

Mark Scheme (Final) June 2009

GCE

GCE Chemistry (6256/01)

A PEARSON COMPANY

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

- 1 / means that the responses are alternatives and either answer should receive full credit.
- 2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
- 3 [] words inside square brackets are instructions or guidance for examiners.
- 4 Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.
- 5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(i)	$\begin{array}{l} 6Fe^{2*}(aq) + Cr_2O_7^{2^*}(aq) + \\ 14H^*(aq) \rightarrow 6Fe^{3^*}(aq) + \\ 2Cr^{3^*}(aq) + 7H_2O(l) \end{array}$			2
	6 Fe^{2+} and 6 Fe^{3+} (1)			
	rest of equation (1)			
	Mark independently			

Question Correct Answer Acceptable Answers Reject Mark Number	Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(ii) Moles of dichromate =19.8/1000 x 0.02 (1) = 3.96 x 10 ⁻⁴ To obtain 2^{nd} and 3^{rd} marks they must be derived from stoichiometry in (a)(i) 3 Mass of Fe ²⁺ = 19.8/1000 x 0.02 x 6 = 2.376 x 10 ⁻³ To obtain 2^{nd} and 3^{rd} marks they must be derived from stoichiometry in (a)(i) 3 Mass of Fe = 2.376 x 10 ⁻³ x 55.9 = 0.1328184 (g) (1) TE from incorrect stoichiometry can get full marks % Iron > 100% % purity = 0.1328184/0.149 x 100 = 89.140 %(1) accept 2 to 5 sf % purity = 89.299% % lose of Fe ²⁺ =2.4x10 ⁻³ this gives % as 90.20 if 55.9 Correct answers with or without working 3 marks if Moles of Fe ²⁺ = 2.38 x 10 ⁻³ this gives % as 89.450 if 56 or 89.290 if 55.9	1 (a)(ii)	Moles of dichromate =19.8/1000 x 0.02 (1) = 3.96×10^{-4} Moles of Fe ²⁺ = $19.8/1000 \times 0.02 \times 6 = 2.376 \times 10^{-3}$ Mass of Fe = $2.376 \times 10^{-3} \times 55.9 = 0.1328184$ (g) (1) % purity = $0.1328184/0.149 \times 100 = 89.140 \%$ (1) accept 2 to 5 sf Correct answers with or without working 3 marks	To obtain 2 nd and 3 rd marks they must be derived from stoichiometry in (a)(i) TE from incorrect stoichiometry can get full marks $A_r(Fe)$ of 56 giving mass = 0.133056g % purity = 89.299% if Moles of Fe ²⁺ =2.4x10 ⁻³ this gives % as 90.20 if 56 or 90.04 if 55.9 if Moles of Fe ²⁺ = 2.38 x 10 ⁻³ this gives % as 89.450 if 56 or 89.290 if 55.9	% Iron > 100%	3

