GCE
Edexcel GCE
Chemistry (8080, 9080)
6244/ 01

Summer 2005

Mark Scheme (Results)

IGNORE state symbols in all equations

1. (a) (i) (Magnesium oxide is) ionic / electrovalent
(Sulphur dioxide is) covalent NOT giant / dative
(ii) $\mathrm{MgO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}$

OR
$\mathrm{MgO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{OH}^{-}$
Contains/produces OH^{-}ions
This mark is dependent on an OH in the product of the equation
$\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$
OR
$\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{3}^{-}$
OR
$\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{HSO}_{3}^{-}$
OR
$\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{3}{ }^{2-}$
Contains/produces $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$
If $\mathrm{H}_{2} \mathrm{SO}_{4}$ formed in equation, can score last mark
QWC* (iii) (Silicon dioxide) giant covalent/ giant atomic/ giant molecular/
macromolecular
Strong/ covalent bonds (have to be) broken (for reaction)
Reference to $\mathrm{Si}=0$ or van der Waals' forces scores (0) for this mark
(so reactants are) kinetically stable / activation energy too high (for reaction) / not enough energy released in bond formation to overcome energy required in bond breaking
IGNORE any references to reaction mechanism
(1)
$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \rightarrow / \rightleftharpoons\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+}$
ACCEPT one more deprotonation of aluminium ions i.e. $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]^{+}$
(ii) $\mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl}$

ACCEPT products $\mathrm{SiO}_{2} \cdot \mathrm{xH}_{2} \mathrm{O} / \mathrm{Si}(\mathrm{OH})_{4}$ in a balanced equation
(c) (i) (The trend is) increasing stability of the +2 state relative to the +4 state (or instability of +4 etc)
i.e. answer must be a comparison of oxidation states
(1 mark)
(ii) (Tin(II) chloride will) reduce / be oxidised to Sn (IV)
(Fe^{3+} goes) to Fe^{2+}
Correct equation e.g. $2 \mathrm{Fe}^{3+}+\mathrm{Sn}^{2+} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{Sn}^{4+}$ scores both marks i.e. species (1) balancing (1).
Do NOT penalise an unbalanced equation if $1^{\text {st }}$ two marks are awarded
(Lead(II) chloride has) no reaction
2. (a) (i) (The first electron affinity) is the energy/ enthalpy/ heat change when 1 electron is added to each atom in 1 mole

- must not imply endothermic process e.g. "energy required"
of gaseous atoms
OR
energy change per mole (1)
(for) $A(\mathrm{~g})+\mathrm{e}^{-} \rightarrow \mathrm{A}^{-}$(g) (1)
(ii) Correct labelling of $\mathrm{Ca}(\mathrm{s})$ to $\mathrm{Ca}^{2+}(\mathrm{g})(+193,+590,+1150)$
(1)

Correct labelling of $\mathrm{I}_{2}(\mathrm{~s})$ to $\mathrm{2l}^{-}(\mathrm{g})(+214,2 \times \mathrm{EA})$
Correct labelling of lattice energy and $\Delta \mathrm{H}_{\mathrm{f}}$ of $\mathrm{Cal}_{2}(\mathrm{~s})(-2074,-534)$
Labelling can be done with symbols, words or numbers
(iii) Mark consequentially on their labels in (ii)
$\Delta H_{f}=\Delta H_{a}$ of calcium $+1^{\text {st }}$ IE calcium $+2^{\text {nd }}$ IE calcium $+2 x \Delta H_{a}$ iodine $+2 x$ $E A \mathrm{I}(\mathrm{g})+\mathrm{LECal}(\mathrm{s})$
OR
$-534=+193+590+1150+2 \times 107+2 \times$ EA $+(-2074)$
OR
$E A=1 / 2(2074-534-193-590-1150-214)$

