must be correct. Condition marks are dependent on correct or nearly correct reagents

3 (a) (i) aluminium chloride/ $\mathrm{AlCl}_{3} / \mathrm{Al}_{2} \mathrm{Cl}_{6} /$ iron(III) chloride/ FeCl_{3} OR the equivalent bromides
(ii) First step

Potassium dichromate +sulphuric acid
OR acidified dichromate
OR H ${ }^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{--}$
OR (potassium) manganate(VII)/ permanganate +acid/ alkali/ neutral (1)
heat / reflux (1)
Intermediate: $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ (1)
Second step
$\mathrm{PCl}_{5} / \mathrm{PCl}_{3} / \mathrm{SOCl}_{2}$ (1)
(4 marks)
(b) (i) $\mathrm{LiAlH}_{4}(\mathbf{1})$
dry ether / ethoxyethane (followed by hydrolysis). (1)
OR
NaBH_{4} (1)
aqueous ethanol/ water (1)
OR
$\mathrm{Na}(1)$
ethanol (1)
OR
H_{2} (1)
Pt OR Nitheat OR Ni + specified temperature (1)
(ii) $\mathrm{KMnO}_{4}(\mathbf{1})$
sodium hydroxide / alkali (1) ALLOW KOH
Heat (1)

OR
$\mathrm{I}_{2}(1)$
NaOH (1)
warm (1)
(c) (i) A spectrum shows bond due to $\mathrm{C}=0$ at $1680-1700\left(\mathrm{~cm}^{-1}\right)$Can be given as a range or number within this rangeNOT 1750
NOT 1680-1750

QWC

*

B spectrum shows bond due to OH at $3230-3550\left(\mathrm{~cm}^{-1}\right)$
(1)
A has no $\mathrm{OH} / \mathrm{no}$ bond at 3230-3550
OR B has no $\mathrm{C}=0$ bond / no bond at 1680-1700
(1)
Can be given as a range or number within this range
ALLOW 1750 if already penalised in first marking point
(3 marks)
(ii) IR spectra due to bonds present (1)
Same bonds/ functional groups in both isomers (1)
(2 marks)
(d) (i) Iodine/ $\mathrm{I}_{2} /$ sodium iodate(I) / $\mathrm{NaOI} / \mathrm{NaIO} /$ iodate(I)/ $\mathrm{Ol}^{-} / \mathrm{IO}^{-}$
(ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}+3 \mathrm{I}_{2}+4 \mathrm{OH}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{CHI}_{3}+3 \mathrm{I}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
OR
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}+3 \mathrm{I}_{2}+4 \mathrm{NaOH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}+\mathrm{CHI}_{3}+3 \mathrm{NaI}+3 \mathrm{H}_{2} \mathrm{O}$
CHI_{3} on $\mathrm{RHS}(1)$
NOT CH3I
All remaining species correct (1)
Balance (1) - dependent on $2^{\text {nd }}$ mark
(iii) (Hydrolyse with) $\mathrm{NaOH} /$ alkali (1)
acidify / neutralise with $\mathrm{HNO}_{3} /$ excess HNO_{3} (1)
NOT just "add"
add silver nitrate (solution) (1)
yellow ppt (1)
If no hydrolysis $\mathbf{1}$ max for last 3 points correct

4 (a) (i) sum of the powers to which the concentration (terms) are raised in the rate equation / number of species involved up to and including the rate determining step (in the reaction mechanism)

OR
General equation with sum of partial orders explained
(ii) constant (of proportionality) in the rate equation / numerically $=$ rate when all concs $1 \mathrm{~mol} \mathrm{dm}^{-3} /$ correct example
(1 mark)
(b) (i) Both orders 1 (1)

Double concentration of one while other is constant and the rate doubles OR refer to two specific experiments (1)
(ii) rate $=\mathrm{k}\left[\mathrm{CH}_{3}\right]\left[\mathrm{OH}^{-}\right]$ consequential on (i)
(iii) e.g. $k=$ rate/ $\left.\left[\mathrm{CH}_{3}\right]\right]\left[\mathrm{OH}^{-}\right]$
so $\mathrm{k}=1(.0) \times 10^{-3} \mathbf{(1)} \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1} \mathbf{(1)}$
Consequential on (ii)
(c) (i) IGNORE shape and position of bonds

DO NOT ALLOW OHㅋ..C

Arrow from bond to Br must be in first step
Lone pair not essential, but if it is shown the arrow must start from it.
ALLOW arrow from negative charge
Max 1 for completely correct $S_{N} 1$ mechanism
(ii)

Energy labelled and levels of reactants and products (1) If double hump can get $\mathbf{1}$ (out of $\mathbf{2}$) for levels

5 (a) (i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-} \mathrm{Na}^{+} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}$ Do not allow covalent $\mathrm{O}-\mathrm{Na}$
(ii)

No other
Isomer
allowed

IGNORE bond to H of OH
(iii)

No ring substitution allowed
(b) (i) NaNO_{2} / sodium nitrite / nitrate(III)
conc aq / dil $\mathrm{HCl} /$ hydrochloric acid NOT HCl

Any temperature between $0-10^{\circ} \mathrm{C}$ OR range between $0-10^{\circ} \mathrm{C}$
NOT "less than $10^{\circ} \mathrm{C}$ "
IGNORE everything before phenylamine eg starting from benzene Conditions are dependent on correct or nearly correct reagents
(ii)

Correct diazonium ion (1) if $-{ }^{+} \mathrm{N} \equiv \mathrm{N}$ the + must be on correct N
Correct equation (1)
IGNORE position of OH group
Can include Cl^{-}if equation is balanced
ALLOW $+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} \rightarrow \ldots \ldots . . .+\mathrm{H}^{+}$
(iii) Alkaline/ alkali/ sodium hydroxide/ $\mathrm{NaOH} / \mathrm{KOH} /$ potassium hydroxide/ sodium carbonate/ sodium hydrogencarbonate IGNORE temperature

Total 9 marks
TOTAL FOR PAPER: 75 MARKS

