

GCE

Edexcel GCE Chemistry (8080, 9080) 6241/01

Summer 2005

advancing learning, changing lives

Mark Scheme (Results)

Edexcel GCE Chemistry (8080, 9080)

1	(a)	$\begin{array}{l} Mg + \frac{1}{2} O_2 \rightarrow MgO \\ IGNORE \ state \ symbols \\ ALLOW \ multiples \end{array}$		(1 mark)
	(b)	Correct number of electrons on both ions (must include inner shell) Drawn or "2,8"	(1)	
		Correct charges on each ion Free standing marks	(1)	
		ACCEPT all dots/ crosses or combination Max 1 if elements not identified		(2 marks)
	(c)	(Electrostatic) attraction between positive ions and electrons Symbol with correct charge can be specified NOT nuclei/ protons for positive ions NOT held together for attraction	(1)	
		Electrons delocalised / sea of electrons free moving	(1)	
		are mobile / can move / flow (under a potential difference) NOT "free" on its own NOT carry the charge		
				(3 marks)
			Total	(6 marks)

2	(a)	Gas Liqu Solic	/ g id / I I / s	green/pale green/yellow brown/red-brown / orange / red-orange / NOT red alone (dark) grey ALLOW black NOT purple IGNORE shiny / silver Any combination of allowed colours	(1) (1) (1)	(3 marks)
	(b)	(i)	KCI + H ₂ S <i>OR</i> 2KCI + H ₂ <i>ALLOW n</i>	$SO_4 \rightarrow KHSO_4 + HCI$ $SO_4 \rightarrow K_2SO_4 + 2HCI$ <i>multiples</i>		
			IGNORE s	state symbols		(1 mark)
		(ii)	Oxidatior Charge c	n numbers: -1 (+) 6 / (+) VI 0 (+) 4 / (+) IV an be either side of number		
			(1) mark	for any two correct oxidation numbers	(2)	
			Oxidising <i>NOT</i> dilut	Agent: (concentrated) H ₂ SO ₄ te	(1)	
			Oxidatior <i>OR</i>	n no. of bromine / bromide / Br changes from -1 to 0 / rises		
			Oxidation	n number of sulphur/S changes from +6 to +4 / falls	(1)	
			ALLOW T only IGNORE &	<i>E. for incorrect oxidation numbers in the correct direction</i> electrons if in correct direction		(4 marks)
				not awarded in meon eet oxidising agent given Excer i sulphu	Tot	al 8 marks

3	(a)	(i)	(1s ²)2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² OR (1s ²)2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁰ 4s ² OR (1s ²)2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁰ ALLOW subscript numbers in place of superscripts		
			$2p^{6} \equiv 2p_{x}^{2}2p_{y}^{2}2p_{z}^{2}$ numbers must be superscript $3p^{6} \equiv 3p_{x}^{2}3p_{y}^{2}3p_{z}^{2}$ numbers must be superscript		(1 mark)
			IGNORE caps		
	(b)	(i)	Energy/ enthalpy / heat energy change / required per mole NOT evolved	(1)	
			for the removal of 1 electron	(1)	
			from gaseous atoms NOT molecules	(1)	
			OR X(g) \rightarrow X ⁺ (g) + e ⁻ states required for 2 nd <u>and</u> 3 rd marks (2) Can be actual symbol of an element ACCEPT - e ⁽⁻⁾		(3 marks)
		(ii)	(Even though) there is a greater nuclear charge / number of protons		
			OR nuclear charge increases down the group	(1)	
			outer / valency electron(s) further from nucleus NOT "shell" on its own	(1)	
			and more shielded OR more (filled) inner shells/electrons	(1)	(3 marks)
	(c)	(i)	<u>Similarity</u> : number of protons (proton number) <i>IGNORE</i> electrons <i>NOT</i> atomic number	(1)	
			<u>Difference</u> : number of neutrons [correct numbers can be given] <i>NOT</i> atomic mass or number of nucleons	(1)	(2 marks)
		(ii)	$\frac{(24 \times 78.6) + (25 \times 10.1) + (26 \times 11.3)}{100} = 24.3$		
			Method (1) Answer must be to 3 SF (1)		
			Correct answer to 3 SF with some working (2)		
			IGNORE g or g mol ⁻¹ other wrong units lose a mark		(2 marks)
				т	otal 11 marks

