Mark Scheme (Final) June 2009

GCE

GCE Chemistry (6256/01)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
$5 \mathrm{ecf} / \mathrm{TE} / \mathrm{cq}$ (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i)}$	$6 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+$ $14 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 6 \mathrm{Fe}^{3+}(\mathrm{aq})+$ $2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$			$\mathbf{2}$
$\mathbf{6 ~ \mathrm { Fe } ^ { 2 + } \text { and } 6 \mathrm { Fe } ^ { 3 + } (1)}$				
rest of equation (1)				
	Mark independently			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(ii)	Moles of dichromate $\begin{aligned} & =19.8 / 1000 \times 0.02(1) \\ & =3.96 \times 10^{-4} \end{aligned}$ Moles of $\mathrm{Fe}^{2+}=19.8 / 1000 \mathrm{x}$ $0.02 \times 6=2.376 \times 10^{-3}$ Mass of $\mathrm{Fe}=2.376 \times 10^{-3} \mathrm{x}$ $55.9=0.1328184(\mathrm{~g})(1)$ $\%$ purity $=0.1328184 / 0.149 x$ $100=89.140 \%(1)$ accept 2 to 5 sf Correct answers with or without working 3 marks	To obtain $2^{\text {nd }}$ and $3^{\text {rd }}$ marks they must be derived from stoichiometry in (a)(i) TE from incorrect stoichiometry can get full marks $\mathrm{A}_{\mathrm{r}}(\mathrm{Fe})$ of 56 giving mass $=0.133056 \mathrm{~g}$ \% purity $=89.299 \%$ if Moles of Fe^{2+} $=2.4 \times 10^{-3}$ this gives $\%$ as 90.20 if 56 or 90.04 if 55.9 if Moles of $\mathrm{Fe}^{2+}=$ 2.38×10^{-3} this gives $\%$ as 89.450 if 56 or 89.290 if 55.9	\% Iron > 100\%	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(iii)	Manganate / MnO_{4}^{-}/ It could oxidise / react with chloride ions (to give chlorine) (1) EITHER Because E of $\mathrm{MnO}_{4}^{-} \quad \theta$ $(+1.51 \mathrm{~V})$ is more positive than E of $\mathrm{Cl}^{-}(+1.36 \mathrm{~V})$ /application / consistent with / of anti-clockwise rule(1) OR Correct explanation of effect on purity Second mark dependent on the first	chlorine ions / hydrochloric acid / HCl	$\mathrm{MnO}_{4}{ }^{-}$could reduce chloride (to chlorine) Quoting values on their own does not score a mark	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(i)	Octahedral (1)			1
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (b)(ii)	$\left[\begin{array}{lll} \Delta \\ 0 & C^{\stackrel{x}{x}} \underset{\underset{x}{x}}{\stackrel{x}{x}} N_{x}^{x} \\ \underset{0}{x} \end{array}\right]^{-}$ Do not penalise lack of brackets nor missing sign	All dots/crosses 'lone pairs' can be separate	Positive sign	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (b)(iii)	Monodentate / unidentate (1)		Covalent on its own	
	Forms dative / coordinate (covalent) bond OR Bonds attached using lone pair (from N or C) (1) Mark independently	Ignore lone pairs	bonds with pairs of electrons	$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (c)(i) QWC	It is seven coordination / forms seven bonds / it has more than 6 points of attachment to ligands / edta is not using all 6 points of attachment (1)	7 ligands 2 different ligands Just stating edta is hexadentate and water is monodentate	$\mathbf{1}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (c)(ii)	$\left[\text { [Fe(edta) } \mathrm{H}_{2} \mathrm{O}\right]^{-}$ as when it forms, 3 particles / molecules / ions produce seven/increased number of particles (1) giving a (large) positive value / increase for the entropy (change) (of the system) (1)	If numbers used must be either 2 \rightarrow 7 or 3 $\rightarrow 7 /$ Increase of 5 or 4	Energetically favourable on its own with no mention of entropy	$\mathbf{2}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (d)(i)	$\begin{aligned} & \mathrm{Pt} \mid \mathrm{Fe}^{2+}(\mathrm{aq}), \mathrm{Fe}^{3+}(\mathrm{aq}) \\ & \vdots \\ & \mathrm{Pt}(1) \end{aligned}$ Must have state symbols square brackets must be in correct place Commas needed.	Written either way round Salt bridge can be shown in a variety of ways Allow $\left[4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})\right]$		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (d)(ii)	$1.23-0.77=+0.46(\mathrm{~V})(1)$ Ignore positive sign if working shows it to be positive Sign of $\mathrm{E}_{\text {cell }}^{\ominus}$ must match the cell diagram in part (i) equilibrium in which Fe^{3+} ions or products predominate / almost goes to completion / equilibrium lies well to the rhs / not complete as $\mathrm{E}^{-}<$ 0.6 V (1) $2^{\text {nd }}$ mark can be gained by TE from incorrect E value	-0.46 (V) if cell diagram reversed	0.46 with no sign and no working reaction likely to take place goes to completion unless comments on number of electrons transferred equilibrium lies to the right without qualification	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (d)(iii)	$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+$ $4 \mathrm{Fe}^{3+}$ Reactants and products (1) Balancing (1) Ignore state symbols $2^{\text {nd }}$ mark dependent on first, unless equation correctly balanced but shown in the wrong direction when this mark can be awarded sign	Allow equilibrium The direction of the reaction must match the sign in part (ii) unless an equilibrium sign is used when the reactants and products can be on either side	$\mathbf{2}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (e)	Reduces activation energy by forming (activated) complex with nitrogen or hydrogen OR activation energy lowered because hydrogen or nitrogen or gases / adsorbed /is held/ bonds to/ reacts on surface of iron (1)	Any reference to E cannot get the first mark	Alternative route with lower activation energy on its own cannot get the first mark.	
