| Paper Reference (complete below) | I | nitial(s) |) | |---|----------|--------------------|----------| | date Signature | | | | | Paper Reference(s) | Exami | ner's use | e oi | | 6241.P01 | | | | | Edexcel GCE | Team Le | ader's u | ise (| | Chemistry | | | i | | Advanced Subsidiary | | | | | Unit Test 1 | | Question
Number | Le
Bl | | Wednesday 29 May 2002 - Morning | | 1 | | | Time: 1 hour 15 minutes | | 2 | | | Materials required for examination | ſ | 3 | | | Nil Nil | Ţ | 4 | | | | | 5 | | | | | 6 | | | | | 7 | | | Instructions to Candidates | <u> </u> | 8 | | | In the boxes above, write your centre number, candidate number, your surname and initials, the paper reference and your signature. The paper reference is shown above. | _ | | | | Answer ALL questions in the spaces provided in this question paper. Show all the steps in any calculations and state the units. Calculators may be used. | ļ | | | | Information for Candidates | | | | | A periodic table is printed on the back cover of this question paper. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). The total mark for this paper is 75. | _ | | | | | | | <u> </u> | | Advice to Candidates | | | | Turn over Total 1. (a) Complete the following table: Leave blank | Element | State at room temperature | |----------|---------------------------| | Chlorine | Gas | | Bromine | | | Iodine | | **(2)** | (b) | Describe how you could use solutions of silver nitrate and ammonia to distinguish a solution of sodium iodide from a solution of sodium bromide. | |-----|--| | | | | | | | | | | | | | | | | | (4) | Q1 (Total 6 marks) | 2. (a | ı) | Complete and balance the following equations: | <u>I</u> | |--------------|----|---|----------| | | | (i) $Ca + O_2 \longrightarrow \dots$ | l | | | | (ii) $Na_2O + H_2O \longrightarrow \dots$ | | | | | (iii) $Na_2O + HCl \longrightarrow$ | | | | | (2) | | | (b | | State and explain the trend in thermal stability of the carbonates of the Group 2 elements as the group is descended. | (3) | Q2 | | | | (Total 7 marks) | | N11696 3 | 3. | (a) | | w the shape of each of the following molecules and mark on the diagram a e for the bond angle in each case. | |----|-----|-------|---| | | | (i) | CH ₄ | | | | | | | | | | | | | | | | | | | (ii) | NH_3 | | | | | | | | | | | | | | | | | | | (iii) | BeCl ₂ (2) | | | | | | | | | | | | | | | (2) | | | (b) | | ne the strongest type of intermolecular force present in separate samples of n of the following substances: | | | | (i) | CH_4 | | | | | (1) | | | | (ii) | HF | | | | | (1) | | | | | | | | | | | Leave blank N11696 | Leave
blank | State and explain which of the substances CH ₄ and HF has the higher boiling temperature. | |----------------|--| | | | | | | | Q3 | (2) | | | (Total 10 marks) | **4.** (a) Complete the following table: | Particle | Relative charge | Relative mass | |----------|-----------------|---------------| | Proton | | 1 | | Electron | -1 | | | Neutron | | 1 | | | | (3 | |-----|--|--------------------------| | (b) | State the number of each of the above particles present in one molecule of (showing clearly how you arrive at your answer. | $^{\circ}\mathrm{H}_{4}$ | | | | •••• | | | | | | | | ••••• | | | | (3 | | (c) | Complete the electronic configuration of a chlorine atom. | (*) | | | 1s ² | | | (d) | Give the formula of the chlorine species composed of 17 protons, 20 neutrons 16 electrons. | (1)
and | | | | (2) | | (e) | Write one equation in each case to represent the change occurring when following quantities are measured. | the | | | (i) The first electron affinity of sulphur. | | | | | | | | (ii) The first ionisation energy of sulphur. | (2) | | | |
