

GCE

Edexcel GCE Chemistry (8080, 9080) 6244/01

Summer 2005

advancing learning, changing lives

Mark Scheme (Results)

Edexcel GCE Chemistry (8080, 9080)

IGNORE state symbols in all equations

1. (a	a)	(i)	(Magnesium oxide is) ionic / electrovalent	(1)	
		(ii)	(Sulphur dioxide is) covalent <i>NOT</i> giant / dative MgO + H ₂ O \rightarrow Mg(OH) ₂	(1)	(2 marks)
			$MgO + H_2O \rightarrow Mg^{2+} + 2OH^-$	(1)	
			Contains/produces OH ⁻ ions <i>This mark is dependent on an OH in the product of the equation</i>	(1)	
			$SO_2 + H_2O \rightarrow H_2SO_3$		
			$SO_2 + 2H_2O \rightarrow H_3O^+ + HSO_3^-$		
			$SO_2 + H_2O \rightarrow H^+ + HSO_3^-$		
			SO_2 + $H_2O \rightarrow 2H^+$ + SO_3^{2-}	(1)	
			Contains/produces H^+/H_3O^+	(1)	(4 marks)
QWC*		(iii)	(Silicon dioxide) giant covalent/ giant atomic/ giant molecular/	(1)	
			Strong (acyclent banda (baya ta ba) broken (far reaction)	(1)	
			Reference to Si=O or van der Waals' forces scores (0) for this mark		
			(so reactants are) kinetically stable / activation energy too high (for reaction) / not enough energy released in bond formation to overcome energy required in bond breaking	(1)	
			IGNORE any references to reaction mechanism		(3 marks)
(t))	(i)	$[Al(H_2O)_6]^{3+} + H_2O \rightarrow / \Rightarrow [Al(H_2O)_5OH]^{2+} + H_3O^+$ ACCEPT one more deprotonation of aluminium ions i.e. [AI(H_2O)_4(OH)_2]^+		(1 mark)
		(ii)	SiCl ₄ + 2H ₂ O \rightarrow SiO ₂ + 4HCl ACCEPT products SiO ₂ . xH ₂ O / Si(OH) ₄ in a balanced equation		(1 mark)
(0	:)	(i)	(The trend is) increasing stability of the +2 state relative to the +4 state (or instability of +4 etc)		
		(ii)	(Tin(II) chloride will) reduce / be oxidised to Sn(IV)	(1)	(1 mark)
			(Fe ^{$3+$} goes) to Fe ^{$2+$}	(1)	
			Correct equation e.g. $2Fe^{3+}+Sn^{2+} \rightarrow 2Fe^{2+}+Sn^{4+}$ scores both marks i.e. species (1) balancing (1).		
			(load(ll) chlorido bas) no reaction	(1)	(3 marks)
			(בבמטנוו) כוונטו ועב וומג) ווט ובמכנוטוו		

Total 15 marks

2.	(a)	(i)	(The first electron affinity) is the energy/ enthalpy/ heat change when 1 electron is added to each atom in 1 mole - <i>must not imply endothermic process e.g. "energy required"</i>	(1)	
			of gaseous atoms	(1)	
			OR energy change per mole (1) (for) $A(g) + e^- \rightarrow A^-(g)$ (1)		(2 marks)
		(ii)	Correct labelling of Ca(s) to Ca ²⁺ (g) (+193, +590, +1150) Correct labelling of I ₂ (s) to 2I ⁻ (g) (+214, 2 x EA) Correct labelling of lattice energy and $\Delta H_{\rm f}$ of CaI ₂ (s) (-2074, -534) <u>Labelling can be done with symbols, words or numbers</u>	(1) (1) (1)	(3 marks)
		(iii)	Mark consequentially on their labels in (ii)		
			$\Delta H_{f} = \Delta H_{a}$ of calcium + 1 st IE calcium + 2 nd IE calcium + 2 x ΔH_{a} iodine + 2 x EA I(g) + LE Cal ₂ (s)		
			-534 = +193+590+1150+2x107+ 2 × EA + (-2074)	(1)	
			EA = ½(2074-534-193-590-1150-214)	(1)	
			= -303.5 / -304 (kJ mol ⁻¹)		
			Other possible answers:		
			One EA and +107on cycle gives EA = -500 (2)		
			One EA and +214 on cycle, but 2EA shown in working gives EA = -303.5 / -304 (2)		
			<i>One EA and +214 on cycle but EA shown in working gives</i> <i>EA = -607 (1)</i>		(2 marks)

