Unit Test 6241/01A

1 (a) (i) $\quad\left(1 s^{2}\right) 2 s^{2} 2 p^{6}$
OR $2 s^{2} 2 p x^{2} 2 p y^{2} 2 p,{ }^{2}$
$2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{1 \circ} 4 s^{2} 4 p^{6} / 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$
(b) Krypton because greaterl stronger (NOT more) van der Waals' / London/ dispersion/ temporary or induced dipole forces / attractions (1)

Because of larger number of electrons / extra shell(s) of
(2 marks)
electrons (1)
(c) (i) Sample bombarded/ fired at by electrons/ electron gun (1)

Knocks out/ loses/ removes electrons from the sample
Or equation (1)
(ii) Electric/electrostatic field / (negatively) charged plates/ potential difference
(iii) Magnetic field/ (electro)magnet

2 (a) Weighted/ reference to abundance average mass of atoms/ isotopes (in sample) (1)

Relative to (mass of one atom of) ${ }^{12} \mathrm{C}(1)$
(2 marks)
(b) $\quad{ }_{9}^{19} F$

F and atomic no. 9 (1) mass no. 19 (1)
(2 marks)
(b) Any (named) group 3 element (1) -

Big jump between $3^{\text {rd }}$ and $4^{\text {th }}$ I.E. $/ 1^{\text {St }}$ three electrons removed easily. $/ 4^{\text {th }}$ electron in lower energy level/ gained stable octet after 3 e" removed(1)

3(a) (i) $4 \mathrm{Li}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{Li}_{2} \mathrm{O}$
(ii) $2 \mathrm{Na}+\mathrm{O}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{O}_{2}$
(iii) $\mathrm{K}+\mathrm{O}_{2} \rightarrow \mathrm{KO}_{2}$

IGNORE state symbols
(b) Bubbles/ effervescence/ fizzing (1) NOT "see a gas"
floats / moves (on surface)(1)
Any two
melts / forms a sphere (1)
gets smaller/ disappears (1)
(c) Outer / the electron being removed further from nucleus (1)

More shielding/ screening/ explanation of shielding e.g. extra shell reduces attraction of nucleus (1)
Even though/ but more protons/ greater nuclear charge (1)

4 (a) \quad Moles $=2.20 / 101$ (1)
Concentration $=0.0218 / 0.05=0.436\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ but must be in mol dm ${ }^{\mathbf{3}} \mathbf{(1)} \quad$ (2 marks)
(b) (i) Mass $=(0.0218 \mathrm{x}) 85$ (1)
$=1.85(\mathrm{~g})(1)$
Answer could be in kg but units must be quoted
(ii) $\quad \mathrm{Vol}=(24 \mathrm{x}) 0.01089(1)$
$=0.261\left(\mathrm{dm}^{3}\right)(1)$
Can quote volume in any feasible unit
In (a) and (b) intermediate values (if stated) and final answers to calculations must be given to 2-4 s.f.
Penalise SF once
(c) Stability increases followed by an attempt at an explanation (1)
because charge density of cation/ metal ion/ group 1 ion decreases OR size increases but charge stays the same (1)
so polarises/distorts/ weakens bonds within nitrate/ negative ion/ anion less
(1)

(d)	56.5	8.77	34.8
39	12	$16(1)$	

1.45	0.725	2.18
0.725	0.725	0.725

(2:1 : 3) ie $\mathrm{K}_{2} \mathrm{CO}_{3}$
(1)
(3 marks)
If $=19$ in first step ie $\mathrm{K}_{4} \mathrm{CO}_{3} 2$ (out of 3)