(1) | | (f) | Explain why the first ionisation energy of chlorine is higher than that of sulphur. | Leave
blank | |-----|---|----------------| | | | | | | | | | | (2) | Q4 | | | (Total 14 marks) | | | | | | | | | | 5. (a) (i) Calculate the number of moles of potassium nitrate, KNO₃, in 10.1 g of KNO₃. Leave blank **(1)** (ii) Potassium nitrate, KNO₃, can be prepared from potassium hydroxide solution as shown in the following equation: $$KOH(aq) + HNO_3(aq) \longrightarrow KNO_3(aq) + H_2O(1)$$ Calculate the minimum volume, in cm^3 , of 2.00 mol dm⁻³ KOH required to produce 10.1 g of KNO₃. **(2)** (iii) Potassium nitrate decomposes, when heated, to produce oxygen. $$2KNO_3(s) {\:\longrightarrow\:} 2KNO_2(s) + O_2(g)$$ Calculate the volume of oxygen gas, in dm³, produced when 10.1 g of potassium nitrate decomposes in this way. (1 mole of gas has a volume of 24 dm³ under the conditions of the experiment.) **(2)** | (i) | Calculate the empirical formula of this compound, using the data above and the periodic table. (3) 0.200 moles of this compound has a mass of 22.0 g. Use this information to help you deduce the molecular formula of this compound. | | Leave
blank | |-----|---|---|----------------| | | (2) (Total 10 marks) | (|)5 | | | | | | | 5. | (a) | State the structure of, and the type of bonding in, the following substances. Draw labelled diagrams to illustrate your answers. | |----|-----|---| | | | (i) Graphite | | | | Structure | | | | Bonding | | | | Diagram: | (4) | | | | (ii) Sodium chloride | | | | Structure | | | | Bonding | | | | Diagram: | | | | | | | | | (3) Leave blank | (b) | Ex | plain why both graphite and sodium chloride have high melting temperatures. | | eave
lank | |-----|-------|---|---|--------------| | | | | | | | | ***** | | | | | | | | ! | | | (c) | (i) | Explain why graphite is able to conduct electricity in the solid state. | | | | | | | | | | | | | | | | | (ii) | Explain why sodium chloride conducts electricity in the liquid state. | | | | | | | | | | | | (1) | Q | 6 | | | | (Total 13 marks) | | | (a) Hydrogen sulphide is produced when concentrated sulphuric acid is added to solid 7. sodium iodide, but sulphur dioxide is produced when concentrated sulphuric acid is added to solid sodium bromide. Complete the following table: Oxidation number of sulphur Compound Formula in compound Sulphuric acid H_2SO_4 Hydrogen sulphide H_2S Sulphur dioxide SO_2 (ii) Use your answers to part (a)(i) to suggest which of the ions, iodide or bromide, has the greater reducing power. Write an ionic half-equation to show the oxidation of chloride ions, Cl-, to (b) (i) chlorine, Cl₂. (ii) Write an ionic half-equation to show the reduction of chlorate(I) ions, OCl⁻, to chloride ions, in acidic conditions. (iii) Bleach is a solution of chlorate(I) ions and chloride ions. Combine the two ionic half-equations above to produce an equation which shows the effect of adding acid to bleach. **Q7** (1) Leave blank (Total 9 marks) | (a) T | The hydrated metal ion $[Mg(H_2O)_6]^{2+}$ contains covalent bonds and dative covalence bonds. | | | | | |--------|---|-------------|--|--|--| | (1 | i) Name two elements in $[Mg(H_2O)_6]^{2+}$ which are joined by a covalent bo | nd. | | | | | | | (1) | | | | | (1 | ii) Name two elements in $[Mg(H_2O)_6]^{2+}$ which are joined by a dative covarbond. | lent | | | | | | | (1) | | | | | (b) (i | On the following diagram of a water molecule draw partial charges on eatom to show the bond polarities: | ach | | | | | | Н | | | | | | (ii | | (1) | | | | | | | | | | | | (ii | ii) Explain whether or not a water molecule is polar overall. | (2) | | | | | | | Q8 | | | | | | (Total 6 mark | | | | | | | TOTAL FOR DADED, 75 MADE | | | | | **END** ## THE PERIODIC TABLE | | - | 7 | | | | | Ü | Group | | | | | m | 4 | S. | 9 | 7 | 0 | |--------------|----------------|--------------|-----------------|---------------|----------------|----------------|------------------|------------------|---------------|-----------------|--------------|---------------|----------------|------------|---------------|----------------|----------------|----------------| | Period | Key | | | | | | | | | | 7 | | - | Hydrogen | | | | | | Molar n | Molar mass g mol | - " | | | | | | | | | Helium | | | _ | | | | | | | Symbol | | | | | | | | | 4 | , | | | 7 | | | | | | | Name | | | | _ | = | 22 | 14 | 91 | 19 | 20 | | 7 | Ľ | | | | | | Atom | Atomic number | \neg | | | | m, | <u>၂</u> | Z, | 0 | щ | Se | | | Lithium | | | | | | | | | | | | Boron
5 | Lamon
6 | Nidrogen
7 | OXygen
8 | - 6
- 6 | 10 | | | 23 | _ | | | | | | | | | | I | 1.7 | 28 | 31 | 32 | 35.5 | 40 | | جر: | Z | | | | | | | | | | | | F | Si | പ | S | ひ | Ar | | ì | Sodium | | | | | | | | | | | | Aluminium | Silicon | Phosphorus | Sulphur | Chlorine | Argon | | | = | _ |
 | | | | | | | | , «, | | 2 | 4 6 | 2 ; | ٤ | - 6 | 8 2 | | • | 33 | | ÷ 5 | \$ F | 15 > | 2 ر | S | × 1 | » c | ? <u>;</u> | 5.50 | 8 V | ع ج | ع و | C V | ÷ 2 | À | : \ | | 1 | Potassium | | Scandium | Titanium | Vanadium | | Manganese |) <u>E</u> | Cobalt | Nickei | Copper | Zinc | Gallium | Germanium | Arsenic | Selenium | Bromine | Krypton | | | 61 | | 21 | 22 | 23 | 24 | 23 | 56 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | | \$8 | _ | 68 | <u>-</u> 5 | 63 | 96 | 66 | 101 | 103 | 901 | 801 | 112 | 115 | 119 | 122 | 82. | 127 | 13 | | vo | Въ | | 7 | Zr | g | Mo | ည | Ru | 뫈 | Pd | Ag | P
C | In | Sn | Sp | Le | | ×e | | | Rubidium | | Yttrium | Zirconium | Niobium | Motybdenum | Technetium
41 | Ruthenium
44 | Rhodium
45 | Palladium
46 | Silver
47 | Cadmium
48 | Indium
49 | £ 8 | Antimony | Tellumum
52 | Lodine
53 | Xenon
54 | | | 133 | | 139 | 87.1 | 181 | 184 | 98! | 061 | 192 | 361 | 197 | 201 | 204 | 202 | 500 | 210 | 210 | 222 | | 9 | CS | | La | Hf | Та | 3 | Re | SO | Ir | Z | Au | Hg | E | Pb | Bi | Po | At | Rn | | | Caesium
55 | Barium
56 | Lanthanum
57 | Hafnium
72 | Tantalum
73 | Tungsten
74 | Tungsten Rhenium | Osmium
76 | Iridium
77 | Platinum
78 | Sold
33 | Mercury
80 | Thallium
81 | Lead
82 | Bismuth
83 | Polonium
84 | Astatine
85 | Radon
86 | | | 223 | + | 227 | | | | | | | | | | | | | | | | | 7 | Fr | | Ac | | | | | | | | | | | | | | | | | | Francium
87 | | Actinium
89 | | | | | | | | | | | | | | | | | | ò | - | | | | | | | | | | | | | | | | | | Ľ | Lutetium
71 | | (257) | Ľ | Lawrencium
103 | | |----------|--------------------|---|--------|----|-----------------------|---| | Ϋ́β | Ytterbium
70 | | (254) | °N | Nobelium
102 | | | Tm | Thulium
69 | | (256) | Md | Mendelevium
101 | | | Ë | Erbium
68 | | (253) | Fm | Fermium
100 | | | H. | Holmium
67 | | (254) | Es | Einsteinium
99 | | | Ē
Ā | Dysprosium
66 | | (251) | Cť | Californium
98 | | | ξ.
L | Terbium
65 | | (245) | Bk | Berkelium
97 | | | B | Gadolinium
64 | | (247) | Cm | Curium
96 | | | En
En | Europium
63 | | (243) | Am | Americium
95 | | | Sm | Samarium
62 | | (242) | Pu | Plutonium
94 | | | Pm | Promethium
61 | | (237) | αN | Neptunium
93 | | | 4 Z | Neodymium
60 | | 238 | Ω | Uranium
92 | | | Pr | Praseodymium
59 | | (1831) | Pa | Protactínium
93 | | | ္ ပ | Cerium
58 | | 232 | Th | Thorium
90 | , | | | | • | | | | |