1 (a) Energy/heat change (1) ALLOW Enthalpy change when gaseous ions (1) NOT "one mole of gaseous ions"
form 1 mole of solid/crystal/lattice (1) NOT "form one mole of an ionic compound" without physical state

OR
Energy change etc per mole (1)
Suitable equation (1)
State symbols (1)
If from its elements 0 (out of 3)
(b) (i) $-161-122-519+349-409=-862\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
working (1)
answer (1)
Correct answer with no working (2)
+862 with working (1)
Wrong answer with only one error (1)
(ii) Less endothermic due to weaker (metallic) bonding (1)
$\mathrm{Li} / \mathrm{Li}^{+}$is smaller OR vice versa in terms of potassium (1)
(c) (i) (lonic) charge (1)

Size/radius (1)
Charge density unexplained $(\max 1)$
(ii) covalent character /"not 100% ionic"/ "not purely ionic" (1) due to polarisation/distortion of anion / Ag^{+}is highly polarising (1)
(d) (i)

OR
energy level diagram
Species including state symbols (1) ALLOW 2+/2-ions
Arrows correctly labelled (1)
If L.E. arrow \uparrow, must be shown as -LE
ALLOW a specific example eg NaCl
(ii) $\Delta \mathrm{H}_{\text {solution }}=-$ Lattice energy $+(\Sigma)$ hydration enthalpies ALLOW balance between lattice energy and hydration enthalpies (1) the more exothermic $\Delta \mathrm{H}_{\text {solution }}$ the more likely the compound is to dissolve (1) - stand alone

OR
If (Σ) hydration enthalpies are greater than lattice energy (1) The compound (is likely to) dissolve. (1)
(iii) (From CaSO_{4} to BaSO_{4}) the lattice energy changes by less than the hydration enthalpy / lattice energy changes by 106 , hydration by $290 \mathrm{KJ} \mathrm{moi}^{-1}$ (1) so enthalpy of solution process is more endothermic/less exothermic so solubility falls (1) - dependent on the $1^{\text {st }}$ mark

2 (a) (i) ACCEPT multiples and halves IGNORE state symbols

```
\(\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH} / 2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} / \mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Al}^{3+}+3 \mathrm{H}_{2} \mathrm{O}\) (1) NOT \(\mathrm{Al}_{2} \mathrm{Cl}_{6}\)
\(\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaAl}(\mathrm{OH})_{4} / \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{OH}^{-} \rightarrow \mathrm{Al}(\mathrm{OH})_{4}^{-}\)
\(\mathrm{OR} \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{NaOH} \rightarrow \mathrm{Na}_{3} \mathrm{Al}(\mathrm{OH})_{6} / \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{NaOH} \rightarrow \mathrm{Al}(\mathrm{OH})_{6}{ }^{3-}\)
ALLOW Al \((\mathrm{OH})_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaAlO}_{2}+2 \mathrm{H}_{2} \mathrm{O}\)
```

$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} / 2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}$
(ii) acidic oxide - non metal (1)
basic oxide - metal (1)
If oxide omitted twice (max 1)
(iii) Metallic to non-metallic/decrease in metallic character because oxides change from basic to acidic/decrease in basic character

OR
Metallic to non-metallic/decrease in metallic character with reference to at least two reactions
(b) (Metallic character) increases (down the group) (1)
C / Si are non-metals and $\mathrm{Sn} / \mathrm{Pb}$ are metals (1)
ALLOW explanation in terms of IE etc OR properties of non-metal/metals or compounds - dependent on $1^{\text {st }}$ mark

IGNORE a comment on conductivity of carbon
(c) (i) $\mathrm{PbO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{PbCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$ Species (1)
balance (1) - dependent on $1^{\text {st }}$ mark
ALLOW multiples
(ii) $\mathrm{It} /$ lead(II) $/ \mathrm{Pb}^{2+} / \mathrm{PbCl}_{2}$ is more $/$ most stable (than lead(IV) $/ \mathrm{Pb}^{4+} / \mathrm{PbCl}_{4}$)

ALLOW +2 is the stable oxidation state of lead
OR
PbCl_{4} would oxidise the HCl .
NOT "prefers +2"
(a) (i) $\mathrm{A} \rightarrow \mathrm{B}$

KCN/NaCN (1) OR name
IGNORE reference to HCN if given with KCN/NaCN
(aqueous) ethanol/alcohol and heat (under reflux) / reflux/warm(1)
If HCN given as the reagent, condition mark can still be given

