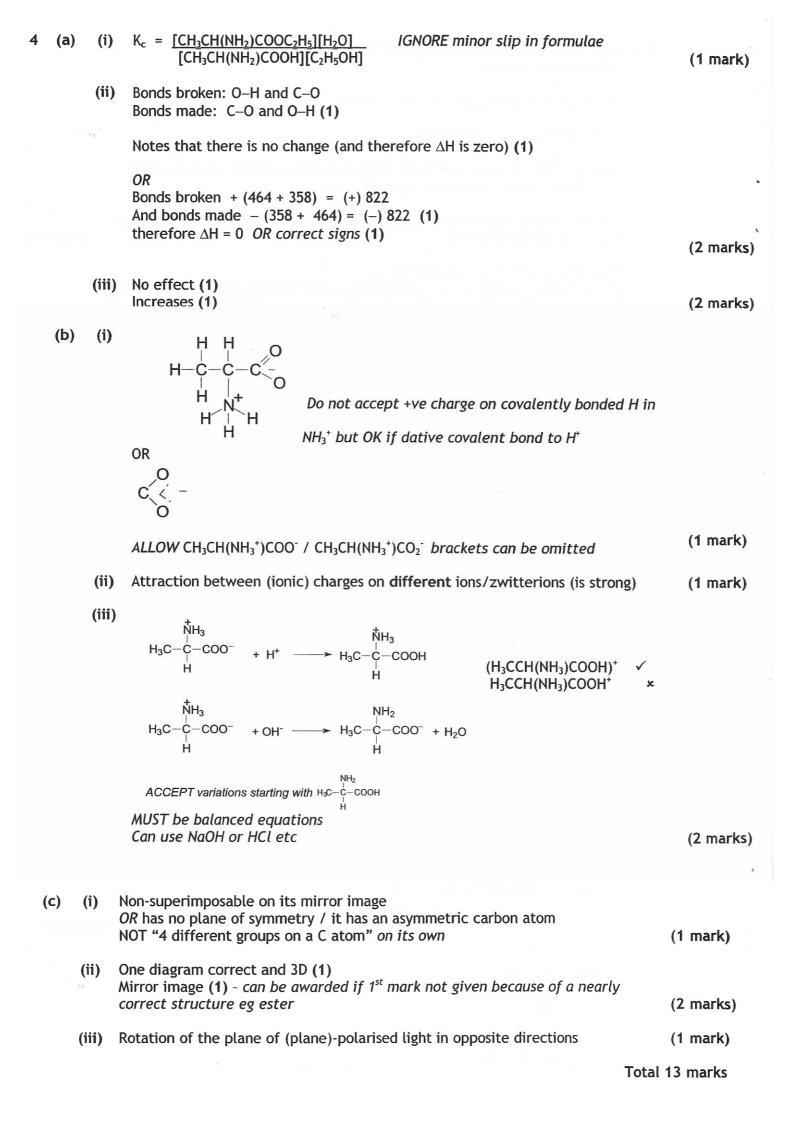
Unit 6244/01

1	(a)	whe form	rgy/heat change (1) <i>ALLOW</i> Enthalpy change n gaseous ions (1) <i>NOT</i> "one mole of gaseous ions" n 1 mole of solid/crystal/lattice (1) <i>NOT</i> "form one mole of an ionic pound" without physical state	
		Suita	rgy change etc per mole (1) able equation (1) e symbols (1)	
		lf fro	om its elements 0 (out of 3)	(3 marks)
	(b)	(i)	-161 - 122 - 519 + 349 - 409 = - 862 (kJ mol ⁻¹) working (1) answer (1) Correct answer with no working (2) + 862 with working (1) Wrong answer with only one error (1)	(2 marks)
		(ii)	Less endothermic due to weaker (metallic) bonding (1) Li/Li ⁺ is smaller <i>OR vice versa in terms of potassium</i> (1)	(2 marks)
	(c)	(i)	(Ionic) charge (1) Size/radius (1) Charge density unexplained (max 1)	(2 marks)
		(ii)	covalent character / "not 100 % ionic"/ "not purely ionic" (1) due to polarisation/distortion of anion / Ag ⁺ is highly polarising (1)	(2 marks)
	(d)	(i)	$M^{+}(g) + X^{-}(g)$ $M^{+}(aq) + X^{-}(aq)$ $MX_{(s)} \xrightarrow{\Delta H_{soln}} M^{+}(aq) + X^{-}(aq)$ OR	
			energy level diagram	
			Species including state symbols (1) ALLOW 2+/2-ions Arrows correctly labelled (1) If L.E. arrow ↑, must be shown as -LE ALLOW a specific example eg NaCl	(2 marks)
		(ii)	$\Delta H_{solution} = -$ Lattice energy + (Σ) hydration enthalpies ALLOW balance between lattice energy and hydration enthalpies (1) the more exothermic $\Delta H_{solution}$ the more likely the compound is to dissolv (1) - stand alone	
			OR If (Σ) hydration enthalpies are greater than lattice energy (1) The compound (is likely to) dissolve. (1)	(2 marks)
	(iii)	ent so	rom CaSO ₄ to BaSO ₄) the lattice energy changes by less than the hydration thalpy / lattice energy changes by 106, hydration by 290 KJ moi ⁻¹ (1) enthalpy of solution process is more endothermic/less exothermic so ubility falls (1) dependent on the 1 st mark	
		sol	ubility falls (1) - <i>dependent on the 1st mark</i>	(2 marks)
				Total 17 marks