One from Bond strength between Fe and N2 or H2 Cost of catalyst compared with effect on rate Level of impurities in transition metal Likelihood of catalyst poisoning (1)		Cheapness / abundance of iron on its own		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (a) (i) ~}$	Steam distillation prevents decomposition / burning / destroying / degrading of X when heated (1)	Allows product to distil below its bpt /steam breaks bond between oil and bark /distils at a lower temperature	Only organic compounds removed	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$2 \text { (a)(ii) }$ QWC	Solvent extraction/use of separating funnel to separate X from water/ Use of dropping pipette to remove oily layer (1) Dry solvent $\& X$ mixture with named suitable drying agent e.g. silica gel /anhydrous $\mathrm{CaCl}_{2} /$ anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4} /$ anhydrous MgSO_{4} (1) (Filter and) distil to remove solvent / re-distil to purify (1)	Ignore references to $\mathrm{NaCl}(\mathrm{aq})$ addition Allow 1 mark for redistillation even if rest of method incorrect If first mark for separating and second mark for drying then can obtain third mark for leaving to stand / until clear AND filtering / decanting	Decant $\begin{aligned} & \mathrm{CaCO}_{3} / \mathrm{CoCl}_{2} / \mathrm{CuSO}_{4} \\ & / \mathrm{H}_{2} \mathrm{SO}_{4} \end{aligned}$	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)	$\begin{align*} & 0.215 / 18 \times 2=0.0239 \mathrm{~mol} \mathrm{H} \\ & (1) \\ & 650 / 24000=0.0271 \mathrm{~mol} \mathrm{C} \\ & (1) \\ & {[0.397-(0.0271 \times 12)-} \\ & 0.0239] / 16=0.003 \mathrm{~mol} \mathrm{O}(1) \tag{1} \end{align*}$ The numbers candidates calculate only need to be correct to 2 s.f. provided correct method shown e.g. moles of $\mathrm{H}=0.024$ would gain the mark $\begin{aligned} & 0.0271 / 0.003=9 \\ & 0.0239 / 0.003=8 \\ & 0.003 / 0.003=1 \text { hence } \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O} \end{aligned}$ (1) Ignore significant figures Mark all four points independently	Mass of $\mathrm{H}=0.0239 \mathrm{~g}$ (1) Mass of $C=0.3250 \mathrm{~g}$ (1) Mass of $O=0.0481 \mathrm{~g}$ (1) The numbers candidates calculate only need to be correct to 2 s.f. provided correct method shown e.g for mass of oxygen allow any number that corrects to 0.048 so 0.0479 would gain the mark ratio 9:8:1 gains fourth mark if clear which elements they refer to correct empirical formula with no working / incorrect working (1)		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (c) (i) ~}$	Contains a carbon-carbon double bond/alkene (functional group) (1)	Phenol/activated benzene ring	It has double bonds unsaturated	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2}$ (c)(ii)	Contains a carbon-oxygen double bond/ C=O / carbonyl group/aldehyde or ketone (1)		Carboxylic acid Aldehyde or ketone on their own	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (c) (i i i) ~}$	Contains an aldehyde / alkanal (group) (1)	"Not a ketone" if "aldehyde or ketone" given in (ii)	Aldehyde or alcohol Reducing agent Can be oxidised	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2}$ (c)(iv)	Contains benzene (ring) / arene / aromatic /highly unsaturated (1)	(very) high C:H ratio (very) low H:C ratio	High carbon content unsaturated	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 (c) (v)}$	Benzene ring is monsubstituted/has 5 adjacent hydrogens (1)	If benzene ring mentioned in (iv) then just "monosubstituted" or "5 adjacent H atoms" will gain the mark	4 or 5 adjacent hydrogens benzene ring on its own	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 (d)}$	(1)	$-\mathrm{C}(\mathrm{CHO})=\mathrm{CH}_{2}$ displayed formula (cis or trans) No TE from 2(b) unless an alkene, aldehyde 5 adjacent hydrogens on the benzene ring and matches the empirical formula given in part (b)	$-\mathrm{CH}=\mathrm{CH}-\mathrm{COH}$	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)(i)	$2 \mathrm{Ag}(\mathrm{~s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$ Fully labelled cycle of entities/formulae and state symbols. (Allow one missing state symbol)(1) Correct identifiable energy changes OR correct data (1) Multiples not necessary for $2^{\text {nd }}$ mark $\begin{aligned} & {[(2 \times 284.6)+(2 \times 731)+(249.2)+(-141.1)+(798)]} \\ & +L E=-31(1) \\ & L E=-2968\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1) \end{aligned}$ Must have 4 sig figs or mark lost	TE from incorrect data in cycle Correct answer alone = 2 marks	$\mathrm{Ag}_{2}{ }^{2+} 0^{2-}$ $\mathrm{Ag}_{2}{ }^{+} \mathrm{O}^{2-}$ $3^{\text {rd }}$ mark can be given for correct equation using symbols provided multiples included	4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(ii)	This suggests the bonding model is NOT tending towards covalency / little polarisation (of anion)/ mainly / largely ionic (1)	More ionic Completely ionic Purely ionic		