$B \rightarrow C$

LiAlH_{4} (1) or name
Dry ether/ ethoxyethane (1)
OR
H_{2} (1) Ni (1)
OR
Na (1) ethanol (1)
(ii) Mg in dry ether (1)
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{MgBr}(1)$ IGNORE charges $\mathrm{NOT} \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{BrMg}$
CO_{2} / dry ice (1)
Dilute acid $/ \mathrm{H}^{+}(\mathrm{aq}) / \mathrm{H}_{2} \mathrm{O}(1)$ these must not be added at the same time as CO_{2}
ALLOW acidify
ALLOW $\mathrm{HCl} / \mathrm{HCl}(\mathrm{g}) /$ conc HCl NOT $\mathrm{H}_{2} \mathrm{SO}_{4}$ or conc $\mathrm{H}_{2} \mathrm{SO}_{4}$
OR
Mg in dry ether (1)
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{MgBr}$ (1) IGNORE charges NOT $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{BrMg}$
Methanal (1)
(hydrolyse and oxidise with) acidified (potassium) dichromate ions (1)
(b) (i) Weak acid is dissociated to a small extent/slightly dissociated/ionised/few molecules dissociate
ALLOW partial dissociation
NOT 'not fully dissociated'.
(ii) $\mathrm{Ka}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COO}\right]}{\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COOH}\right]} \quad$ OR $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for $\left[\mathrm{H}^{+}\right]$
(iii) $\mathrm{Ka}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2} /[$ acid $] \quad O R\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{ } \mathrm{Ka}[$ acid $]$ (1)
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.23 \times 10^{-3}(1)$ - dependent on $1^{\text {st }}$ mark
$\mathrm{pH}=2.91 / 2.92$ (1) ACCEPT $2.9 \quad 1$ or $2 \mathrm{~d} . \mathrm{p}$.
Correct answer with working (3)
Correct answer with no working (1)
ALLOW TE only if pH below 7
(iv) starting pH 2.9 ALLOW starting in $2^{\text {nd }}$ or $3^{\text {rd }}$ boxes above pH 2 (1) consequential on (iii)
pH range vertical max 6 to $12 \min 7-10$ (1)
Equivalence point at $25 \mathrm{~cm}^{3}$ (1)
General shape of curve and finish at pH between 12-13 (1) - and end in $1^{\text {st }}$ three boxes above 12, extending to $40-50 \mathrm{~cm}^{3}$

If drawn wrong way round 2 max ie equivalence point (1) and vertical drop (1) marks can be awarded
(v) Thymol blue (1) - Consequential on (iv)
(Completely) changes colour within vertical portion/the working range of the indicator is within the vertical portion / $\mathrm{pK}_{\text {ind }} \pm 1 \mathrm{in}$ vertical position / $\mathrm{pK}_{\text {ind }}$ in centre of vertical position (1)

4 (a) (i) $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
(ii) Bonds broken: $\mathrm{O}-\mathrm{H}$ and $\mathrm{C}-\mathrm{O}$

Bonds made: $\mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{H}(1)$
Notes that there is no change (and therefore ΔH is zero) (1)
OR
Bonds broken + $(464+358)=(+) 822$
And bonds made $-(358+464)=(-) 822$ (1)
therefore $\Delta \mathrm{H}=0$ OR correct signs (1)
(iii) No effect (1) Increases (1)
(b) (i)

Do not accept +ve charge on covalently bonded H in
$\mathrm{NH}_{3}{ }^{+}$but OK if dative covalent bond to H^{+}
OR

ALLOW $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{3}{ }^{+}\right) \mathrm{COO} / \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{3}{ }^{+}\right) \mathrm{CO}_{2}^{-}$brackets can be omitted
(ii) Attraction between (ionic) charges on different ions/zwitterions (is strong)
(iii)

MUST be balanced equations
Can use NaOH or HCl etc
(c) (i) Non-superimposable on its mirror image
$O R$ has no plane of symmetry / it has an asymmetric carbon atom
NOT "4 different groups on a C atom" on its own
(ii) One diagram correct and 3D (1)

Mirror image (1) - can be awarded if $1^{\text {st }}$ mark not given because of a nearly correct structure eg ester
(iii) Rotation of the plane of (plane)-polarised light in opposite directions