2 (a) (i) ACCEPT multiples and halves IGNORE state symbols

(b)


(C)

y,

	$Na_2O + H_2O \rightarrow 2NaOH/2Na^+ + 2OH^-$ (1)	
4 [°]	Al ₂ O ₃ + 6HCl \rightarrow 2AlCl ₃ + 3H ₂ O /Al ₂ O ₃ + 6H ⁺ \rightarrow 2Al ³⁺ + 3H ₂ O (1) NOT Al ₂ Cl ₆	
	$\begin{array}{l} Al(OH)_{3} + NaOH \rightarrow NaAl(OH)_{4} / Al(OH)_{3} + OH^{-} \rightarrow Al(OH)_{4}^{-} \\ OR Al(OH)_{3} + 3NaOH \rightarrow Na_{3}Al(OH)_{6} / Al(OH)_{3} + 3NaOH \rightarrow Al(OH)_{6}^{3-} \\ ALLOW Al(OH)_{3} + NaOH \rightarrow NaAlO_{2} + 2H_{2}O \end{array} $ (1)	,
	$SO_3 + H_2O \rightarrow H_2SO_4/2H^+ + SO_4^{2-}$ (1)	(4 marks)
(ii)	acidic oxide - non metal (1) basic oxide - metal (1) If oxide omitted twice (max 1)	(2 marks)
(iii)	Metallic to non-metallic/decrease in metallic character because oxides change from basic to acidic/decrease in basic character	
	OR	
	Metallic to non-metallic/decrease in metallic character with reference t at least two reactions	o (1 mark)
(Meta	allic character) increases (down the group) (1)	
ALLO	are non-metals and Sn/Pb are metals (1) W explanation in terms of IE etc OR properties of non-metal/metals or bounds - <i>dependent on 1st mark</i>	
IGNO	RE a comment on conductivity of carbon	(2 marks)
(i)	$PbO_2 + 4HCl \rightarrow PbCl_2 + 2H_2O + Cl_2$ Species (1) balance (1) - dependent on 1 st mark	
	ALLOW multiples	(2 marks)
(ii)	It/lead(II)/Pb ²⁺ /PbCl ₂ is more/most stable (than lead(IV)/Pb ⁴⁺ /PbCl ₄) ALLOW +2 is the stable oxidation state of lead OR	
	PbCl₄ would oxidise the HCl.	
	NOT "prefers +2"	(1 mark)
	(To	tal 12 marks)

3	(a)	(i)	A→B KCN/NaCN (1) OR name IGNORE reference to HCN if given with KCN/NaCN	
		ng "	(aqueous) ethanol/alcohol <u>and</u> heat (under reflux) / reflux/warm(1) If HCN given as the reagent, condition mark can still be given	
			B→C LiAlH₄ (1) or name Dry ether/ ethoxyethane (1)	
			OR H ₂ (1) Ni (1) OR Na (1) ethanol (1)	(4 marks)
		(ii)	Mg in dry ether (1) C ₄ H ₉ MgBr (1) /GNORE charges NOT C ₄ H ₉ BrMg CO ₂ / dry ice (1) Dilute acid / H ⁺ (aq) / H ₂ O(1) these must <u>not</u> be added at the same time as CO ₂ ALLOW acidify ALLOW HCl / HCl(g)/conc HCl NOT H ₂ SO ₄ or conc H ₂ SO ₄	
			OR Mg in dry ether (1) C₄H9MgBr (1) <i>IGNORE charges NOT</i> C₄H9BrMg Methanal (1) (hydrolyse and oxidise with) acidified (potassium) dichromate ions (1)	(4 marks)
	(b)	(i)	Weak acid is dissociated to a small extent/slightly dissociated/ionised/few molecules dissociate <i>ALLOW</i> partial dissociation <i>NOT</i> 'not fully dissociated'.	(1 mark)
		(ii)	$Ka = [H^+][C_4H_9COO^-] \qquad OR [H_3O^+] \text{ for } [H^+] \\ [C_4H_9COOH]$	(1 mark)
		(iii)	Ka = $[H_3O^+]^2 / [acid]$ OR $[H_3O^+] = \sqrt{Ka[acid]}$ (1) $[H_3O^+] = 1.23 \times 10^{-3}$ (1) - dependent on 1 st mark pH = 2.91/2.92 (1) ACCEPT 2.9 1 or 2 d.p. Correct answer with working (3) Correct answer with no working (1) ALLOW TE only if pH below 7	
				(3 marks)