$$
=-303.5 /-304\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
$$

Other possible answers:
One EA and +107 on cycle gives $E A=-500(2)$
One EA and +214 on cycle, but 2EA shown in working gives
$E A=-303.5 /-304(2)$
One EA and +214 on cycle but EA shown in working gives
EA $=-607$ (1)
(b) (i) Potassium ion / K K^{+}larger than Ca^{2+}(1)Must not refer to atoms
QWC* K^{+}smaller charge than Ca^{2+}
Must not refer to atoms, but CAN say "potassium" has a smaller charge (than "calcium")(1)Charge density of K^{+}is less than charge density for Ca^{2+} without explanationis worth (1) out of these $1^{\text {st }}$ two marks
(1)
Less attraction between (K^{+}and I^{-}) ionsNOT just "weaker bonds"
ACCEPT reverse argumentIGNORE references to extent of covalency
(ii) Potassium ion $/ \mathrm{K}^{+}$less polarising (than Ca^{2+})
(1)KI (close to) 100 \% ionic / no covalent character(1)
Cal_{2} partially/ significantly covalent
ORCorrect description of anion polarisation in Cal_{2}NOT just 'distortion' of anion
(1) (3 marks)
Total 13 marks
3. (a) Ethylmagnesium bromide or formula, or any other halide NOT $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BrMg}$, Dry ether/ ethoxyethane
Followed by hydrolysis/ acid/ water
Grignard reagent/ named reagent with incorrect alkyl group scores (0) for reagent but can score both condition marks.
If halogenoalkane given as reagent, can score $1^{\text {st }}$ mark if Mg included under conditions.
(b) (i) Observation
effervescence/ bubbles/ fizzing
NOT gas evolved

$$
2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

(ii) Observation
steamy/ misty/ white fumes
(1) (2 marks)

NOT smoke
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{PCl}_{5} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COCl}+\mathrm{POCl}_{3}+\mathrm{HCl}$
(1) (2 marks)
(c) Reagents potassium dichromate ((VI)) / $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$,
sulphuric acid/ $\mathrm{H}_{2} \mathrm{SO}_{4}$ / hydrochloric acid/ HCl but conseq. on an oxidising agent
ALLOW acidified potassium dichromate / H^{+}and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ (2)
ALLOW acidified dichromate ions (2)
Acidified dichromate (without ion) scores just (1)
ACCEPT
Potassium manganate(VII) / potassium permanganate/ KMnO_{4} / Tollens’ * /
Fehling's* (1)
Acidified /alkaline*/neutral (1)

* need to acidify to liberate free acid for $2^{\text {nd }}$ mark
(d) (i)

Reagent	
(any one of)	
(to match)	
HCN	
and KCN	
HCN or KCN	
(buffered between) pH between 6 and 9	
KCN	+ acid $/ \mathrm{H}^{+}$NOT excess HCN
	+ base $/ \mathrm{OH}^{-}$NOT excess

Type of reaction

Nucleophilic addition - both words needed
(1) (3 marks)
(ii) Reagent
(any one of)
Hydrogen
Condition

Sodium
Pt / Ni / Pd (catalyst) - IGNORE ref to temp.
Lithium aluminium hydride
(in) ethanol
Sodium borohydride
dry ether/ ethoxyethane
(in) aqueous/ water/ ethanol/ methanol
Type of reaction
Reduction
ACCEPT redox / hydrogenation (not addition)
ACCEPT nucleophilic addition if metal hydrides used
(1) (3 marks)
(e) (i)

If $\mathrm{C}=\mathrm{O}$ represented as CO , penalise once only
(ii)
 $\mathrm{OR}-\mathrm{NH}_{3}^{+} \mathrm{Cl}^{-}$

OR

OR

$\mathrm{OR}-\mathrm{NH}_{3}{ }^{+}$

NOT

If show all bonds in NH_{3}, + charge must be shown on N atom ie

(f) Optical NOT stereo

ALLOW $-\mathrm{C}_{2} \mathrm{H}_{5}$ for $-\mathrm{CH}_{2} \mathrm{CH}_{3}$

MUST show the two as object and mirror image
e.g.

OR

are acceptable
but NOT

C must not be bonded to H in OH group
Near-miss molecule plus mirror image (1)
The two solid lines in 3D structure must not be at 180°
4. (a) (i) $\mathrm{K}_{\mathrm{p}}=\mathrm{p}\left(\mathrm{CO}_{2}\right)$ allow without brackets, IGNORE $\mathrm{p}[$]
(ii) 1.48 (atm)

Penalise wrong unit
Answer is consequential on (a)(i) e.g. $\frac{1}{1.48}$ must have atm $^{-1}$
(b) (i) $\mathrm{K}_{\mathrm{p}}=\mathrm{p}\left(\mathrm{Cl}_{2}\right) \times \mathrm{p}(\mathrm{NO})^{2}$ allow without brackets, penalise []
(ii)

