GCE
Edexcel GCE
Chemistry (8080, 9080)
6241/ 01

Summer 2005

Mark Scheme (Results)

1 (a) $\mathrm{Mg}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{MgO}$
IGNORE state symbols
(1 mark)
ALLOW multiples
(b) Correct number of electrons on both ions (must include inner shell)
(1)

Drawn or " 2,8 "
Correct charges on each ion
(1)

Free standing marks
ACCEPT all dots/ crosses or combination
(2 marks)
Max 1 if elements not identified
(c) (Electrostatic) attraction between positive ions and electrons

Symbol with correct charge can be specified
NOT nuclei/ protons for positive ions
NOT held together for attraction
Electrons delocalised / sea of electrons free moving
(1)
are mobile / can move / flow (under a potential difference)
NOT "free" on its own
NOT carry the charge

Gas / g	green/ pale green/ yellow	
Liquid / I	brown/red-brown / orange / red-orange NOT red alone	
Solid / s	(dark) grey ALLOW black	NOT purple
	IGNORE shiny / silver	
	Any combination of allowed colours	

(b) (i) $\mathrm{KCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{KHSO}_{4}+\mathrm{HCl}$

OR
$2 \mathrm{KCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$
ALLOW multiples
IGNORE state symbols
(ii) Oxidation numbers: $-1 \quad(+) 6 /(+) \mathrm{VI}$
$0 \quad(+) 4 /(+)$ IV
Charge can be either side of number
(1) mark for any two correct oxidation numbers

Oxidising Agent: (concentrated) $\mathrm{H}_{2} \mathrm{SO}_{4}$
NOT dilute
Oxidation no. of bromine / bromide / Br changes from -1 to 0 / rises OR

Oxidation number of sulphur/ S changes from +6 to $+4 /$ falls
(1)
(4 marks) only
IGNORE electrons if in correct direction
$4^{\text {th }}$ mark not awarded if incorrect oxidising agent given EXCEPT sulphur
ALLOW T.E. for incorrect oxidation numbers in the correct direction

(1)

3 (a) (i) $\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$
OR
$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{0} 4 s^{2}$
OR
$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{0}$
ALLOW subscript numbers in place of superscripts
$2 p^{6} \equiv 2 p_{x}{ }^{2} 2 p_{\mathrm{y}}{ }^{2} 2 p_{\mathrm{z}}{ }^{2}$ numbers must be superscript
$3 p^{6} \equiv 3 p_{x}^{2} 3 p_{y}^{2} 3 p_{z}^{2} \quad$ numbers must be superscript
IGNORE caps
(b) (i) Energy/ enthalpy / heat energy change / required per mole

NOT evolved
for the removal of 1 electron
from gaseous atoms NOT molecules
OR
$X(g) \rightarrow X^{+}(g)+e^{-}$states required for $2^{\text {nd }}$ and $3^{\text {rd }}$ marks
Can be actual symbol of an element
ACCEPT - $\mathrm{e}^{(-)}$
(ii) (Even though) there is a greater nuclear charge / number of protons
OR nuclear charge increases down the group
outer / valency electron(s) further from nucleus NOT "shell" on its own
and more shielded OR more (filled) inner shells/ electrons
(1)
(1 mark)
位都

4 (a) (i) $\mathrm{Na} \rightarrow \mathrm{Na}^{+}+\mathrm{e}^{(-)} \quad \mathrm{OR} \mathrm{Na}-\mathrm{e}^{(-)} \rightarrow \mathrm{Na}^{+}$
IGNORE state symbols
ALLOW multiples
NOT Cl $+\mathrm{e}^{(-)} \rightarrow \mathrm{Cl}^{-}$
NOT Cl $\rightarrow \mathrm{Cl}^{-}-\mathrm{e}^{(-)}$
NOT $1 / 2 \mathrm{Cl}_{2} \rightarrow \mathrm{Cl}^{-}-\mathrm{e}^{(-)}$
(2 marks)
(ii) $\mathrm{Na}+1 / 2 \mathrm{Cl}_{2} \rightarrow \mathrm{NaCl} / \mathrm{Na}^{+} \mathrm{Cl}^{-} \quad \mathrm{NOT} \mathrm{Na}+\mathrm{Cl}^{-}$

Stand alone but not consequential on incorrect half equations
ALLOW multiples
IGNORE state symbols
(b) (i) (bonding is) ionic / electrovalent NOT electrostatic
(ii) Diagram shows alternating cation and anion
(1)
in a correct 3-D pattern
(1)