(iv)	starting pH 2.9 <i>ALLOW starting in 2nd or 3rd boxes above pH 2</i> (1) consequential on (iii)	
	pH range vertical max 6 to 12 min 7-10 (1)	
96	Equivalence point at 25cm ³ (1)	
	General shape of curve and finish at pH between 12-13 (1) - and end in 1^{st} three boxes above 12, extending to 40-50 cm ³	
If drawn wrong way round 2 max ie equivalence point (1) and vertical drop (1) marks can be awarded		(4 marks)
(v)	Thymol blue (1) - Consequential on (iv) (Completely) changes colour within vertical portion/the working range of the indicator is within the vertical portion / $pK_{ind} \pm 1$ in vertical position / pK_{ind} in centre of vertical position (1)	(2 marks)
	Tota	l 19 marks

5

H₃C-C-CH₃ OH

(ii) CHI₃ (1) CH₃COONa (1) *OR* H I I C I I

O⁻Na⁺

Penalise a covalent bond between O and Na Either no charges or both charges needed

(2 marks)

(1 mark)

- (b) (i) HCN (+ base) OR KCN + acid OR HCN + KCN OR either HCN or KCN pH 5-8 - or any no. or range within 5-8 ACCEPT names
 - (ii) (hydrolysis with) dilute acid /H⁺(aq) (1)
 ALLOW NaOH(aq) / OH⁻(aq) / dilute alkali followed by acid [if acid <u>not</u> added still carry on marking forwards]

```
to (CH_3)_2C(OH)COOH/ (CH_3)_2C(OH)CO_2H (1)
```

PCl₅ / PCl₃ / SOCl₂ or names (1) OR any alcohol to (CH₃)₂C(Cl)COCl (1) ALLOW (CH₃)₂C(OH)COCL correct formula of ester from that alcohol

(Aqueous) NH₃/ ammonia (1) *IGNORE attempt to hydrolyse Cl*

OR

(hydrolysis with) dilute acid /H⁺(aq) (1)

to $(CH_3)_2C(OH)COOH/(CH_3)_2C(OH)CO_2H$ (1)

ammonia / ammonium carbonate (1)

to (CH₃)₂C(OH)COONH₄ (1)

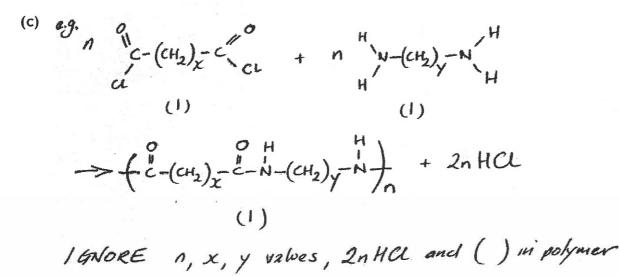
heat (1)

OR

State/imply partial hydrolysis (1) NaOH (1) aq (1) or names Warm (1) ACCEPT temperatures 40-60 % NOT heat / boil H₂O₂ / stopped to prevent further/complete hydrolysis (to acid) (1)

OR

State/imply partial hydrolysis (1) HCl (1) aq (1) or names Warm (1) ACCEPT temperatures 40-60 $^{\circ}$ NOT heat / boil H₂O₂ / stopped to prevent further/complete hydrolysis (to acid) (1)

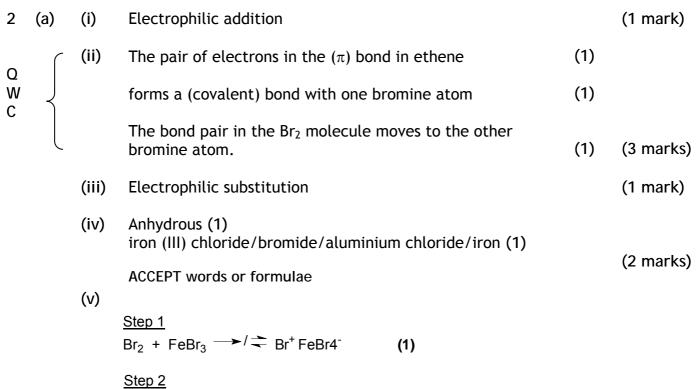

OR

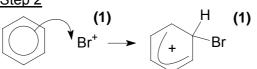
Any other alternative correct route

(iii) Bromine/ Br₂ (1) NOT Br
 (aqueous) sodium / potassium hydroxide / NaOH / KOH (1)

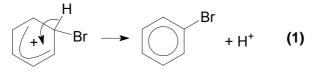
(2 marks)

(5 marks)

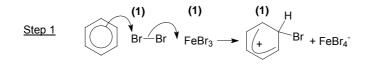

ALLOW Any amino acid OR Any amino acyl chloride for first 2 marks


(3 marks)