Start	1	0	0
Δ	-0.22	+0.22	+0.11
eq moles	0.78	0.22	0.11

total moles of gas 1.11
mole fractions above values $\div 1.11$
0.7027
0.1982
0.09910
partial pressure / atm above values $\times 5.00$
3.51
0.991
0.495
$\mathrm{K}_{\mathrm{p}}=0.495 \mathrm{~atm} \times(0.991 \mathrm{~atm})^{2}$
$(3.51 \mathrm{~atm})^{2}$
$=0.0395 / 0.0394 \mathrm{~atm}$
range of answers $0.0408 / 0.041 \rightarrow 0.039 / 0.0392$ NOT 0.04
ACCEPT ≥ 2 S.F
Correct answer plus some recognisable working (5)
Marks are for processes

- Equilibrium moles
- Dividing by total moles
- Multiplying by total pressure
- Substituting equilibrium values into expression for K_{p}

Calculating the value of K_{p} with correct consequential unit.
(iii) As the reaction is endothermic - stand alone
the value of K_{p} will increase (as the temperature is increased) -
consequential on $1^{\text {st }}$ answer (if exothermic (0) then K_{p} decreases (1))
For effect on K_{p} mark, must have addressed whether reaction is endothermic or exothermic
(iv) Because (as the value of K_{p} goes up), the value of $\mathrm{pCl}_{2} \times(\mathrm{pNO})^{2} /(\mathrm{pNOCl})^{2}$ (the quotient) must also go up
and so the position of equilibrium moves to the right - stand al one
But mark consequentially on change in K in (iii)
If "position of equilibrium moves to right so K_{p} increases" (max 1)
IGNORE references to Le Chatelier's Principle
5. (a) $\mathrm{CH}_{3} \mathrm{COOH}$ labelled as base and linked to $\mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}$labelled (conjugate) acid If acids and bases correct but not clearly or correctly linked $\mathbf{1}$ (out of 2) J ust link but no identification of acids and bases (0)
(b) (i) (pH) more than 7/ 8-9

Indicator: phenolphthalein ALLOW thymolphthalein OR thymol blue (mark consequentially on pH)
Mark consequentially on pH but if pH 7 do not allow either methyl orange or phenolphthalein
QWC*
(ii) $\mathrm{As} \mathrm{OH}^{-}$/ base removes H^{+}ions / $\Delta \mathrm{H}_{\text {neut }}$ is per mole of $\mathrm{H}_{2} \mathrm{O}$ produced /
$\mathrm{H}^{+}+\mathrm{OH}^{-}=\mathrm{H}_{2} \mathrm{O}$
the equilibrium shifts to the right
and so all the ethanoic acid reacts (not just 1% of it)
OR
Endothermic (OH) bond breaking
is compensated for
by exothermic hydration of ions
OR
$\Delta \mathrm{H}$ for $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}=+2 \mathrm{~kJ} \mathrm{~mol}^{-1} /$ almost zero / very small
$\therefore \Delta \mathrm{H}_{\text {neut }}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=+2+\Delta \mathrm{H}_{\text {neut }}[\mathrm{HCl}]$
\approx the same (for both acids)
OR
$\Delta \mathrm{H}_{\text {neut }}$ is per mole of $\mathrm{H}_{2} \mathrm{O}$ produced
(heat) energy required for full dissociation (of weak acid)
(1)
so $\Delta H_{\text {neut }}$ slightly less exothermic (for weak acid)
)
$\mathrm{pH}=2.81$ consequential on $\left[\mathrm{H}^{+}\right]$but not $\mathrm{pH}>7$
(1)

ACCEPT 2.80/2.8 (answers to 1 or 2 dp)
The assumptions are two from:
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$- this mark can be earned from working /
negligible $\left[\mathrm{H}^{+}\right]$from ionisation of water (1)
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.140-\left[\mathrm{H}^{+}\right] \approx 0.140\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) /$ ionisation of acid negligible (1)
solution at $25^{\circ} \mathrm{C}$ (1)
(iv) $1.74 \times 10^{-5}=\frac{\left[\mathrm{H}^{ \pm}\right][\text {salt }]}{[\text { acid }]}$
$\left[\mathrm{H}^{+}\right]=1.74 \times 10^{-5} \times \frac{0.070}{0.100}=1.22 \times 10^{-5}$
(1)
$\mathrm{pH}=4.91 / 4.9 / 4.92$ NOT 5
Max 2 if $0.140 / 0.200$ is used