because silver ion is EITHER (quite) large / singly charged low charge density OR because oxide ion is (quite) small (1)	Ignore charge density of oxide ion	$\mathbf{2}$		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 (b) (i)}$	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{6} 4 \mathrm{~d}^{10}$ $\left(4 \mathrm{f}^{0}\right)(1)$ allow capitals and / or subscripts	$[\mathrm{Kr}] 4 \mathrm{~d}^{10}$ $\left[\right.$ Ar $3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{6} 4 \mathrm{~d}^{10}$ $3 d^{10} 4 \mathrm{~s}^{2}$ can be in either order		$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (b)(ii)	They have a full 4d (sub) shell/level/orbital (1)	Does not have an incomplete 4d subshell		$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	Electrophilic substitution (1)		Nitration 2 or more nitro groups OR nitro groubstance that group eg water, hydrogen etc position OR correct formula or name to show this (1) eg 2-nitrotoluene / 1- methyl - 2 - nitrobenzene / trinitrotoluene	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4}$ (a)(ii)	does not reduce -COOH/acid group (1)	LiAlH reall reduce / react with / attack the acid group (to form an aldehyde or alcohol) as well as $\mathrm{NO}_{2} /$ instead of the NO_{2} group	$\mathbf{1}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iii)	Add copper sulphate / copper ions (solution) (1)	Any copper compound that contains copper ions Add an acyl chloride(1) and misty (white/steamy) fumes given off (1)	Use of Ninhydrin Nmr	Neutralise an acid Add to water and add an
	Blue/green/brown (precipitate/complex/solutio n /colour) forms (1)	2		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(iv)	Add ethanol (1) Reflux/ (gentle) heat / warm with any acid (name or formula but need not be named) (1) $2^{\text {nd }}$ mark dependent on reagent given as just alcohol or named alcohol	Add PCl_{5} (1) then ethanol (1)	Alcohol	2
Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(v)	 (1) or displayed fully or partly			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)	${ }^{\|c\|}+\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{2}^{+}$at 120		$\mathbf{2}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)	Benzene ring (hydrogen / protons) at 7.8 (1), Methyl/ethyl/alkyl/alkane (hydrogen / protons) at 1.5 (1)	NH/amine/amide hydrogen at 1.5 Alkane and amine	$\mathbf{2}$	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\begin{aligned} & 4(d) \\ & \text { QWC } \end{aligned}$	Suitable solvent (that is able to interact with both hydrophilic and hydrophobic regions) e.g Alcohol / ethanol / any other named alcohol (1) because hydroxyl group can H bond to amine group OR ester group(1) and ethyl group can form (equivalent) vdw forces with benzene ring (1) OR propanone (1) $\mathrm{C}=\mathrm{O}$ group can H bond to the amine (1) and methyl group can form (equivalent) vdw forces with benzene ring (1)	Diagrams showing correct intermolecular forces If named solvent e.g water can form H bonds with correct groups on benzocaine identified the second mark can be awarded If named solvent e.g hydrocarbon can form vdw forces with benzene ring the third mark can be awarded If no named solvent suggested maximum (2) if hydrophilic and hydrophobic regions of benzocaine identified	Strong acid to form salt Water Dipole dipole interactions Solvent butan-1-ol / ethanoic acid / water mixture	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4}$ (e)(i)	Thermal decomposition /Redox / reduction (1)		Disproportionation Oxidation Decomposition	$\mathbf{1}$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 (e) (i i)}$	$\mathrm{SnCl}_{4}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Sn}(\mathrm{OH})_{4}+$ 4 HCl OR $\mathrm{SnCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SnO}_{2}+4 \mathrm{HCl}$	Instead of 4 HCl accept $4 \mathrm{H}^{+}+4 \mathrm{Cl}^{-}$		$\mathbf{1}$
	Accept multiples			