Total 14 marks


Unit Test 6245/01

1	(a)	(i)	One t $_{\frac{1}{2}}$ = 17 ± 1 s Another half life = 17 ± 1 s As they are constant Reaction is 1 st order	(1) (1) (1) (1)	(4 marks)
		(ii)	The reaction must take place in two (or more) steps	(1)	
			 Any one of the following for a second mark Only 1 molecule of N₂O₅ appears in the mechanism (up to and) in the rate determining step 1 molecule of N₂O₅ appears in the mechanism after r.d.s if 1 step, then as there are 2 N₂O₅ molecules on LHS of equation, the order would be 2 <i>consequential on first mark</i> 	(1)	(2 marks)
		(iii)	(The activation energy) is small		(1 mark)
	(b)		Graph: Two curves of correct shape drawn and labelled hot and cold with peak of hotter curve to right and lower than peak of colder curve	(1)	
			One activation energy marked to the right of both peaks	(1)	
Q W C			Explanation: Area under curve to the right of E_a is less for the colder curve than for the hotter curve, therefore fewer molecules have $E \ge E_a$, so fewer successful collisions.	(1) (1) (1)	
			Note: fully correct explanation of hotter therefore rate faster scores max 2 ex 3. No mark for lower collision frequency		(5 marks) Total 12 marks



Step 3

OR

Step 2 as Step 3 above

(4 marks)

		(vi)	Delocalisation in benzene or no delocalisation in ethene	(1)	
Q W C			Loss of H ⁺ (or 'substitution') regains delocalisation/stabilisation	(1)	
U			Substitution energetically favourable in benzene/or addition energetically favourable in ethene (If no mention of ethene max 2)	(1)	(3 marks)
	(b)	(i)	1,2-dibromoethane would give 1 peak 1,1- dibromoethane would have 2 peaks	(1) (1)	(2 marks)
		(ii)	Areas / peaks in the ratio of 3:1		(1 mark)

Total 17 marks

(a)	(i)	ethanoic acid / CH3COOH/CH3CO2H		(1 mark)
	(ii)	Reagents: potassium dichromate(VI) and sulphuric acid.	(1)	
		<i>OR full formulae or potassium manganate(VII) + sulphuric acid</i> Conditions: heat	(1)	(2 marks)
	(iii)	$PCl_5 / PCl_3 / SOCl_2$ or names		(1 mark)
(b)		$C_6H_6 + CH_3COCl \rightarrow C_6H_5COCH_3 + HCl$		
	OR^{\langle}	\bigcirc OR \bigcirc -coch ₃ }		(1 mark)
(c)	(i)	Red-orange/orange-yellow/yellow Precipitate		(1 mark)
	(ii)	Blue solution remaining /no red ppt/no change		(1 mark)
	(iii)	A (pale) yellow or cream precipitate		(1 mark)
(d)	(i)	$ \begin{pmatrix} C_{6}H_{5} & C_{6}H_{5} \\ C_{2}H_{5} & C_{1} & C_{1} & C_{2} & C_{2}H_{5} \\ OH & HO & HO \end{pmatrix} \begin{cases} Any \\ One \\ 3D \\ formula (1) \end{cases} $		
		Object and mirror image (1)		(2 marks)
	(ii)	No effect because equal amounts of each optical isomer produced / racemic mixture produced / planar carbonyl can be attacked	(1)	
		from either side	(1)	(2 marks)
(e)	(i)	The peak at 120 is caused by the moleculer ion/ both have same molar mass/both have same formula 105 due to $(C_6H_5CO)^+$	(1) (1)	(2 marks)
	(ii)	No line in the IR spectrum due to C=O / at around 1700 $\rm cm^{-1}$		(1 mark)
			Tota	al 15 marks

Total 15 marks

4	(a)	(i)	Amount of $C_2O_4^{2^-} = 0.0450 \text{ mol } dm^{-3} \times 0.0250 dm^3$ = 0.001125 mol (0.00113) amount of MnO ₄ ⁻ = 0.0200 mol $dm^{-3} \times 0.0225 dm^3$ = 0.000450 mol ratio $C_2O_4^{2^-}$: MnO ₄ ⁻ = 2.5 : 1 or 5 : 2 / or ecf from above	(1) (1) (1)	(3 marks)
		(ii)	$5C_2O_4^{2-} + 16H^+ + 2MnO_4^- \rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O$ species (1) balance (1)		(2 marks)
		(iii)	Mn goes down by 5 per atom	(1)	
			= 10 in total, so the 10 carbon atoms go up by 10 Each up by 1	(1)	
			<i>OR</i> Oxidation number per carbon is $C_2O_4^{2-}$ is +3 (1) And in CO_2 is +4 (therefore up by 1) (1)		(2 marks)
	(b)	Ν	3d 4s /in [Ar] ↑ ↑ ↑ ↑ ↓	(1)	
		Ν	In^{2+} [Ar] \uparrow \uparrow \uparrow \uparrow	(1)	(2 marks)
	(c)	(i)	The hydrated cation is deprotonated equation or indentification of ppt	(1)	
			i.e. $Mn(H_2O)_4(OH)_2 / Mn(OH)_2 / manganese(II)hydroxide(The hydrated manganese(II) hydroxide is) oxidised (by theair)$	(1) (1)	
			to MnO ₂	(1)	(4 marks)
		(ii)	Variable oxidation state Coloured ions (<i>NOT</i> compounds) Complex formation	(1) (1) (1)	(2 marks)