(b)	(i)	Potassium ion / K ⁺ larger than Ca ²⁺ <i>Must not refer to atoms</i>	(1)	
QWC*		K⁺ smaller charge than Ca ²⁺ Must not refer to atoms, but CAN say "potassium" has a smaller charge (than "calcium")	(1)	
		Charge density of K^* is less than charge density for Ca^{2*} without explanation is worth (1) out of these 1^{st} two marks	(1)	
		Less attraction between (K ⁺ and I ⁻) ions NOT just "weaker bonds"	(1)	
		ACCEPT reverse argument IGNORE references to extent of covalency		(3 marks)
	(ii)	Potassium ion / K^{+} less polarising (than Ca^{2+})	(1)	
		KI (close to) 100 % ionic / no covalent character	(1)	
		Cal ₂ partially/ significantly covalent <i>OR</i> Correct description of anion polarisation in Cal ₂ <i>NOT just 'distortion' of anion</i>	(1)	(3 marks)

Total 13 marks

3.	(a)	Ethy Dry (.magnesium bromid ether/ ethoxvethan	le or formul Ie	a, or any other halide $NOT C_2 H_5 BrMg$,	(1)	
		Follo	wed by hydrolysis	acid/ wate	er	(1)	
		Grig reag If ha cond	nard reagent/ name ent but can score b logenoalkane given litions.	ed reagent ooth condition as reagent	with incorrect alkyl group scores (0) for on marks. , can score 1 st mark if Mg included under	(1)	(3 marks)
	(b)	(i)	<u>Observation</u> effervescence/bu NOT gas evolved	ıbbles/ fizz	ing	(1)	
		(ii)	2C ₂ H ₅ COOH + Na ₂ C <u>Observation</u> steamy/ misty/ w <i>NOT</i> smoke	$CO_3 \rightarrow 2C_2H_5$ hite fumes	COONa + CO ₂ + H ₂ O	(1) (1)	(2 marks)
			C ₂ H ₅ COOH + PCl ₅ -	$\rightarrow C_2H_5COCI$	+ POCl ₃ + HCl	(1)	(2 marks)
	(C)	Reag sulpt ALLC ALLC ACCE Pota Fehli	ents potassium dich nuric acid/ H ₂ SO ₄ / h DW acidified potassi DW acidified dichron <i>ified dichromate (v</i> EPT ssium manganate(V ng's* (1)	hromate ((V nydrochloric ium dichrom mate ions (2 <i>vithout ion)</i> 'II) / potassi	(I)) / K ₂ Cr ₂ O ₇ , acid/ HCl but conseq. on an oxidising agent nate / H ⁺ and Cr ₂ O ₇ ²⁻ (2) 2) <i>scores just</i> (1) um permanganate/ KMnO ₄ / Tollens' * /	(1) (1)	
		Acid * nee	fied /alkaline*/neu ed to acidify to libe	ıtral (1) rate free ac	id for 2 nd mark		(2 marks)
	(d)	(i)	<u>Reagent</u> (any one of) HCN HCN or KCN KCN HCN	<u>Condition</u> (to match) and KCN (buffered t + acid /H ⁺ + base / Ol	Detween) pH between 6 and 9 <i>NOT</i> excess H [−] <i>NOT</i> excess	(2)	
		(ii)	<u>Type of reaction</u> Nucleophilic addit <u>Reagent</u> (any one of) Hydrogen Sodium Lithium aluminium	ion - <i>both</i> n hydride	words needed <u>Condition</u> (to match) Pt / Ni / Pd (catalyst) - <i>IGNORE ref to temp.</i> (in) ethanol dry ether/ ethoxyethane	(1)	(3 marks)
			Type of reaction	ae	(IN) aqueous/ water/ ethanol/ methanol	(2)	
			Reduction ACCEPT redox / h ACCEPT nucleophi	ydrogenatio ilic addition	n (not addition) if metal hydrides used	(1)	(3 marks)

(e) (i)

(2 marks)

ⁱ⁾ H H H H H $-C - C - C - C - C - NH_3CI^-$ H H OH H OR - NH₃CI⁻

OR

$$\begin{array}{ccccccc} H & H & H & H \\ & & & & \\ H - C - C - C - C - C - NH_{3}CI \\ & & & & \\ H & H & OH H \end{array}$$

OR

$$\begin{array}{ccccccccc} H & H & H & H \\ H & & & & & \\ H & C & C & C & C & \\ - & C & C & C & - \\ H & H & OH & H & OR & - \\ H & H & OH & H & OR & - \\ \end{array}$$

+

NOT

(1 mark)

Optical NOT stereo

Near-miss molecule plus mirror image (1) The two solid lines in 3D structure must not be at 180°

(3 marks)

Total 21 marks

(1)