5 (a) (i) $+7 / 7+/ \mathrm{VII}$
(ii) $+7 / 7+/$ VII
$\mathrm{Sn}^{2+} \rightarrow \mathrm{aSn}^{4+}+2 \mathrm{e}^{(-)} \mathrm{OR} \mathrm{Sn}^{2+} \rightarrow 2 \mathrm{e}^{\mathrm{H}}-* \mathrm{Sn}^{4+}$
$1_{2}+2 \mathrm{e}^{(-)} \rightarrow 21^{-} \quad\left({ }^{1}\right)$
(2 marks)
(ii) $\mathrm{Sn}^{2+}+1_{2} \rightarrow \mathrm{Sn}^{4+}+21^{-}$

IGNORE state symbols

6 (a) Substance that accepts I removes/ takes electrons or gains electrons from
fluorinel F/ F_{2} (1)
(b) (i) $\mathrm{Cl}_{2}+2 \mathrm{H}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O}$

Formulae (1)
Balancing (1) - dependent on $1^{\text {st }}$ mark
Balanced molecular equation (1) only
(ii) Disproportionation
(c) (i) $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{NCl}$

Or $2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$
IGNORE state symbols
(ii) Mistyl steamy fumes/ gas/ vapour

OR bubbles/ effervescence/ fizzing
OR gets I feels hot / heat comes out
(1 mark)
(d) (i) Trigonal planar diagram (1)

120 marked on diagram (1)
(ii) Trigonal bipyramidal diagram including an attempt at 3-D (1)

120 marked on diagram (1)
90° / mathematical right angle sign marked on diagram (1)
in (i) and (ii) correct name can rescue a poor but not an incorrect
diagram
(a) Si: giant molecular/ atomic/ structure

OR macro molecular/ atomic/ structure
OR Lattice
OR network
OR diagram with a minimum of 5 atoms shown with continuation (1)

P: molecular OR exists as P_{4} (1)
Si: covalent bonds to break (1)
P : intermolecular forces/ van der Waals' forces between molecules to overcome (1)
Therefore more energy to separate silicon atoms (1) - dependent on a reasonable explanation for Si and P
(b) Na: delocalised/ sea of electrons (1)

Na: which are mobile/ (free to) move/ flow (1)
NaCl : ions/ ionic (1)

NaCl : ions not mobile/ in fixed positions (1)
(a) (i) Electron pair/ lone pair acceptor

Or accepts electrons to form a (dative) covalent bond
(ii) Particle with an unpaired electron
(iii) Electron pair/ lone pair donor Or donates electrons to form a (dative) covalent bond
(b) (i) Nucleophilic (1)

Substitution (1)
(ii) (Free) radical (1)

Substitution (1)
(2 marks)
(iii) Electrophilic (1)

Addition (1)
2. (a) $5 ; 4 ; 6$;
(b) cooled (to lower temperature) (1)
oxygen / air reacts with NO (1)
to give $\mathrm{NO}_{2} / \mathrm{N}_{2} \mathrm{O}_{4}$ / name (1)
passed into water (with excess air) (1)
(c) $4 \times 17-4 \times 63$ - both molar masses (1) 50 gives

185 (tonnes) (1) if answer given in grams, unit must be given
(d) Fertiliser/ explosives (production)
(a) (i)
(ii) A
(b) Sodium bromide AND conc sulphuric acid / 50\% sulphuric acid / cone phosphoric acid
OR
Phosphorus tribromide
OR
Bromine AND red phosphorus (1)
Heat (1)
(c) 4
(d) (i) $\frac{69.6}{12}: \frac{10.1}{1}: \frac{20.3}{14}$
= 5.8 : 10.1: 1.45
divide by 1.45
ratio 4: 7:1
formula $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}$
(1)
(ii) Potassium cyanide
(i) Relative molar mass of $C=60$ (1)
(-) $33.4\left(\mathrm{~kJ} \mathrm{~g}^{11}\right)(1)$
(ii) $(-286) / 24000=$
(-) 0.0119 or 0.012
(iii) C produces (carbon dioxide,) a greenhouse gas AND hydrogen produces water only / does not produce a greenhouse gas
Or

C produces carbon monoxide which is toxic AND hydrogen does not produce carbon monoxide/ produces water only
(iv) Liquids are easier to transport or store (than gases) / gas needs to be stored under pressure / gas needs a larger fuel tank (1)
Energy produced from hydrogen per unit volume less than for C (1)