Total 15 marks

5	(a)	(i)	Adding the E^{Θ} of FeO ₄ ²⁻ /Fe ³⁺ equation to the H ₂ O ₂ /O ₂ gives +1.52V and adding the E^{Θ} of Fe ³⁺ /Fe ²⁺ to H ₂ O ₂ /O ₂ gives +0.09V positive means feasible	(1) (1) (1)	(3 marks)
		(ii)	$FeO_4^{2-} + 2H_2O_2 + 4H^+ \rightarrow Fe^{2+} + 2O_2 + 4H_2O$ $ALLOW 8H^+$ on left with $4H^+$ on right $ALLOW \Rightarrow OR \rightarrow$		
			OR $2FeO_4^{2-} + 3H_2O_2 + 10H^+ \rightarrow 2Fe^{3+} + 3O_2 + 8H_2O$ <i>ALLOW</i> 16H ⁺ on left with 6H ⁺ on right		
			Species (1) <i>IGNORE state symbols</i> Balance (1)		(2 marks)
	(b)	(i)	Ligand exchange / ligand substitution		(1 mark)
		(ii)	The ion is octahedral It has 6 bonds around the Fe (ion) The electron pairs repel to a position of minimum repulsion / maximum separation	(1) (1) (1)	(3 marks)
Q W C		(iii)	The <i>d</i> -orbitals in the iron are split by the ligands light is absorbed And an electron promoted to a higher <i>d</i> -orbital. If any hint of emission of light, only the 1 st mark can be scored.	(1) (1) (1)	(3 marks)
	(c)	(i)	The iron is oxidised / loss of electrons (or show e ⁻ loss in an equation) To Fe ²⁺ Then to Fe ³⁺	(1) (1) (1)	(3 marks)
		(ii)	The oxygen is reduced to OH^{-} ions or equation $\frac{1}{2}O_{2}+H_{2}O+2e^{-} \rightarrow 2OH^{-}$		(1 mark)

Total 16 marks

Unit Test 6246/01A (Practical)

1		
	٠	

(a)	Observation	Inference
	Steamy fumes/white	HCl (1) hydrogen chloride NOT
	fumes/misty fumes [not	hydrochloric acid
	white smoke] (1)	-OH OR carboxylic acid, alcohol - both
	Blue litmus turns red (1)	needed (1)
		<i>NOT</i> carboxylic acid NOT OH

(4 marks)

No reaction/No change/red stays red and blue staysAlcohol (1) do not allow "carboxylic acid absent"blue (1)	(b)	Observation	Inference	
		stays red and blue stays		

(2 marks)

(c)	Observation	Inference
	Yellow / orange ppt (1)	C=O / carbonyl /aldehyde, ketone - both
		needed (1)

(2 marks)

(d)	Observation	Inference	
	No change (1)	Ketone OR not aldehyde(1)	
	OR Stays Orange (1) allow "no	Tertiary alcohol (1) (stand	
	reaction"	alone marks)	
		· · ·	10

(3 marks)

(e)	Observation	Inference	
	[Pale] yellow/cream ppt (1) not	CHI ₃ /triiodomethane/iodoform	
	"off white"	(1) R-C-CH ₃ (1) allow methyl ketone	
		<i>NOT</i> alcohol	
			(3 marks)

(f)	Wavenumber (cm ⁻¹)	Functional group	
	3400-3500	OH / hydroxyl /hydroxy	
	1700	C=O /carbonyl	

(2 marks)

Only look for O-H and C=O

1700 and C=O/ketone/carbonyl [1]

Any single wavenumber between 3400 and 3500 and O-

H/hydroxyl [alcohol] [1]

If a range is given [ie copied from table] then horizontally [0] If 2 ranges are given then vertically [0] but award [1] for correct assignment

(g) $\begin{array}{ccc} CH_3 & O & CH_3 O \\ H_3C - C - CH_2 - C - CH_3 & OR & CH_3H_2C - C - CH_3 \\ OH & OH & OH \end{array}$

(1 mark) Total 17 marks

2	(a)	Observation	Inference
		Pale green solid / solution (1)	Transition metal ion/ compound/ Ni ²⁺ / Cr ³⁺ /Fe ²⁺ /Cu ²⁺ any TWO ions needed(1) NOT just "transition metal"

(2 marks)

(b)	Observation	Inference
	[Pale] green ppt (1)	$Ni(OH)_2 / Ni^{2+}(1)$
	Gas: red litmus turns blue (1)	Ammonia/NH ₃ (1)
	"smell of ammonia" gets the 2 nd	NH_4^+ / ammonium [ion](1)
	inf mark	Allow ammonium without reference
		to ammonia if litmus test is positive

(5marks)

(c)	Observation	Inference
	Green ppt (1) NOT "blue" allow	$[Ni(NH_3)_6]^{2+}$ / Ni(OH) ₂ ppt /Ni ²⁺ (1)
	"blue/green"	
	Blue solution (1)	

(3 marks)

(d)	Observation	Inference		
	White ppt (1)	SO_4^{2-} , CO_3^{2-} Cl ⁻ Br ⁻ any three(1)		

(2 marks)