5 (a) (i) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \mathrm{OR}$

(ii) $\mathrm{CH}_{3}(1)$ $\mathrm{CH}_{3} \mathrm{COONa}$ (1)
OR

Penalise a covalent bond between O and Na Either no charges or both charges needed
(b) (i) HCN (+ base)

OR KCN + acid
OR HCN + KCN
OR either HCN or KCN pH 5-8 - or any no. or range within 5-8 ACCEPT names
(ii) (hydrolysis with) dilute acid $/ \mathrm{H}^{+}(\mathrm{aq})(1)$

ALLOW $\mathrm{NaOH}(\mathrm{aq}) / \mathrm{OH}^{-}(\mathrm{aq}) /$ dilute alkali followed by acid [if acid not added still carry on marking forwards]
to $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COOH} /\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{H}$ (1)
$\mathrm{PCl}_{5} / \mathrm{PCl}_{3} / \mathrm{SOCl}_{2}$ or names (1) OR any alcohol
to $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{Cl}) \mathrm{COCl}(1)$ ALLOW $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COCl}$ correct förmula of ester from that alcohol
(Aqueous) $\mathrm{NH}_{3} /$ ammonia (1)
IGNORE attempt to hydrolyse Cl
OR
(hydrolysis with) dilute acid $/ \mathrm{H}^{+}(\mathrm{aq})$ (1)
to $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COOH} /\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{H}$ (1)
ammonia / ammonium carbonate (1)
to $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COONH}_{4}(1)$
heat (1)

OR
State/imply partial hydrolysis (1)
NaOH (1) aq (1) or names
Warm (1) ACCEPT temperatures $40-60{ }^{\circ} \mathrm{C}$ NOT heat / boil
$\mathrm{H}_{2} \mathrm{O}_{2}$ / stopped to prevent further/complete hydrolysis (to acid) (1)
OR
State/imply partial hydrolysis (1)
HCl (1) aq (1) or names
Warm (1) ACCEPT temperatures $40-60{ }^{\circ} \mathrm{C} \quad$ NOT heat / boil
$\mathrm{H}_{2} \mathrm{O}_{2}$ / stopped to prevent further/complete hydrolysis (to acid) (1)
OR
Any other alternative correct route
(iii) Bromine/ Br_{2} (1) NOT Br
(aqueous) sodium / potassium hydroxide / NaOH / KOH (1)
(c) 0.9.

(I)
(I)

(1)

IGNORE n, x, y values, $2 n \mathrm{HCl}$ and () inipolymer

[^0]
Unit Test 6245/01

1
(a) (i) One $t_{1 / 2}=17 \pm 1 \mathrm{~s}$
(1)

Another half life $=17 \pm 1 \mathrm{~s}$
As they are constant
Reaction is $1^{\text {st }}$ order
(1)
(1)
(1)
(ii) The reaction must take place in two (or more) steps

Any one of the following for a second mark
(1)

- Only 1 molecule of $\mathrm{N}_{2} \mathrm{O}_{5}$ appears in the mechanism (up to and) in the rate determining step
- 1 molecule of $\mathrm{N}_{2} \mathrm{O}_{5}$ appears in the mechanism after r.d.s
- if 1 step, then as there are $2 \mathrm{~N}_{2} \mathrm{O}_{5}$ molecules on LHS of equation, the order would be 2 consequential on first mark
(iii) (The activation energy) is small
(b) Graph:

Two curves of correct shape drawn and labelled hot and cold with peak of hotter curve to right and lower than peak of colder curve

One activation energy marked to the right of both peaks
Explanation:
Area under curve to the right of E_{a} is less for the colder
W curve than for the hotter curve,
therefore fewer molecules have $E \geq E_{a}$, so fewer successful collisions.

Note: fully correct explanation of hotter therefore rate faster scores max 2 ex 3.