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
Number 1 (a)(iii)	Manganate / MnO_4^- / It could oxidise / react with chloride ions (to give chlorine) (1) EITHER \rightarrow Because E of $MnO_4^- \rightarrow$ (+1.51V) is more positive than E of Cl ⁻ (+1.36V) /application / consistent with / of anti-clockwise rule(1) OR Correct explanation of effect on purity	chlorine ions / hydrochloric acid / HCl	MnO₄ ⁻ could reduce chloride (to chlorine) Quoting values on their own does not score a mark	2
	Second mark dependent on			
	the first			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	Octahedral (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)	$\begin{bmatrix} \Delta & C & X & N & X \\ \bullet & C & X & N & X \end{bmatrix}^{-1}$ Do not penalise lack of brackets nor missing sign	All dots/crosses 'lone pairs' can be separate	Positive sign	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(iii)	Monodentate / unidentate (1) Forms dative / coordinate (covalent) bond OR Bonds attached using lone pair (from N or C) (1) Mark independently	Ignore lone pair <u>s</u>	Covalent on its own bonds with pairs of electrons	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(i) QWC	It is seven coordination / forms seven bonds / it has more than 6 points of attachment to ligands / edta is not using all 6 points of attachment (1)		7 ligands 2 different ligands Just stating edta is hexadentate and water is monodentate	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (c)(ii)	[Fe(edta)H ₂ O] ⁻ as when it forms, 3 particles / molecules / ions produce seven/increased number of particles (1) giving a (large) positive value / increase for the entropy (change) (of the system) (1)	If numbers used must be either $2 \rightarrow$ 7 or $3 \rightarrow 7$ / Increase of 5 or 4	Energetically favourable on its own with no mention of entropy Increase in entropy without any justification insufficient for 2 nd mark	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (d)(i)	Pt Fe ²⁺ (aq), Fe ³⁺ (aq) [O ₂ (g) + 4H ⁺ (aq)], 2H ₂ O(l) Pt (1) Must have state symbols square brackets must be in correct place Commas needed.	Written either way round Salt bridge can be shown in a variety of ways Allow [4H ⁺ (aq) + O ₂ (g)]		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (d)(ii)	1.23 - 0.77 = +0.46 (V) (1) Ignore positive sign if working shows it to be positive	-0.46 (V) if cell diagram reversed	0.46 with no sign and no working	2
	equilibrium in which Fe ³⁺ ions or products predominate / almost goes to completion / equilibrium lies well to the rhs / not complete as E ^{Θ} < 0.6V(1)		place goes to completion unless comments on number of electrons transferred equilibrium lies to the right without qualification	
	2 nd mark can be gained by TE from incorrect E value			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (d)(iii)	O_2 + 4H ⁺ + 4Fe ²⁺ \rightarrow 2H ₂ O + 4Fe ³⁺ Reactants and products (1) Balancing (1) Ignore state symbols 2 nd mark dependent on first, unless equation correctly balanced but shown in the wrong direction when this mark can be awarded The direction of the reaction must match the sign in part (ii) unless an equilibrium sign is used when the reactants and products can be on either side	Allow equilibrium sign		2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1 (e)	Reduces activation energy by			2
QWC	forming (activated) complex		Any reference to P	
	with nitrogen or hydrogen		cannot get the first	
	OR		mark	
	activation energy lowered			
	because hydrogen or		Alternative route with	
	nitrogen or gases / adsorbed		lower activation energy	
	/ is held/ bonds to/ reacts		on its own cannot get	
	on surface of iron (1)		the first mark.	
	One from			
	Bond strength between Fe			
	and N_2 or H_2			
	Cost of catalyst compared			
	with effect on rate			
	Lovel of impurities in			
	transition motol			
	transition metal			
	Likelihood of catalyst		Cheapness / abundance	
	poisoning		of iron on its own	
	(1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(i)	Steam distillation prevents decomposition / burning / destroying / degrading of X when heated (1)	Allows product to distil below its bpt /steam breaks bond between oil and bark /distils at a lower temperature	Only organic compounds removed	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(ii) QWC	Solvent extraction/use of separating funnel to separate X from water/ Use of dropping pipette to remove oily layer (1) Dry solvent & X mixture with named suitable drying agent e.g. silica gel /anhydrous CaCl ₂ / anhydrous Na ₂ SO ₄ / anhydrous MgSO ₄ (1)	Ignore references to NaCl (aq) addition	Decant CaCO3 / CoCl2/CuSO4 /H2SO4	3
	(Filter and) distil to remove solvent / re-distil to purify (1)	Allow 1 mark for redistillation even if rest of method incorrect If first mark for separating and second mark for drying then can obtain third mark for leaving to stand / until clear AND filtering / decanting		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)	0.215/18 x 2 = 0.0239 mol H (1) 650/24000 = 0.0271 mol C (1) [0.397-(0.0271 x 12) - 0.0239]/16 = 0.003 mol O (1)	Mass of H = 0.0239g (1) Mass of C = 0.3250g (1) Mass of O = 0.0481g (1)		4
	The numbers candidates calculate only need to be correct to 2 s.f. provided correct method shown e.g. moles of H = 0.024 would gain the mark	The numbers candidates calculate only need to be correct to 2 s.f. provided correct method shown e.g for mass of oxygen allow any number that corrects to 0.048 so 0.0479 would gain the mark		
	0.0271/0.003 = 9, 0.0239/0.003 = 8, 0.003/0.003 = 1 hence C ₉ H ₈ O (1) Ignore significant figures Mark all four points independently	ratio 9:8:1 gains fourth mark if clear which elements they refer to correct empirical formula with no working / incorrect working (1)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	Contains a carbon-carbon double bond/alkene (functional group) (1)	Phenol/activated benzene ring	It has double bonds unsaturated	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (c)(ii)	Contains a carbon-oxygen		Carboxylic acid	1
	double bond/ C=O / carbonyl		Aldehyde or ketone on	
	group/aldehyde or ketone (1)		their own	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(iii)	Contains an aldehyde / alkanal (group) (1)	"Not a ketone" if "aldehyde or ketone" given in (ii)	Aldehyde or alcohol Reducing agent Can be oxidised	1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
2 (c)(iv)	Contains benzene (ring) / arene / aromatic /highly unsaturated (1)	(very) high C:H ratio (very) low H:C ratio	High carbon content unsaturated	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(v)	Benzene ring is monsubstituted/has 5 adjacent hydrogens (1)	If benzene ring mentioned in (iv) then just "monosubstituted" or "5 adjacent H atoms" will gain the mark	4 or 5 adjacent hydrogens benzene ring on its own	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (d)	CH=CH-CHO (1)	-C(CHO)=CH ₂ displayed formula (cis or trans) No TE from 2(b) unless an alkene, aldehyde 5 adjacent bydrogens on the	-CH=CH-COH	1
		benzene ring and matches the empirical formula given in part (b)		