(e)	Observation	Inference	
	White ppt (1)	SO_4^{2-} ONLY (1) only awarded if	
	Insoluble in acid [not "no change"](1)	<i>"insoluble in acid" mark given ignore bisulphate</i>	
		Any ppt [0] insoluble [1] allow sulphate inf [1]	

(3 marks)

(f) $Ni^{2^{+}} + 2OH^{-} \rightarrow Ni(OH)_{2}$ OR $[Ni(H_{2}O)_{6}]^{2^{+}} + 2OH^{-} \rightarrow [Ni(OH)_{2}(H_{2}O)_{4}] + 2H_{2}O$ OR $[Ni(H_{2}O)_{6}]^{2^{+}} + 6NH_{3} \rightarrow [Ni(NH_{3})_{6}]^{2^{+}} + 6H_{2}O$ OR $NH_{4}^{+} + OH^{-} \rightarrow NH_{3} + H_{2}O$ OR $[Ni(H_{2}O)_{4}(OH)_{2}] + 6NH_{3} \rightarrow [Ni(NH_{3})_{6}]^{2^{+}} + 2OH^{-} + 4H_{2}O$

(1mark)

(g) (NH₄)₂SO₄.NiSO₄ allow alternative assembly of correct ions in formula (1 mark)

Total 17 marks

- 3. (a) WRITE S/V falling temperature on scripts and compare to candidate's falling temperature for recording two temperatures (1) difference between two temperatures $< 5^{\circ}C$ (1) for falling temperature +/-2(3) +/-3(2) +/-4(1)(5 marks) (b) \checkmark^0 observation problems - can't see temperature and bubbles together/ difficult to judge flow of bubbles (1) $✓^H$ heating problems - too rapid / difficult to control (1) √^S stirring not enough (1) ✓^C conductivity water poor conductor / temperature of liquid
 - different from that recorded on (3 marks) thermometer (1) ANY THREE
 - Melting temperature (1) more widely spread / significant difference/boiling temperatures too close/boiling temperatures dependent on pressure (1) "m pt" with NO reason [0]
 (2 marks)
 - Total 10 marks

- 4. $\checkmark V$ Add known volume (1)
 - ✓K Of oxidising agent solution to excess (1) KI (aq)
 - T Titrate liberated iodine against (standardised) sodium thiosulphate [if name and formula given ignore incorrect one](1)
 - \checkmark S To starch end point [colour change must be stated](1)
 - \checkmark R Repeat with second solution (1)
 - \checkmark C Capable of oxidising more iodide ions (1)

OR

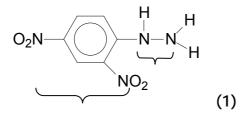
- ✓V Known volume (1)
- ✓K Excess KI (1)
- ✓C Colorimeter (1)
- ✓M Measure colour density (1)
- ✓ R Repeat with 2^{nd} solution (1)
- ✓D Darkest is best (1)

If candidate assumes identity of oxidising solutions then ignore and mark	(6 marks)
appropriately	

Total 6 marks

Materials required for this practical test

Materials


Each candidate will require:

- (a) 5 cm³ of a 50:50 by volume mixture of propanone and 2-methylpropan-2-ol. This must be labelled
 S. Its identity must not be revealed to candidates
- (b) access to solid phosphorus pentachloride
- (c) 3 cm³ of 2,4-dinitrophenylhydrazine reagent prepared by dissolving 0.25 g of solid reagent in 50 cm³ of concentrated HCl with 50 cm³ of water then diluting to 250 cm³
- (d) 3 cm3 of aqueous potassium dichromate(VI); concentration 0.2 mol dm-3
- (e) 5 cm³ of aqueous sulphuric acid; concentration 2 mol dm⁻³
- (f) 10 cm3 of aqueous sodium hydroxide; concentration 2 mol dm3
- (g) 5 cm³ of aqueous iodine, prepared by mixing 12.7 g solid iodine with 20 g of solid potassium iodide, dissolved in 40 cm³ of water and then diluted to 1 dm³
- (h) 5 cm3 of freshly prepared aqueous ammonia; concentration 2 mol dm3
- (i) 1 cm3 of aqueous barium nitrate; concentration 0.5 mol dm3
- (j) 2 cm3 of aqueous lead(II) nitrate; concentration 0.1 mol dm-3
- (k) 5 cm3 of butanone, labelled T. The identity of this must not be revealed to candidates
- (l) red and blue litmus paper
- (m) 0.5 g of solid ammonium nickel(II) sulphate, labelled X. The identity of this must not be revealed to candidates
- (n) 2 cm³ of dilute nitric acid; concentration 2 mol dm⁻³.