No mark for lower collision frequency
(a) (i) Electrophilic addition
(ii) The pair of electrons in the (π) bond in ethene
forms a (covalent) bond with one bromine atom
(1)

The bond pair in the Br_{2} molecule moves to the other bromine atom.
(1) (3 marks)
(iii) Electrophilic substitution
(iv) Anhydrous (1) iron (III) chloride/bromide/aluminium chloride/iron (1)

ACCEPT words or formulae
(v)

Step 1
$\mathrm{Br}_{2}+\mathrm{FeBr}_{3} \longrightarrow / 三 \mathrm{Br}^{+} \mathrm{FeBr} 4^{-}$
(1)

Step 2

(1)

Step 3

OR

Step 1

Step 2 as Step 3 above
(4 marks)
(vi) Delocalisation in benzene or no delocalisation in ethene

Loss of H^{+}(or 'substitution') regains
(1) delocalisation/stabilisation

Substitution energetically favourable in benzene/or addition energetically favourable in ethene (If no mention of ethene max 2)
(1)
(b) (i) 1,2-dibromoethane would give 1 peak (1) 1,1- dibromoethane would have 2 peaks
(ii) Areas / peaks in the ratio of $3: 1$

3
(a) (i) ethanoic acid $/ \mathrm{CH} 3 \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
(ii) Reagents: potassium dichromate(VI) and sulphuric acid.
(1)

OR full formulae or potassium manganate(VII) + sulphuric acid Conditions: heat
(1)
(2 marks)
(1 mark)
(b) $\quad \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \mathrm{COCl} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}+\mathrm{HCl}$

(c) (i) Red-orange/orange/orange-yellow/yellow
(ii) Blue solution remaining/no red ppt/no change

Precipitate
(c) (i) Red-orange/orange/orange-yellow/yellow
(ii) Blue solution remaining/no red ppt/no change
(iii) A (pale) yellow or cream precipitate
(d) (i)

 $\left\{\begin{array}{l}\text { Any } \\ \text { One } \\ \text { 3D } \\ \text { formula (1) }\end{array}\right.$
Object and mirror image (1)
(2 marks)
(ii) No effect
because equal amounts of each optical isomer produced / racemic mixture produced / planar carbonyl can be attacked from either side
(1) (2 marks)
(e) (i) The peak at 120 is caused by the moleculer ion/ both have same molar mass/both have same formula 105 due to $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)^{+}$
(1)
(1)

4 (a) (i) Amount of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}=0.0450 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.0250 \mathrm{dm}^{3}$ $=0.001125 \mathrm{~mol}(0.00113)$
amount of $\mathrm{MnO}_{4}{ }^{-}=0.0200 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.0225 \mathrm{dm}^{3}$
$=0.000450 \mathrm{~mol}$
ratio $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}: \mathrm{MnO}_{4}{ }^{-}=2.5: 1$ or $5: 2$ / or ecf from above
(1)
(1)
(ii) $\quad 5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+16 \mathrm{H}^{+}+2 \mathrm{MnO}_{4}^{-} \rightarrow 10 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$
species (1)
balance (1)
(2 marks)
(iii) Mn goes down by 5 per atom
$=10$ in total, so the 10 carbon atoms go up by 10
Each up by 1
OR
Oxidation number per carbon is $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ is +3 (1)
And in CO_{2} is +4 (therefore up by 1) (1)
(2 marks)
(b)

(c) (i) The hydrated cation is deprotonated
equation or indentification of ppt
i.e. $\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2} / \mathrm{Mn}(\mathrm{OH})_{2} /$ manganese (II) hydroxide
(The hydrated manganese(II) hydroxide is) oxidised (by the
air)

$$
\text { to } \mathrm{MnO}_{2}
$$

(1)
(4 marks)
(ii) $\begin{aligned} & \text { Variable oxidation state } \\ & \text { Coloured ions (NOT compounds) } \\ & \text { Complex formation }\end{aligned}$

(1)
(1)
(1)

5 (a) (i) Adding the E^{\ominus} of $\mathrm{FeO}_{4}^{2-} / \mathrm{Fe}^{3+}$ equation to the $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{O}_{2}$ gives
and adding the E^{\ominus} of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ to $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{O}_{2}$ gives +0.09 V positive means feasible
(ii) $\mathrm{FeO}_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O}_{2}+4 \mathrm{H}^{+} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{O}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

ALLOW $8 \mathrm{H}^{+}$on left with $4 \mathrm{H}^{+}$on right
ALLOW $\rightleftharpoons \mathrm{OR} \rightarrow$
OR
$2 \mathrm{FeO}_{4}{ }^{2-}+3 \mathrm{H}_{2} \mathrm{O}_{2}+10 \mathrm{H}^{+} \rightarrow 2 \mathrm{Fe}^{3+}+3 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
ALLOW $16 \mathrm{H}^{+}$on left with $6 \mathrm{H}^{+}$on right
Species (1) IGNORE state symbols
Balance (1)
(b) (i) Ligand exchange / Ligand substitution
(ii) The ion is octahedral