4
(a) $\begin{array}{rr}\mathrm{F} & \mathrm{F} \\ & -\mathrm{C} \\ \mathrm{F} & \mathrm{C} \\ & \mathrm{F}\end{array}$

Allow one carbon atom but not three or more unless two are bracketed together
(1 mark)
(b) Resistant/ inert/ unreactive to foods/ cleaning materials high melting/softening point/ non-flammable/ non-toxic/ stable at high temperatures
(c) Persists in the environment / occupies sites for long time / many sites needed
Allow non-biodegradable
(d) must be related to (c)

C-F bond strong so difficult to break chemically / biologically If `non-biodegradable' used in (c), must refer to biological breakdown
(Total 4 marks)
5 (a) (i) Enthalpy/ heat (energy) change on formation of 1 mole of a compound (1) from its elements (1)
in their standard states! at 1 atm pressure and stated temperature (298 K) (1)
(ii) $(2 \times 34)-(2 \times 90) \quad$ (1) $\Delta \mathrm{H}=-112 \mathrm{kJmol}^{-1}$ (1) $+112 \mathrm{~kJ} \mathrm{~mol}^{-1}$ or $-56 \mathrm{~kJ} \mathrm{moi}^{-1}(1)$
(iii) enthalpy change consequential on (ii) (1)
activation hump shown (1)
diagram properly labelled $-\Delta \mathrm{H}$ with arrows, named reactants and products (1)
(iv) Products thermodynamically more stable than reactants ! exothermic
(v) Reaction has a high activation energy / reactants are kinetically stable
(b) (i) Dynamic - constantly moving! still reacting /

Rate of forward reaction equals rate of reverse reaction (1)
Equilibrium - concentrations/ amounts constant (1)
(ii) position of equilibrium moves right (1)
fewer moles/ molecules on R.H.S. (1)
(iii) products removed from reaction system/ not in the system for long enough

6 (a) (i) correct shape:
starting at/ near origin, not crossing axes, not symmetrical (1)

labels:
energy AND number/ fraction of molecules
(1)
(2 marks]
Ea for the uncatalysed reaction shown well to the right of the peak and Ea for catalysed reaction to the left of this, still to the right of the peak (1)
Some comment concerning the areas under the curve to the right of the Ea lines or labelled shading (1)
Greater number of collisions (or particles) have energy greater than the activation energy/ have enough energy to react (1)
Therefore greater number of successful/ effective collisions (1)
(b) The explanation must refer to molecules or particles:
increase temperature (1)
molecules have more energy (1)
greater proportion of collisions successful / more effective collisions per unit time / more frequent effective collisions (1)

OR
increase pressure/ concentration (1)
more molecules per unit volume or molecules closer together (1)
more frequent collisions / more collisions per unit time (1)

Unit Test 6243/02

(a) Barium $/ \mathrm{Ba}^{\text {t+ }}$
(1 mark)
(b) $\mathrm{BaSO}_{4} /$ barium sulphate
(1 mark)
(c) Nitrogen dioxide / NO_{2}
(1 mark)
(d) Ammonia / $\mathrm{NH}_{3}(1)$ Nitrate $/ \mathrm{NO}_{3}-$
(1) stand alone mark
(e) $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
2.
(a) $\mathrm{C}=\mathrm{C} /$ alkene / carbon-carbon double bond NOT "unsaturated hydrocarbon"
(b) Agi / silver iodide

Penalise missing Hs on (c) and (d) once only
(c) Full structure including $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}-\mathrm{I}$ and all other atoms and bonds correct. I can be on any C atom halogen atom consequential on (b)
(d) Structure from (c) with Br atoms added across $\mathrm{C}=\mathrm{C}$