Unit Test 6246/02

1	(a)	(i)	Amount NaOH =0 .0243 x 0.100 = 0.00243 mol = amount of HCl in 25 cm ³ portion Amount HCl in excess = $0.00243 \times 4 = 0.00972$ mol Amount HCl at start = $0.100 \times 0.225 = 0.0225$ mol Amount HCl reacted with NH ₃ = $0.0225 - 0.00972 =$ 0.01278 mol Amount of ammonia produced = 0.01278 mol	 (1) (1) (1) (1) (1) 	
			Alternative route via 25 cm ³ possible		
			If x 4 not included mark consequentially		(5 marks)
		(ii)	Mass of nitrogen in sample = 14 x 0.01278 = 0.1789 g	(1)	
			% nitrogen in X = 0.1789 x 100 / 1.19 = 15.0%	(1)	(2 marks)
	(b)	(i)	N $28.3 \div 14 = 2.02$		
			C $36.4 \div 12 = 3.03$ H $3.0 \div 1 = 3.0$	(1)	
			O $32.3 \div 16 = 2.02$ Empirical formula is C ₃ H ₃ N ₂ O ₂	(1)	(2 marks)
		(ii)	Mass of $C_3H_3N_2O_2 = 99$ which is $\frac{1}{2}$ of 198 Molecular formula is $C_6H_6N_4O_4$	(1)	
			7 is		

Z is

(1) Note: 2 x NO₂ in any position on the ring

(2)

(3 marks)

Section A: Total 12 marks

2	(a)	(i)	$C_6H_5NH_2$ + $H_2O \rightarrow C_6H_5NH_3^+$ + OH^-		
			Or C ₆ H ₅ NH ₃ OH		(1 mark)
		(ii)	Axes labelled with linear pH scale Starting pH = 8.8 and finishing pH = 1 -2 Vertical at 10 cm ³ HCl Equivalence point pH 4 - 5 Vertical range: at least 3 pH units in the range 2 to 7	(1) (1) (1) (1) (1)	(E monto)
			Max 3 if graph drawn from low to high pH <i>Max 4 if poor shape</i>		(5 marks)
	(b)	(i)	Phenylamine reacts with acids to form ions / forms a salt / joins with H^{+} from acid as it is base/ionic equation	(1)	
	QWC		which form strong (ion/dipole) attractions with / are hydrated by the water molecules / or some explanation of interaction with water.	(1)	
	2110		water.	(1)	
			In phenylamine the hydrogen bonding between (the $\delta+$ H in) the NH2 group and the ($\delta-$ O in) water (causes its slight solubility)	(1)	(4 marks)
			in spite of the large non-polar benzene ring		
	QWC	(ii)	There are hydrogen bonds (and van der waals' forces) between phenylamine molecules	(1)	
			Which are stronger and so require more energy to separate than the van der waals' forces between chlorobenzene molecules.	(1)	(2 marks)
	(c)	C ₆ ⊦	$H_5NH_2 + 3Br_2 \longrightarrow Br \longrightarrow Br \longrightarrow Br H_2 + 3HBr Br Br H_2$		

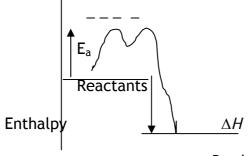
Correct formula of organic product with 3 Br atoms on ring in any	(1)	
position	(1)	
Rest of equation correct		(2 marks)

(d) (i)

Allow *probably not* if this is followed by a sound argument. Do not allow *it is insoluble*.

(5 marks)

Total 19 marks


3	(a)	(i)	Buta-1,3-diene would have 2 nmr peaks One caused by the CH ₂ hydrogen atoms and the other by the	(1)	
			CH hydrogen atoms	(1)	(- · · ·
			The peaks could be shown on an annotated diagram.		(2 marks)

(ii) Bond break: Bond make $2 \times C = C$ $2 \times b.e.$ $2 \times C - C$ $2 \times - 348$ $2 \times H - H$ $2 \times +436$ $4 \times C - H$ 4×-412 (1) Total = $2 \times b.e.$ + 872 total = -2344 $2 \times b.e.$ + 872 $-2344 = \Delta H = -237$ (1) $2 \times b.e.$ = -237 - 872 + 2344 = +1235b.e. = $+618 \text{ kJ mol}^{-1}$ (1)

If candidate chooses to break all the bonds, form all the bonds the data is 3692 and 5164.

Here the double bonds are delocalised and so the bond	(1)	
enthalpy is different.		(4 marks)

(iii)

Products

Double humps with E_a marked (1)	(1)
Reactants above products with ΔH marked (1)	(1)

Catalyst will have no effect on ΔH

(3 marks)

(1)