4	(a)	(i)	Na \rightarrow Na ⁺ + e ⁽⁻⁾ OR Na - e ⁽⁻⁾ \rightarrow Na ⁺ $\frac{1}{2}$ Cl ₂ + e ⁽⁻⁾ \rightarrow Cl ⁻ IGNORE state symbols ALLOW multiples NOT Cl + e ⁽⁻⁾ \rightarrow Cl ⁻ NOT Cl \rightarrow Cl ⁻ - e ⁽⁻⁾ NOT $\frac{1}{2}$ Cl ₂ \rightarrow Cl ⁻ - e ⁽⁻⁾	(1) (1)	(2 marks)
		(ii)	Na + $\frac{1}{2}$ Cl ₂ \rightarrow NaCl / Na ⁺ Cl ⁻ NOT Na ⁺ + Cl ⁻ Stand alone but not consequential on incorrect half equations ALLOW multiples IGNORE state symbols		(1 mark)
	(b)	(i)	(bonding is) ionic / electrovalent <i>NOT</i> electrostatic		(1 mark)
		(ii)	Diagram shows alternating cation and anion in a correct 3-D pattern	(1) (1)	
			Key to diagram not necessary but must be recognisable differences If Na / CI in diagram OK, but if <u>state</u> "atoms" max 1		(2 marks)
	(c)	(i)	pair of electrons shared (by two atoms) OR		
			overlap of partially filled atomic orbitals NOT diagram on its own		(1 mark)
		(ii)	Melting BCl ₃ requires breaking van der Waals' / dispersion / London / dipole-dipole / induced dipole - induced dipole / intermolecular forces / interactions	(1)	
			NOT Permanent dipole		
			Melting NaCl requires breaking/overcoming ionic bonds / (electrostatic) attractions between ions NOT just breaking the ionic lattice	(1)	
			BCI ₃ forces weaker than NaCI forces	(1)	
			so less energy required to break BCI ₃ forces / intermolecular forces are weaker than ionic bonds. OR Correct argument based on high melting point of NaCI	(1)	(4 marks)
			If in comparison : Hydrogen bonding max 2 NaCl covalent max 2 max 2 = negate 1 st correct answer, score next two		
			BCI ₃ covalent max 1 may $1 = nagata two correct answers, score third$		
			$\max = meyale lwo correct answers, score limit$	Tota	al 11 marks

(a)	(i) $K(s)+H_2O(I) \rightarrow KOH(aq) + \frac{1}{2}H_2(g) / K^+(aq) + OH^-(aq) + \frac{1}{2}H_2(g)$			
		Balanced equation State symbols on correct formulae only ALLOW multiples	(1) (1)	(2 marks)
	(ii)	bubbles / effervescence / fizzing /hissing floats/moves (on surface) Melts /forms a sphere Gets smaller / disappears /dissolves Catches fire / lilac flame / explodes		
		IGNORE forms a solution IGNORE reference to noise NOT "see a gas"		(2 marks)
(b)	(i)	% of oxygen = 45.1% 54.9/39 = 1.41 and $45.1/16 = 2.821.41/1.41 = 1 and 2.82/1.41 = 2 (hence KO2) / 1.41 : 2.82 \equiv 1 : 2$	(1) (1) (1)	
		MUST have some working Correct inductive reasoning (3)		(3 marks)
	(ii)	-0.5 / - ½ /5		(1 mark)
(c)	KNO	$_3$ because K ⁺ / potassium ion has larger radius / is larger - <i>ion essential</i>	(1)	
	but [low "Cha	same charge - <i>stated or K⁺ and Li⁺ given</i> er charge density scores 1 out of the first two marks] arge density" <i>on its own</i> (1) UNLESS term is explained (2)	(1)	
polarises/distorts nitrate/negative ion/anion less OR weakens bonds in nitrate less				
	lf Li	NO $_3$ more stable (0)		(3 marks)

Total 11 marks

6	(a)	(i)	moles silico moles SiCl ₄ mass = 0.3	on = 10/28 = 0.3 = 0.357 57 x 170 = 60.7	357 / 60.69 (g) /	ALLOW 2-4SF		(1) (1) (1)	
			Units not r Correct an Correct an	required but if g swer with some swer with no w	given must be e recognisable orking (1)	e correct. e working (3)			(3 marks)
		(ii)	moles chlor \therefore vol = 0.7 <i>ALLOW TE</i> <i>ALLOW 2 -</i> <i>Units not r</i> <i>Correct an</i> <i>Correct an</i>	rine = 2 x 0.357 14 x 24.0 = 17. from (i) 4 SF required, but if swer with some swer with no w	1 (dm³) given must b recognisable orking (1)	moles Si x2 (1) moles Cl ₂ x 24 (pe correct e working (2)	1)	(1) (1)	
			Penalise SF Penalise ur	once only acro nits once across	oss (i) and (ii) (i) and (ii))			(2 marks)
			ratio	10/28	10/28 = 0.357	10/28 = 0.36	10/28 = 0.4 Ioses SF mark		
			mass	60.69	60.71	61.2	68		

vol 17.14 17.14 17.3 19.2

6

Wedges not required e.g. Atoms can be represented by circles etc provided there are 4 of one type and 1 of another

tetrahedral	(1)	
Any angle in range 109 - 109.5 ° <i>degree symbol can be shown on diagram</i>	(1)	
4 (bond) pairs of electrons / 4 bonding pairs NOT bonds NOT atom NOT groups of electrons	(1)	
Repel to position of minimum repulsion / potential energy <i>NOT "</i> Equal repulsion" <i>OR</i> Repel to position of maximum separation	(1)	
4 th mark cannot be awarded if atoms referred to		(5 marks)

(c)	(i)	Si and CI have different electronegativities / CI attracts the bonding electrons very / more strongly / Si less electronegative than CI / CI very electronegative	(1 mark)	
	(ii)	symmetrical molecule / chlorines equally spaced	(1)	
		bond polarities / dipoles / vectors cancel OR		
		Centres of positive and negative charge coincide / vectors cancel.	(1)	(2 marks)
			Tota	l 13 marks

TOTAL FOR PAPER: 60 MARKS