Mark Scheme (FINAL) Summer 2008

GCE

GCE Chemistry Nuffield (6256/ 01)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

/ means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- show clarity of expression
- construct and present coherent arguments
- demonstrate an effective use of grammar, punctuation and spelling.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated "QWC" in the mark scheme BUT this does not preclude others.

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)	2 max for Cycle 3 max for Calculation CYCLE (Max 2) OR $\begin{aligned} & \Delta \mathrm{H}_{1}=\Delta \mathrm{H}_{\mathrm{a}}[\mathrm{Ca}(\mathrm{~s})]+2 \Delta \mathrm{H}_{\mathrm{at}}\left[1 / 2 \mathrm{H}_{2}(\mathrm{~g})\right]+\mathrm{E}_{\mathrm{m} 1}[\mathrm{Ca}(\mathrm{~g})]+ \\ & \mathrm{E}_{\mathrm{m} 2}\left[\mathrm{Ca}^{+}(\mathrm{g})\right]+2 \mathrm{E}_{\mathrm{aff}}[\mathrm{H}(\mathrm{~g})] \end{aligned}$ Note: names or values of energy changes in $\Delta \mathrm{H}_{1}$, and "lattice energy" and " $\Delta \mathrm{H}_{\mathrm{f}}$ " or value must be specified here Entities/ formulae with state symbols (1) IGNORE multiples of $\Delta \mathrm{H}_{\text {at }}$ and $\mathrm{E}_{\text {aff }}$ Energy changes, providing recognisable, can be numbers (1) IGNORE multiples	Do not penalise if state symbols and formulae of ions which do not feature in the triangular diagram are missing/ wrong Minimum requirement is what is shown in triangular diagram Recognisable abbreviations for enthalpy changes in either diagram		5

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1(a) cont.	CALCULATION (Max 3) Lattice energy $=-186.2-(178.2+2 \times 218+590+$ 1145-2x 72.774) (1) ALLOW TE from cycle labels $=-186.2-2203.656$ $=-2390 \mathrm{~kJ}^{\left(\mathrm{mol}^{-1}\right)}$ (4SF) (2) ie value, sign and unit Errors (-1 mark for each error) e.g. Incorrect significant figures (2 max) Arithmetic errors from correct Hess application (2 max) Wrong sign or unit (2 max) Only one ionisation energy for $\mathrm{Ca}(\mathbf{2} \mathbf{~ m a x}$) Only one $\mathrm{E}_{\text {aff }}$ for hydrogen gives -2463 (2 max) Only one $\Delta H_{a t}$ for hydrogen gives -2172 (2 max) Only one $E_{\text {aff }}$ \& one $\Delta H_{a t}$ for hydrogen gives -2245 (1 max) Using data for chlorine (121.7 and -348.8) gives - 1645 (1 max) Using $1^{\text {st }}$ ionisation of hydrogen (1312) gives -5159 (2 max) Based on CaH gives - 1816 (1 max)	Correct answer without working (3) $-2389.8 \mathrm{~kJ}\left(\mathrm{~mol}^{-1}\right)$ (2) ie -1 for incorrect SF		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\begin{aligned} & \hline \mathbf{1} \text { (b) } \\ & \text { QWC } \end{aligned}$	Closer for CaH_{2}, as in $\mathrm{AlH}_{3} \mathrm{H}^{-}$more distorted/ polarised OR Closer for CaH_{2}, as in AlH_{3} bond partially covalent/ bond has (more) covalent character/tendency (1) Al^{3+} has greater charge density $O R$ is smaller OR is more charged/ is highly charged (or reverse statements for Ca) (1) For $2^{\text {nd }}$ mark values must have been identified as closer for CaH_{2}. IGNORE comments on charge on hydride ion	More covalent bonding in AlH_{3} Diagram as in Students Book p389 to explain polarisation/ covalency	More covalent bonds in AlH_{3} Fewer covalent bonds in CaH_{2} Quotation of Fajans' rules if not applied to the compounds in question Any reference to molecules for the $1^{\text {st }}$ mark Al^{3+} is small	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (c) QWC	KH: smaller charge on K+$/$ potassium ions so weaker forces (in lattice) (1) [must be clear KH is ionic]	K^{+}bigger than Ca^{2+} so weaker forces (in lattice) Ca²+ has greater charge density than K	Reference to stronger forces forces between molecules of KH	2