Question C	Correct Answer	Acceptable	Reject	Mark
Number		Answers		
3 (a)(i)	$\frac{2h_{g}^{4}(a) + 0^{2}(a) \xrightarrow{E_{eff}(1+798)} A_{g_{g}}0(a)}{1 \xrightarrow{E_{eff}(1+798)} 0^{2}(a) \xrightarrow{E_{eff}(1+798)} 1} 0^{2}(a) \xrightarrow{E_{eff}(1+798)} 1} \frac{1}{2}A_{g_{g}}(a) \xrightarrow{O(a)} 1^{2}(a) \xrightarrow{E_{eff}(1+798)} 1} \frac{1}{2}A_{g_{g}}(a) \xrightarrow{O(a)} 1^{2}(a) \xrightarrow{2}A_{g_{g}}(a) \xrightarrow{O(a)} 1^{2}(a) \xrightarrow{2}A_{g_{g}}(a) \xrightarrow{O(a)} 1^{2}(a) \xrightarrow{2}A_{g_{g}}(a) \xrightarrow{O(a)} 1^{2}(a) \xrightarrow{2}A_{g_{g}}(a) \xrightarrow{V_{2}} 0^{2}(a) \xrightarrow{V_{2}} 0^{2}(a$	TE from incorrect data in cycle Correct answer alone = 2 marks	Ag ₂ ²⁺ 0 ²⁻ Ag ₂ ⁺ 0 ²⁻ 3 rd mark can be given for correct equation using symbols provided multiples included	4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(ii)	This suggests the bonding model is NOT tending towards covalency / little polarisation (of anion)/ mainly / largely ionic (1) because silver ion is EITHER (quite) large / singly charged / low charge density OR because oxide ion is (quite) small (1)	lgnore charge density of oxide ion	More ionic Completely ionic Purely ionic	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(i)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ (4f ⁰) (1) allow capitals and / or subscripts	[Kr] 4d ¹⁰ [Ar] 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ 3d ¹⁰ 4s ² can be in either order		1
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)(ii)	They have a full 4d (sub) shell/level/orbital (1)	Does not have an incomplete 4d subshell		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	Electrophilic substitution (1) 2 or more nitro groups OR nitro group in different position OR correct formula or name to show this (1) eg 2-nitrotoluene / 1 - methyl - 2 - nitrobenzene / trinitrotoluene		Nitration Any substance that doesn't contain a nitro group eg water, hydrogen etc	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(ii)	does not reduce -COOH/acid group (1)	LiAlH ₄ will reduce / react with / attack the acid group (to form an aldehyde or alcohol) as well as NO_2 / instead of the NO_2 group		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iii)	Add copper sulphate / copper ions (solution) (1) Blue/green/brown (precipitate/complex/solutio n /colour) forms (1)	Any copper compound that contains copper ions Add an acyl chloride(1) and misty (white/steamy) fumes given off (1)	Use of Ninhydrin Nmr Neutralise an acid Add to water and add an indicator	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iv)	Add ethanol (1) Reflux/ (gentle) heat / warm with any acid (name or formula but need not be named) (1) 2 nd mark dependent on reagent given as just alcohol or named alcohol	Add PCl5 (1) then ethanol (1)	Alcohol	2
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(v)	$CO_2CH_2CH_3$ HNCH_2CH_3 (1) or displayed fully or partly	CO ₂ CH ₂ CH ₃ (C ₂ H ₅) ₂ N		1

· ·				
Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (b)	CO L +	$C_7H_4O_2^+$ at 120		2
	\bigcirc			
	$C_7H_6NO^+ / \stackrel{V_{H}}{NH}$ at (120) (1)			
	$C_{3}H_{5}O_{2}^{+} / CO_{2}CH_{2}CH_{3}^{+}$ (at 73)			
	(1)			
	Penalise lack of "+" once			
	only			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)	Benzene ring (hydrogen / protons) at 7.8 (1), Methyl/ethyl/alkyl/alkane (hydrogen / protons) at 1.5 (1)		NH/amine/amide hydrogen at 1.5 Alkane and amine	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d) QWC	Suitable solvent (that is able to interact with both hydrophilic and hydrophobic regions) e.g Alcohol / ethanol / any other named alcohol (1)	Diagrams showing correct intermolecular forces	Strong acid to form salt Water	3
	because hydroxyl group can H bond to amine group OR ester group(1)	If named solvent e.g water can form H bonds with correct groups on benzocaine identified the	Dipole dipole interactions Solvent butan-1-ol / ethanoic acid / water mixture	
	and ethyl group can form (equivalent) vdw forces with benzene ring (1)	second mark can be awarded If named solvent e.g		
	OR propanone (1) C=O group can H bond to the amine (1) and methyl group can form (equivalent) vdw forces with benzene ring (1)	hydrocarbon can form vdw forces with benzene ring the third mark can be awarded If no named solvent suggested maximum (2) if hydrophilic and hydrophobic regions of benzocaine identified		

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4 (e)(i)	Thermal decomposition		Disproportionation	1
	/Redox / reduction (1)		Oxidation	
			Decomposition	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (e)(ii)	$SnCl_4 + 4H_2O \rightarrow Sn(OH)_4 + 4HCl OR$	Instead of 4HCl accept 4H⁺ + 4Cl⁻		1
	$SnCl_4 + 2H_2O \rightarrow SnO_2 + 4HCl$	Accept multiples		