3 (a) 20 g plus some working and must have units (2) e.g. 40 (1) $\times 5 \times 0.100=20 \mathbf{g}$ (1)
(b) $\frac{23.50 \times 0.0500 \times 2}{25.0}=0.0940\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
correct use of 2:1 mole ratio (1)
method (1)
answer (1)
c(i) Adds $5 \mathrm{dm}^{3}$ of water not makes up to $5 \mathrm{dm}^{3}$ solution. ALLOW NaOH container was not reweighed OR solid/ NaOH left in its container NOT "use volumetric flask"
NOT "NaOH lost"
NOT " failure to wash out NaOH container"
(1 mark)
(ii) Reference to absorbing moisture and/or (named) acidic gas(es)
(1 mark)
d (i) Causes burns / damage to / destroys living tissue OR damage to work bench NOT just "harmful" NOT "corrodes"
(ii) Wear gloves

4 (a) Density $=1.0 \mathrm{~g} \mathrm{~cm}^{-3}$
OR $1 \mathrm{~cm}^{3}$ (of water) weighs 1 g
(b) $\quad(\mathrm{AT}=38.1-19.5=) 18,6\left({ }^{\circ} \mathrm{C}\right)$ calculated or correctly used (1)
$\underline{200 \times 4.18 \times 18.6=15.5 / 15.55(k J)(1) 1000}$
Correct answer with some working (2)
(2 marks)
(c) (Mass used $=198.76-197.68=$) 1.08 calculated or correctly used (1) Moles $=\frac{1.08}{46.0}=0.0235 / 0.02348(1)$
(2 marks)
(d) Answer to (b) (1)

Answer to (c)
e.g. 15.5
0.0235
negative sign and $\mathrm{kJ} \mathrm{mol}^{-1}(1)$
answer correct to 3sf (1)
(3 marks)
(e) (i) Ethanol vaporises/evaporates
(ii) Carbon/soot (1)

Incomplete combustion/insufficient oxygen so reaction does not go to completion (1)

5(a) (Heating under) reflux
Distillation/simple distillation (1) NOT fractional distillation
(b) (i)
$137 \times 3.70(1)=6.9 / 6.85(\mathrm{~g})(1)$
71
(ii) $\quad \frac{4.60}{\text { answer to (i) }} \times 100=67 / 66.67 / 66.7 \%$
(iii) Slow/reaction takes a long time / high activation energy.
(iv) Measure boiling temperature/point (1) Compare with data book/literature/known value (1)
(c) (i) Orange to green
(ii) Oxidation continues (1) carboxylic acid formed (1)
(iii) Aldehyde/first product distilled off as it forms/removed from reaction mixture

6. READ THE WHOLE PLAN THROUGH FIRST Procedure and measurements

- Weigh test tube empty
- Weigh test tube $+\mathrm{QCO}_{3}$
- Heat QCO_{3} to constant mass $\quad \checkmark \quad \checkmark \mathrm{P} 1$

Results and Identification

- loss in mass $\left(=\right.$ moles $\left.\mathrm{CO}_{2}\right)=$ moles $\mathrm{QCO}_{3} \mathrm{Mrco}$,
- Mass of $\mathrm{QCO}_{3}=\mathrm{Mr} \mathrm{QCO}_{3}$ Moles $\mathrm{Qco}_{3}{ }^{\vee}$
- $\mathrm{Mr} \mathrm{Qco}_{3}-60=\mathrm{Ar} \mathrm{Q}$ ALLOW credit via QO route $\quad \checkmark \mathrm{R} 1$
- loss in mass $\left(=\right.$ moles $\left.\mathrm{CO}_{2}\right)=$ moles $\mathrm{QO} \mathrm{Mr} \mathrm{co} 22 \quad{ }_{2} \mathrm{R} 2$
- mass QO $=$ Mr QO moles QO
- MrQO-16=ArO

Alternative correct methods can score up to three marks.

Errors and significance

- Incomplete decompositionlreaction OR impure sample of QCO_{3} lcarbonate
- Not significant since need only match Arto nearest Group 2 element