HBr: (small) molecules/ no lattice, so weaker forces (van der Waals'/ dipole) (1)	Same reason given for both having lower melting point can score 1 mark if either correct			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (d)(i)	$\mathrm{H}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\mathrm{OH}^{-}$	$2 \mathrm{H}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ca}^{2+} \rightarrow$ $2 \mathrm{H}_{2}+2 \mathrm{OH}^{-}+\mathrm{Ca}^{2+}$	$\mathrm{CaH}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow$ $\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{H}_{2}$	1
	ALLOW multiples IGNORE state symbols			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (d)(ii)	Water is an acid/ reaction is acid-base as water donates protons/ H^{+}(to H^{-}) OR acid-base reaction as H^{-}accepts proton (1) Water is oxidising agent / is reduced / reaction is redox as water accepts electrons (from H^{-}) / increases oxidation number of hydrogen (from -1 to 0) (1) OR reverse argument	Water identified as acid and oxidising agent OR reactions identified as acid-base and redox without reason (max 1) is oxidised with reason	Water is an acid and a base Water is a base as OH^{-}forms Water is a reducing agent and an oxidising agent J ust "Hydride ion is oxidised by the water" Type = Disproportionation	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (a)(i)	One spot on chromatogram/no separation/ poor separation/ overlap of spots (1) R_{f} values very similar OR R_{f} values are 0.26 and 0.27 locating agent	Diagram of ONE spot on chromatogram	Chromatogram with spots run separately, not in mixture Two spots very close together but not touching	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (a) (i i) ~}$	Try different solvent	Use longer paper OR run chromatogram for longer (provided movement of solvent front is still possible)	Run at 90° with same solvent	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) (i) ~}$	Only serine goes green/ blue (with potassium dichromate(VI)) (1)	No change with glycine, green/ blue with serine OR glycine stays orange, green/ blue with serine (1)	2	
	Serine has alcohol/ OH group (on side chain) which can be oxidised/reduces $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-(}(\mathbf{1)}$	Serine can be oxidised to an aldehyde/ carbonyl/ carboxylic acid	Serine has keto group	
Serine has carboxylate group	Just "Glycine cannot be oxidised"			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) (i i) ~}$	Only serine rotates plane of polarisation/ allows light through crossed polaroids (1)	Only serine rotates/ twists polarised light	..changes the path of...	2
	Glycine has no chiral carbon/ no carbon attached to 4 different groups / is achiral lno enantiomers OR Serine has a carbon attached to 4 different groups / is chiral/ asymmetric carbon (1)	...bends....	..affects...	Just "Serine is optically active"
Note: ACCEPT recognisable spelling of chiral				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (b)(iii)	Glycine 3 peaks (1) Serine 5 peaks (1) Different numbers of hydrogen/ proton environments (1)	Different numbers of hydrogen/ proton situations OR Different numbers of molecular environments for hydrogen OR list of 5 environments NH_{2}, $\mathrm{OH}, \mathrm{CO}_{2} \mathbf{H}, \mathrm{CH}_{2}, \mathbf{H}$ in serine OR list of 3 environments NH_{2}, $\mathrm{CO}_{2} \mathrm{H}, \mathrm{H}$ in glycine	Hydrogen types (Different) number of hydrogen atoms Different