(b)	(i)	(As there are 6 ligands around the Ni ²⁺ ion,) there are 6 bonding pairs of electrons (and no lone pairs)	(1)	
QWC		These adopt a position of minimum repulsion / repel to get as far apart as possible, which is an octahedral shape.	(1)	
		The ligands cause the <i>d</i> -orbitals in the nickel ion to split into two levels	(1)	
		Some frequencies of (white) light are absorbed	(1)	
		the energy promotes an electron / electron jumps from the lower to the upper level (causing the ion to have the complementary colour to the light absorbed).	(1)	
		<i>If answer includes reference to emitted energy as electron falls back MAX 1 for splitting of d-orbitals</i>		(5 marks)
	(ii)	$[Ni(H_2O)_6]^{2+} + 2NH_3 \rightarrow [Ni(OH)_2(H_2O)_4] + 2NH_4^+$	(1)	
		or $[Ni(H_2O)_6]^{2+} + 2OH^- \rightarrow [Ni(OH)_2(H_2O)_4] + 2H_2O$		
		$[Ni(OH)_2(H_2O)_4] + 4NH_3 \rightarrow [Ni(NH_3)_4(H_2O)_2]^{2+} + 2OH^- + 2H_2O$	(1)	
		Allow [Ni(NH ₃) ₆] ²⁺ Allow any balanced equation that involves correct ligand exchange		(2 marks)
(c)		$Fe(s) + 2OH^{-}(aq) \rightarrow Fe(OH)_{2}(s) + 2e^{-1}$	(1)	
		$2NiO(OH)(s) + 2H_2O(l) + 2e^- \rightarrow 2Ni(OH)_2(s) + 2OH^-(aq)$ state symbols not required	(1)	
		The reaction must be reversible / redox products must be solids.	(1)	(3 marks)

Total 19 marks

4	(a) Q W	(i)	<i>EITHER</i> a catalyst provides an alternative path with a lower activation energy	(1)	
	C		Thus a greater proportion of the molecules/ collisions has (kinetic) energy greater than or equal to the new activation energy (than to the old).	(1)	
			This means that a greater fraction of the collisions will result in reaction / are successful	(1)	
			OR		
			 Gas molecules absorbed onto (active sites) on surface of catalyst/ bonds to surface This lowers E_n for reaction Thus a greater proportion of the molecules/ collisions has (kinetic) energy greater than or equal to the new 	(1) (1)	
			activation energy (than to the old) / reference to better orientation for reaction on surface	(1)	(3 marks)
	Q	(ii)	Lowering the pressure will have no effect on $K_{\rm p}$	(1)	
	W C		However it will cause the position of equilibrium to shift to the left	(1)	
			which is the side with more gas molecules.	(1)	(3 marks)
	(b)	(i)	The functional group in P is an aldehyde / CHO group Not carbonyI	(1)	
			The functional group in Q is an alcohol / OH group The functional group in R is a (carboxylic) acid /	(1)	
			COOH group	(1)	
			P is H C=O	(1)	
			$\mathbf{Q} \text{ is } \begin{array}{ccc} H & H & H \\ & & \\ -C & -C & -C \\ & \\ H & H \end{array} \mathbf{Q}$	(1)	
			R is $H - C - C - C = O$ H H O - H	(1)	(6 marks)

		(ii)	The reagent is ethylmagnesium bromide/chloride/iodide/		
			Grignard Allow name or correct formula	(1)	
			The conditions are dry ether(solution)	(1)	
			followed by hydrolysis with dilute acid	(1)	(3 marks)
(c)	(i)	6Cl Cr₂	$E^{+} = 3Cl_2 + 6e^{-}$ $O_7^{2^{-}} + 14H^{+} + 6e^{-} = 2Cr^{3^{+}} + 7H_2O E^{\Theta} = + 1.33V$	(1)	
		6Cl	$F + Cr_2O_7^{2-} + 14H^+ \Rightarrow 3Cl_2 + 2Cr^{3+} + 7H_2O E_{cell}^{\Theta} = -0.03V$	(1)	
		wh	ich is negative so it will / should not happen/ not feasible	(1)	
		OR			
		so	O7 ²⁻ /Cr ³⁺ is less positive than Cl ₂ /Cl ⁻ , (1) Cr ₂ O7 ²⁻ is a weaker oxidising agent (than Cl ₂) (1) therefore O7 ²⁻ will / should not oxidise Cl ⁻ (1)		
		rea pos	e answer can be argued from a calculation that shows that the action between chromium(III) ions and chlorine molecules has a sitive E_{cell}^{Θ} and this would mean that the reverse reaction would be feasible.		(3 marks)
	(ii)	use	e conditions are not standard when concentrated solutions are ed / when solutions are not 1 molar/ when reaction mixture is ated.		
			$Cr_2O_7^{2^-}/Cr^{3^+}$) gets more positive / E (Cl^-/Cl_2) gets less negative, E _{cell} gets more positive)		(1 mark)

Total 19 marks

APPENDIX A (STATISTICS)

Mark Ranges and Award of Grades

Unit/Component	Max. Mark (Raw)	Mean Mark	Standard Deviation	% Contribution to award	Number Sat
6245/01	75	39.6	17.1	100	475
6246/01A	50	29.4	8.8	50	276
6246/02	50	26.8	11.4	50	334

6245/01

Grade	Max Mark	А	В	C	D	Е
Raw boundary mark	75	57	51	45	39	34
Uniform boundary mark	90	72	63	54	45	36

6246/01A + 6B

Grade	Max Mark	А	В	C	D	Е
Raw boundary mark	100	76	70	64	58	53
Uniform boundary mark	120	96	84	72	60	48

January 2005

For more information on Edexcel qualifications, please visit <u>www.edexcel.org.uk/qualifications</u> Alternatively, you can contact Customer Services at <u>www.edexcel.org.uk/ask</u> or on 0870 240 9800.

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