The electron pairs repel to a position of minimum repulsion /maximum separation
(iii) The d-orbitals in the iron are split by the ligands

And an electron promoted to a higher d-orbital.
If any hint of emission of light, only the $1^{\text {st }}$ mark can be scored.
(c) (i) The iron is oxidised / loss of electrons (or show e^{-}loss in an equation)
To Fe^{2+}
(1)

Then to Fe^{3+}
(1)
(ii) The oxygen is reduced to OH^{-}ions or equation $1 / 2 \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{OH}^{-}$

Unit Test 6246/01A (Practical)

1. (a) \begin{tabular}{|l|l|}
\hline Observation \& Inference

\hline \& Steamy fumes/white

fumes/misty fumes [not

white smoke] (1)

Blue litmus turns red (1) \& | (1) |
| :--- |
| hydrochloric acid |
| -OH OR carboxylic acid, alcohol - both |
| needed (1) |
| NOT carboxylic acid NOT OH^{-} |

\hline
\end{tabular}

(b)

Observation	Inference
No reaction/No change/red stays red and blue stays blue (1)	Alcohol (1) do not allow "carboxylic acid absent"

(c)

Observation	Inference
Yellow / orange ppt (1)	$\mathrm{C}=\mathrm{O} /$ carbonyl /aldehyde, ketone - both needed (1)

(d)

Observation	Inference
No change (1)	Ketone OR not aldehyde(1)
OR Stays Orange (1) allow "no	Tertiary alcohol (1) (stand reaction"

(e)

(f)

Wavenumber (cm $\left.{ }^{-1}\right)$	Functional group
$3400-3500$	$\mathrm{OH} /$ hydroxyl /hydroxy
1700	$\mathrm{C}=\mathrm{O} /$ /carbonyl

Only look for $\mathrm{O}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$
1700 and C=O/ketone/carbonyl [1]
Any single wavenumber between 3400 and 3500 and $0-$ H/hydroxyl [alcohol] [1]
If a range is given [ie copied from table] then horizontally [0] If 2 ranges are given then vertically [0] but award [1] for correct assignment
(g)

OR

2 (a)

Observation	Inference
Pale green solid / solution (1)	Transition metal ion/ compound/ $\mathrm{Ni}^{2+} / \mathrm{Cr}^{3+} / \mathrm{Fe}^{2+} / \mathrm{Cu}^{2+}$ any TWO ions needed(1) NOT just "transition metal"

(2 marks)
(b)

Observation	Inference
[Pale] green ppt (1)	$\mathrm{Ni}(\mathrm{OH})_{2} / \mathrm{Ni}^{2+}(\mathbf{1})$
Gas: red litmus turns blue (1)	$\mathrm{Ammonia} / \mathrm{NH}_{3} \mathbf{(1)}$
"smell of ammonia" gets the $2^{\text {nd }}$	$\mathrm{NH}_{4}^{+} /$ammonium [ion](1)
inf mark	Allow ammonium without reference
to ammonia if litmus test is positive	

(5marks)
(c)

Observation	Inference
Green ppt (1) NOT "blue" allow "blue/green" Blue solution (1)	$\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} / \mathrm{Ni}(\mathrm{OH})_{2} \mathrm{ppt} / \mathrm{Ni}^{2+}(\mathbf{1})$

(d)

Observation	Inference
White ppt (1)	$\mathrm{SO}_{4}{ }^{2-}, \mathrm{CO}_{3}{ }^{2-} \mathrm{Cl}^{-} \mathrm{Br}^{-}$any three(1)

(2 marks)
(e)

Observation	Inference
White ppt (1) Insoluble in acid [not "no change"](1)	SO 4${ }^{2-}$ ONLY (1) only awarded if
	insoluble in acid" mark given Any ppt [0] insoluble [1] allow sulphate inf [1]