numbers of hydrogen and carbon environments	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)	 OR - $\mathrm{C}-\mathrm{N}-\quad$ to be displayed $\left(\mathrm{CH}_{2} \mathrm{OH}\right)$ to be in brackets or attached to chain as in diagrams on p 436 ie	Amine group at left can be written NH_{2} rather than $\mathrm{H}_{2} \mathrm{~N}$ Look for displayed peptide bond ACCEPT fully displayed		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (a)	Electrophilic substitution (1) IGNORE extras eg Friedel Craft, alkylation UNLESS contradictory 1-chloro-(2)-methylpropane (1) IGNORE punctuation Catalyst $\mathrm{AlCl}_{3} /$ aluminium chloride (1)	(2)-methyl-1chloropropane $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Cl} /$ $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{Cl}$ "Bromo"/"iodo" for "chloro" $\mathrm{Al}_{2} \mathrm{Cl}_{6}, \mathrm{AlBr}_{3}, \mathrm{FeBr}_{3}$	1-methyl-2chloropropane missing " 1 " from position of Cl in name	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (b)	LiAlH $_{4}$ is a source of H^{-}/ hydride ion (1) Hydrogen might reduce/ attack benzene ring/ H^{-}won't attack region of negative charge/ H^{-}can attack (δ^{+}) C in keto group		Comments on conditions or safety eg temperature, pressure $\mathrm{LiAlH}_{4} / \mathrm{H}^{-}$is a more powerful reducing agent H^{-}is a nucleophile/ a stronger nucleophile Any mention of attack on carboxylate ion (for $2^{\text {nd }}$ mark)	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (c)	Note: although many candidates have calculated the empirical formula, this is not required. Molecular formula of ibuprofen $=\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$ Allow marks for masses and number of moles if answers are rounded to 2 SF in "OR" but method is correct. EITHER $M_{r}=206$ (1) $1 \mathrm{~g}=\frac{1}{206} \mathrm{~mol}=4.854 \times 10^{-3} \mathrm{~mol}$ mass CO_{2} produced from 13 C $\begin{equation*} =13 \times 44 \times 4.854 \times 10^{-3}=2.78 \mathrm{~g} \tag{1} \end{equation*}$ mass $\mathrm{H}_{2} \mathrm{O}$ from 18 H $\begin{equation*} =9 \times 18 \times 4.854 \times 10^{-3}=0.787 \mathrm{~g} \tag{1} \end{equation*}$ OR Mass C $=\left(\frac{(2.78 \times 12}{44}\right)=0.758 \mathrm{~g}$ Mass H $=\frac{(0.786)}{9}=0.0873 \mathrm{~g}$ Moles $\mathrm{C}=\frac{(0.758)}{12}=0.0632$ Moles $\mathrm{H}=0.0873$ Ratio C:H $=0.0632: 0.0873=13: 18$	Allow if given at end		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (d)(i)	(Aspirin and ibuprofen) both contain same (types of) bond(s)(so absorb at same frequency/ wavenumber)	List of at least 4 bonds which are present in both	"groups" for "bonds"	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (d) (i i) ~}$	Data is required for mark Yeak at 3500-3300 (N-H) IGNORE mention of amine OR 3500-3140 (N-H or amide) OR 3750-3200 ((phenolic) O-H) OR Only Y has peaks above 3000 cm (so must contain different type of bond to X and Z)	C-H in arene $=3030$ as present in both		1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3 (d)(iii)	$\begin{align*} & 57 \text { in Ibuprofen } \\ & \mathrm{C}_{4} \mathrm{H}_{9}^{+} / \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}{ }^{+} / \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}{ }^{+} \\ & \mathrm{OR}^{\mathrm{C}_{2} \mathrm{O}_{2} \mathrm{H}^{+} / \mathrm{CCO}_{2} \mathrm{H}^{+} \quad \text { (1) }} \end{align*}$ Aspirin $59 \text { (1) } \mathrm{OCOCH}_{3}^{+} / \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{+}(1)$ OR 121 (1) $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}^{+}$(1) OR 180 (1) $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}{ }^{+}$(parent ion) (1) OR 137 (1) $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2} \mathrm{H}\right) \mathrm{O}^{+}$(1) Penalise no/ wrong charges once only	Structural or displayed formulae	Do not allow lines at $15\left(\mathrm{CH}_{3}{ }^{+}\right)$ $76\left(\mathrm{C}_{6} \mathrm{H}_{4}{ }^{+}\right)$ $43\left(\mathrm{C}_{3} \mathrm{H}_{7}^{+}\right.