4.	(a)	(i) (ii)	<pre>K_p = p(CO₂) allow without brackets, IGNORE p[] 1.48 (atm)</pre>		(1 mark)
			<i>Penalise wrong unit</i> <i>Answer is consequential on (a)(i) e.g.</i> <u>1</u> <i>must have</i> atm ⁻¹ 1.48		(1 mark)
	(b)	(i)	$K_{p} = \frac{p(Cl_{2}) \times p(NO)^{2}}{(p(NOCl))^{2}}$ allow without brackets, penalise []		(1 mark)
		(ii)	$2NOCl \Rightarrow 2NO + Cl_2$ Start 1 0 0		
			∆ -0.22 +0.22 +0.11 eq moles 0.78 0.22 0.11	(1)	
			total moles of gas 1.11 mole fractions above values ÷ 1.11 0.7027 0.1982 0.09910	(1)	
			partial pressure / atm above values x 5.00 3.51 0.991 0.495	(1)	
			$K_{\rm p} = \frac{0.495 \text{ atm x } (0.991 \text{ atm})^2}{(3.51 \text{ atm})^2}$	(1)	
			 = 0.0395/ 0.0394 atm range of answers 0.0408/0.041 → 0.039/0.0392 NOT 0.04 ACCEPT ≥2 S.F Correct answer plus some recognisable working (5) 	(1)	
			 Marks are for processes Equilibrium moles Dividing by total moles Multiplying by total pressure Substituting equilibrium values into expression for K_p Calculating the value of K_p with correct consequential unit. 		(5 marks)
		(iii)	As the reaction is endothermic - <i>stand alone</i>	(1)	
			the value of K_p will increase (as the temperature is increased) - consequential on 1 st answer (if exothermic (0) then K_p decreases (1)) For effect on K_p mark, must have addressed whether reaction is	(1)	
			endothermic or exothermic		(2 marks)
		(iv)	Because (as the value of K_p goes up), the value of pCl ₂ x (pNO) ² /(pNOCl) ² (the quotient) must also go up	(1)	
			and so the position of equilibrium moves to the right - <i>stand alone</i>	(1)	
			<i>But</i> mark consequentially on change in K in (iii) If "position of equilibrium moves to right so K _p increases" (max 1) IGNORE references to Le Chatelier's Principle		(2 marks)
				Total	12 marks

5.	(a)	CH ₃ C H ₂ SC If ac	COOH labelled as base and linked to $CH_3COOH_2^+$ labelled (conjugate) acid D_4 labelled acid and linked to HSO_4^- labelled (conjugate) base cids and bases correct but not clearly or correctly linked 1 (out of 2)	i (1) (1)	(2 marks)
		JUST			(Z Marks)
	(b)	(i)	(pH) more than 7/ 8-9	(1)	
			Indicator: phenolphthalein ALLOW thymolphthalein OR thymol blue (mark consequentially on pH) Mark consequentially on pH but if pH7 do not allow either methyl	(1)	(2 marks)
QWC*		(ii)	orange or phenolphthalein As OH ⁻ / base removes H ⁺ ions / ΔH_{neut} is per mole of H ₂ O produced /	(1)	
			$H^* + OH^* = H_2O$	(1)	
			and so all the ethanoic acid reacts (not just 1% of it) OR	(1)	
			Endothermic (OH) bond breaking	(1)	
			is compensated for	(1)	
			by exothermic hydration of ions	(1)	
			OR		
			$\Delta \Pi$ for $C\Pi_3COO\Pi + \Pi_2O \rightarrow C\Pi_3COO + \Pi_3O = +2 \text{ KJ mol} / almost Zero / very small$	(1)	
			$\therefore \Delta H_{neut} [CH_3COOH] = +2 + \Delta H_{neut} [HCl]$	(1)	
			≈ the same (for both acids)	(1)	
			OR		
			ΔH_{neut} is per mole of H_2O produced	(1)	
			(heat) energy required for full dissociation (of weak acid)	(1)	
			so ΔH_{neut} slightly less exothermic (for weak acid)	(1)	(3 marks)
		(iii)	$[H^+]^2 = K_a [CH_3COOH] = 1.74 \times 10^{-5} \times 0.140 = 2.44 \times 10^{-6}$ $[H^+] = 0.00156 \text{ (mol dm}^{-3)}$	(1)	
				(.)	
			pH = 2.81 <i>consequential on [H⁺] but not pH>7</i> ACCEPT 2.80/2.8 (answers to 1 or 2 dp)	(1)	
			The assumptions are two from: [H ⁺] = [CH ₃ COO ⁻] - <i>this mark can be earned from working /</i> negligible [H ⁺] from ionisation of water (1)		
			$[CH_{2}COOH] = 0.140 - [H^{+}] \sim 0.140 \text{ (mol dm}^{-3}) / \text{ionisation of acid}$		
			negligible (1)	max	
			solution at 25 °C (1)	(2)	(4 marks)
		(iv)	1.74 x 10 ⁻⁵ = <u>[H</u> <u>+</u>] <u>[salt]</u> [acid]	(1)	
			$[H^{+}] = 1.74 \times 10^{-5} \times \frac{0.070}{0.100} = 1.22 \times 10^{-5}$	(1)	
			pH = 4.91 / 4.9 / 4.92 NOT 5		
			Max 2 if 0.140 / 0.200 is used	(1) Tota	(3 marks) al 14 marks
			TOTAL	FOR PAPER	: 75 MARKS