(f) $\mathrm{Ni}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}$

OR
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Ni}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]+2 \mathrm{H}_{2} \mathrm{O}$
OR
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}$
OR
$\mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{OR}\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-}+4 \mathrm{H}_{2} \mathrm{O}$
(g) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{NiSO}_{4}$ allow alternative assembly of correct ions in formula
3. (a) WRITE S/V falling temperature on scripts and compare to candidate's falling temperature
for recording two temperatures (1)
difference between two temperatures $\leq 5^{\circ} \mathrm{C}$ (1)
for falling temperature $+/-2$ (3) $+/-3$ (2) $+/-4$ (1)
(5 marks)
(b) $\quad \quad^{0}$ observation problems - can't see temperature and bubbles together/
difficult to judge flow of bubbles (1)
\checkmark^{H} heating problems - too rapid / difficult to control (1)
\checkmark^{s} stirring not enough (1)
$\checkmark^{\text {c }}$ conductivity water poor conductor / temperature of
liquid
different from that recorded on
(3 marks)
thermometer (1)
ANY THREE
(c) Melting temperature (1)
more widely spread / significant difference/boiling temperatures too close/boiling temperatures dependent on pressure (1) "m pt" with NO reason [0]
(2 marks)

Total 10 marks
4. $\quad \checkmark \mathbf{V} \quad$ Add known volume (1)
$\checkmark \mathbf{K}$ Of oxidising agent solution to excess (1) KI (aq)
$\checkmark \mathbf{T}$ Titrate liberated iodine against (standardised) sodium thiosulphate [if name and formula given ignore incorrect one](1)
\checkmark S To starch end point [colour change must be stated](1)
\checkmark R Repeat with second solution (1)
\checkmark C Capable of oxidising more iodide ions (1)
OR
\checkmark V Known volume (1)
\checkmark K Excess KI (1)
\checkmark C Colorimeter (1)
\checkmark M Measure colour density (1)
\checkmark R Repeat with $2^{\text {nd }}$ solution (1)
\checkmark D Darkest is best (1)
If candidate assumes identity of oxidising solutions then ignore and mark (6 marks) appropriately

Total 6 marks

Materials required for this practical test

Materials

Each candidate will require:
(a) $5 \mathrm{~cm}^{3}$ of a $50: 50$ by volume mixture of propanone and 2-methylpropan-2-ol. This must be labelled S. Its identity must not be revealed to candidates
(b) access to solid phosphorus pentachloride
(c) $3 \mathrm{~cm}^{3}$ of 2,4-dinitrophenylhydrazine reagent prepared by dissolving 0.25 g of solid reagent in $50 \mathrm{~cm}^{3}$ of concentrated HCl with $50 \mathrm{~cm}^{3}$ of water then diluting to $250 \mathrm{~cm}^{3}$
(d) $3 \mathrm{~cm}^{3}$ of aqueous potassium dichromate(VI); concentration $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$
(e) $5 \mathrm{~cm}^{3}$ of aqueous sulphuric acid; concentration $2 \mathrm{~mol} \mathrm{dm}^{-3}$
(f) $10 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide; concentration $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
(g) $5 \mathrm{~cm}^{3}$ of aqueous iodine, prepared by mixing 12.7 g solid iodine with 20 g of solid potassium iodide, dissolved in $40 \mathrm{~cm}^{3}$ of water and then diluted to $1 \mathrm{dm}^{3}$
(h) $5 \mathrm{~cm}^{3}$ of freshly prepared aqueous ammonia; concentration $2 \mathrm{~mol} \mathrm{dm}^{-3}$
(i) $1 \mathrm{~cm}^{3}$ of aqueous barium nitrate; concentration $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$
(j) $2 \mathrm{~cm}^{3}$ of aqueous lead(II) nitrate; concentration $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$
(k) $5 \mathrm{~cm}^{3}$ of butanone, labelled \mathbf{T}. The identity of this must not be revealed to candidates
(l) red and blue litmus paper
(m) 0.5 g of solid ammonium nickel(II) sulphate, labelled \mathbf{X}. The identity of this must not be revealed to candidates
(n) $2 \mathrm{~cm}^{3}$ of dilute nitric acid; concentration $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$.

Unit Test 6246/02

1 (a) (i) Amount $\mathrm{NaOH}=0.0243 \times 0.100=0.00243 \mathrm{~mol}=$ amount of HCl in $25 \mathrm{~cm}^{3}$ portion
Amount HCl in excess $=0.00243 \times 4=0.00972 \mathrm{~mol}$
Amount HCl at start $=0.100 \times 0.225=0.0225 \mathrm{~mol}$
Amount HCl reacted with $\mathrm{NH}_{3}=0.0225-0.00972=$ 0.01278 mol