Key to diagram not necessary but must be recognisable differences If $\mathrm{Na} / \mathrm{Cl}$ in diagram OK, but if state "atoms" max 1
(c) (i) pair of electrons shared (by two atoms)

OR
overlap of partially filled atomic orbitals
NOT diagram on its own
(ii) Melting BCl_{3} requires breaking van der Waals' / dispersion / London / dipole-dipole / induced dipole - induced dipole / intermolecular forces / interactions

NOT Permanent dipole
Melting NaCl requires breaking/overcoming ionic bonds /
(electrostatic) attractions between ions
NOT just breaking the ionic lattice
BCl_{3} forces weaker than NaCl forces
so less energy required to break BCl_{3} forces / intermolecular forces are weaker than ionic bonds. OR Correct argument based on high melting point of NaCl

If in comparison:
Hydrogen bonding max 2
NaCl covalent max 2
$\max 2 \equiv$ negate $1^{\text {st }}$ correct answer, score next two
BCl_{3} covalent max 1
max $1 \equiv$ negate two correct answers, score third

5 (a) (i) $\mathrm{K}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{KOH}(\mathrm{aq})+1 / 2 \mathrm{H}_{2}(\mathrm{~g}) / \mathrm{K}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})+1 / 2 \mathrm{H}_{2}(\mathrm{~g})$

Balanced equation
(1)

State symbols on correct formulae only
ALLOW multiples
(ii) bubbles / effervescence / fizzing / hissing floats/ moves (on surface)
Melts / forms a sphere
Gets smaller / disappears / dissolves
Catches fire / lilac flame / explodes
IGNORE forms a solution
IGNORE reference to noise
NOT "see a gas"
(b) (i) \%of oxygen $=45.1 \%$
(1)
$54.9 / 39=1.41$ and $45.1 / 16=2.82$
(1)
$1.41 / 1.41=1$ and $2.82 / 1.41=2 \quad\left(\right.$ hence $\left.K O_{2}\right) / 1.41: 2.82 \equiv 1$: 2

MUST have some working
(3 marks)
Correct inductive reasoning (3)
(ii) $-0.5 /-1 / 2 /-.5$
(c) KNO_{3} because K^{+}/ potassium ion has larger radius / is larger - ion essential
but same charge - stated or K^{+}and Li^{+}given
[lower charge density scores 1 out of the first two marks]
"Charge density" on its own (1) UNLESS term is explained (2)
polarises/ distorts nitrate/ negative ion/ anion less
OR weakens bonds in nitrate less
NOT weakens ionic bond
If LiNO_{3} more stable ($\mathbf{0}$)
Any two
(1)

6 (a) (i) moles silicon $=10 / 28=0.357$
moles $\mathrm{SiCl}_{4}=0.357$
mass $=0.357 \times 170=60.7 / 60.69(\mathrm{~g})$ ALLOW 2-4 SF
OR by mass ratio
Units not required but if given must be correct.
Correct answer with some recognisable working (3)
Correct answer with no working (1)
(ii) moles chlorine $=2 \times 0.357$
moles Si x2 (1)
(1)
$\therefore \mathrm{vol}=0.714 \times 24.0=17.1\left(\mathrm{dm}^{3}\right)$
moles $\mathrm{Cl}_{2} \times 24$ (1)
(1)

ALLOW TE from (i)
ALLOW 2-4 SF
Units not required, but if given must be correct
Correct answer with some recognisable working (2)
Correct answer with no working (1)
Penalise SF once only across (i) and (ii)
Penalise units once across (i) and (ii)

ratio	$10 / 28$	$10 / 28$ $=0.357$	$10 / 28$ $=0.36$	$10 / 28$ $=0.4$ loses SF mark
mass	60.69	60.71	61.2	68
vol	17.14	17.14	17.3	19.2

(b)

Any angle in range 109-109.5 ${ }^{\circ}$
degree symbol can be shown on diagram
4 (bond) pairs of electrons / 4 bonding pairs
NOT bonds
NOT atom
NOT groups of electrons
Repel to position of minimum repulsion / potential energy NOT "Equal repulsion"
(1)

OR Repel to position of maximum separation
$4^{\text {th }}$ mark cannot be awarded if atoms referred to
(c) (i) Si and Cl have different electronegativities / Cl attracts the bonding electrons very / more strongly / Si less electronegative than $\mathrm{Cl} / \mathrm{Cl}$ very electronegative
(ii) symmetrical molecule / chlorines equally spaced
bond polarities / dipoles / vectors cancel
OR
Centres of positive and negative charge coincide / vectors cancel.
(1) (2 marks)