Amount of ammonia produced $=0.01278 \mathrm{~mol}$
Alternative route via $25 \mathrm{~cm}^{3}$ possible
If $x 4$ not included mark consequentially
(ii) Mass of nitrogen in sample $=14 \times 0.01278=0.1789 \mathrm{~g}$
$\%$ nitrogen in $X=0.1789 \times 100 / 1.19=15.0 \%$
(2 marks)
(b) (i) $\mathrm{N} \quad 28.3 \div 14=2.02$

C $36.4 \div 12=3.03$
H $3.0 \div 1=3.0$
$0 \quad 32.3 \div 16=2.02$
Empirical formula is $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$
(1)
(2 marks)
(ii) Mass of $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}=99$ which is $1 / 2$ of 198

Molecular formula is $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{4}$
Z is

(1)
(1)

Note: $2 \times \mathrm{NO}_{2}$ in any position on the ring
(i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-}$

Or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{OH}$
(ii) Axes labelled with linear pH scale
(1)
(1)

Starting $\mathrm{pH}=8.8$ and finishing $\mathrm{pH}=1-2$
(1)

Vertical at $10 \mathrm{~cm}^{3} \mathrm{HCl}$
(1)

Equivalence point pH 4-5
Vertical range: at least 3 pH units in the range 2 to 7

Max 3 if graph drawn from low to high pH
Max 4 if poor shape
(b) (i) Phenylamine reacts with acids to form ions / forms a salt / joins with H^{+}from acid as it is base/ionic equation
which form strong (ion/dipole) attractions with / are hydrated by the water molecules / or some explanation of interaction with water.

In phenylamine the hydrogen bonding between (the $\delta+\mathrm{H}$ in) the NH_{2} group and the ($\delta-\mathrm{O}$ in) water (causes its slight solubility)
in spite of the large non-polar benzene ring

QWC

(ii) There are hydrogen bonds (and van der waals' forces) between
phenylamine molecules phenylamine molecules

Which are stronger and so require more energy to separate than the van der waals' forces between chlorobenzene molecules.
(1)
(c)

Correct formula of organic product with 3 Br atoms on ring in any
(d) (i)

$$
\begin{align*}
& \text { Cycle (or as energy level diagram) drawn } \\
& \text { Labels } \\
& \begin{aligned}
\Delta \mathrm{H}_{\text {solution }} & =-\Delta \mathrm{H}_{\text {lattice }}+\Delta \mathrm{H}_{\text {hydration }} \text { of } \mathrm{K}^{+}+\Delta \mathrm{H}_{\text {hydration }} \text { of } \mathrm{Br}^{-} \\
& =-(-670)+(-322)+(-335) \\
& =+13 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned} \tag{1}
\end{align*}
$$

Probably / yes / possible/because reaction only slightly endothermic.
The mark here is for the argument.
Allow probably not if this is followed by a sound argument. Do not allow it is insoluble.

3 (a) (i) Buta-1,3-diene would have 2 nmr peaks

One caused by the CH_{2} hydrogen atoms and the other by the CH hydrogen atoms
(1)

The peaks could be shown on an annotated diagram.
(ii) Bond break:

Bond make
$2 \times C=C \quad 2 x$ b.e.
$2 \times \mathrm{C}$ - $\quad 2 \mathrm{x}-348$
$2 \times \mathrm{H}-\mathrm{H} \quad 2 \mathrm{x}+436$
$4 \mathrm{xC}-\mathrm{H} \quad 4 \mathrm{x}-412$
(1)

Total $=2 \times$ b.e. +872
total $=-2344$
$2 \times$ b.e. $+872-2344=\Delta H=-237$
$2 \times$ b.e. $=-237-872+2344=+1235$
b.e. $=+618 \mathrm{~kJ} \mathrm{~mol}^{-1}$

If candidate chooses to break all the bonds, form all the bonds the data is 3692 and 5164.

Here the double bonds are delocalised and so the bond enthalpy is different.
(1)
(iii)

Double humps with E_{a} marked (1)
(1)

Reactants above products with $\Delta \mathrm{H}$ marked (1)
Catalyst will have no effect on $\Delta \mathrm{H}$
(1)
(b) (i) (As there are 6 ligands around the Ni^{2+} ion,) there are 6 bonding pairs of electrons (and no lone pairs)
QWC These adopt a position of minimum repulsion / repel to get as far apart as possible, which is an octahedral shape.
(1)
The ligands cause the d-orbitals in the nickel ion to split into two levels
Some frequencies of (white) light are absorbed
the energy promotes an electron / electron jumps from the lower to the upper level (causing the ion to have the complementary colour to the light absorbed).
If answer includes reference to emitted energy as electron falls back MAX 1 for splitting of d-orbitals
(ii) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Ni}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]+2 \mathrm{NH}_{4}^{+}$
or
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Ni}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]+2 \mathrm{H}_{2} \mathrm{O}$
$\left[\mathrm{Ni}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+2 \mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O}$
Allow $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
Allow any balanced equation that involves correct ligand exchange

4 (a) (i) EITHER a catalyst provides an alternative path with a lower activation energy

W Thus a greater proportion of the molecules/ collisions has (kinetic) energy greater than or equal to the new activation energy (than to the old).

This means that a greater fraction of the collisions will result in reaction / are successful

OR

- Gas molecules absorbed onto (active sites) on surface of catalyst/ bonds to surface
- This lowers E_{n} for reaction
- Thus a greater proportion of the molecules/ collisions has (kinetic) energy greater than or equal to the new activation energy (than to the old) / reference to better orientation for reaction on surface
(ii) Lowering the pressure will have no effect on K_{p}

However it will cause the position of equilibrium to shift to the left
which is the side with more gas molecules.
(b) (i) The functional group in \mathbf{P} is an aldehyde / CHO group

Not carbonyl
The functional group in \mathbf{Q} is an alcohol / OH group
The functional group in \mathbf{R} is a (carboxylic) acid /
COOH group
\mathbf{P} is

Q is

(6 marks)
(ii) The reagent is ethylmagnesium bromide/chloride/iodide/ Grignard
Allow name or correct formula
The conditions are dry ether(solution)
(1)
followed by hydrolysis with dilute acid
(c) (i) $\begin{aligned} & 6 \mathrm{Cl}^{-} \rightleftharpoons 3 \mathrm{Cl}_{2}+6 \mathrm{e}^{-} \\ & \left.\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{OE} \mathrm{E}^{\ominus} \quad \begin{array}{l} \\ =+1.33 \mathrm{~V}\end{array}\right)=-1.36 \mathrm{~V}\end{aligned}$
$6 \mathrm{Cl}^{-}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \rightleftharpoons 3 \mathrm{Cl}_{2}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{OE}_{\text {cell }}^{\ominus} \mathrm{I}=-0.03 \mathrm{~V}$
which is negative so it will / should not happen/ not feasible
OR
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} / \mathrm{Cr}^{3+}$ is less positive than $\mathrm{Cl}_{2} / \mathrm{Cl}^{-}$, (1)
so $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ is a weaker oxidising agent (than Cl_{2}) (1) therefore $\mathrm{Cr}_{2} \mathrm{O}^{2-}$ will / should not oxidise Cl^{-}(1)

The answer can be argued from a calculation that shows that the reaction between chromium(III) ions and chlorine molecules has a positive $E_{\text {cell }}^{\theta}$ and this would mean that the reverse reaction would not be feasible.
(ii) The conditions are not standard when concentrated solutions are used / when solutions are not 1 molar/ when reaction mixture is heated.
$\mathrm{E}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{Cr}^{3+}\right)$ gets more positive $/ \mathrm{E}\left(\mathrm{Cl}^{-} / \mathrm{Cl}_{2}\right)$ gets less negative, (so $\mathrm{E}_{\text {cell }}$ gets more positive)

APPENDIX A (STATISTICS)

Mark Ranges and Award of Grades

Unit/Component	Max. Mark (Raw)	Mean Mark	Standard Deviation	\% Contribution to award	Number Sat
$6245 / 01$	75	39.6	17.1	100	475
$6246 / 01 \mathrm{~A}$	50	29.4	8.8	50	276
$6246 / 02$	50	26.8	11.4	50	334

6245/01

Grade	Max Mark	A	B	C	D	E
Raw boundary mark	75	57	51	45	39	34
Uniform boundary mark	90	72	63	54	45	36

6246/01A + 6B

Grade	Max Mark	A	B	C	D	E
Raw boundary mark	100	76	70	64	58	53
Uniform boundary mark	120	96	84	72	60	48

For more information on Edexcel qualifications, please visit www.edexcel.org.uk/qualifications Alternatively, you can contact Customer Services at www.edexcel.org.uk/ask or on 08702409800.

Edexcel Limited. Registered in England and Wales no. 4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

[^0]: ALLOW
 Any amino acid OR
 Any amino acyl chloride for first 2 marks