$or $\left.\mathrm{CH}_{3} \mathrm{CO}^{+}\right)$ $45\left(\mathrm{COOH}^{+}\right)$ as present in both	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	Delocalisation (in carboxylate group/ COO-) makes bond lengths the same	Resonance between C=0 and C-0	Answers based on ethanedioic acid not the ion	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 \text { (a)(ii) }} \mathbf{\text { QWC }}$	3 electron clouds would give triangular/ trigonal (planar) structure round each C (1)	3 bonds repelling......	Atoms repelling	2
Electron density in delocalised $\mathrm{COO}^{-} /$in carboxylate ion/ in $\mathrm{C}=0$ increases repulsion so bond above 120° (1)	Answers based on ethanedioic acid not the ion	Lone pairs on 0 repelling		
Must relate to 120° or triangular/ trigonal structure for 2 ${ }^{\text {nd }}$ mark				

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4}$ (b)(i)	(One) lone pair on each carboxylate/ COO- group OR Ione pair on an oxygen at each end of ion (1)	5-membered ring can form with transition metal ion (1)	Bonds from both oxygens attached to same carbon loses both marks	2
Form (dative covalent/ co-ordinate) bond to (transition) metal (ion) (1)	OR diagram showing arrows from lone pairs on either oxygen at each end of ion/ molecule to metal ion (2)	Ion/ molecule bonded to two separate metal ions		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (b)(ii)	$\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-} /\left[\mathrm{Cr}\left(\left(\mathrm{CO}_{2}\right)_{2}\right)_{3}\right]^{3-}$ Formula (1) Charge (1) $-2^{\text {nd }}$ mark dependent on $1^{\text {st }}$ mark	[] optional	$\begin{aligned} & {\left[\mathrm{Cr}\left(\mathrm{CO}_{2}\right)_{6}\right]^{3-}} \\ & {\left[\mathrm{Cr}^{3+}\left(\left(\mathrm{CO}_{2}^{-}\right)_{2}\right)_{3}\right]} \\ & {\left[\mathrm{Cr}^{3+}\left(\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right)_{3}\right]} \end{aligned}$	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4}$ (c)(i)	$\ldots . .::(2) \mathrm{CO}_{2}(\mathrm{~g}), \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq}) \mid \mathrm{Pt}$	$\ldots .2 \mathrm{CO}_{2}(\mathrm{aq}) \ldots$		
OR				
	$\ldots . .::(2) \mathrm{CO}_{2}(\mathrm{~g}),\left(\mathrm{CO}_{2}\right)_{2}{ }^{2-}(\mathrm{aq}) \mid \mathrm{Pt}$	$\left(\mathrm{CO}_{2}\right)_{2}$	1	
	Order must be correct	ALLOW one missing state sign IGNORE solid line(s)		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (c)(ii)	Maximum (+) 1.51 (V) Minimum - $0.76(V)$			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4 (d) (i)}$	$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{(-)}$(1) $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{e}^{(-)}$(1)		$\left(\mathrm{CO}_{2}\right)_{2}$	2
	ALLOW multiples ALLOW electrons subtracted on LHS ALLOW $\left(\mathrm{CO}_{2}\right)_{2}{ }^{2-}$			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (d)(ii)	$\begin{aligned} \mathrm{Mol} \mathrm{MnO}_{4}^{-} & =(16.80 \times 0.0200 \div 1000) \\ & =3.36 \times 10^{-4} \quad \text { (1) } \end{aligned}$ (Mass $1 \mathrm{~mol} \mathrm{FeC}_{2} \mathrm{O}_{4}=56+24+64=144 \mathrm{~g}$) Moles $\mathrm{FeC}_{2} \mathrm{O}_{4}=(0.0804 \div 144)$ $=5.583 \times 10^{-4} \mathrm{~mol} \text { (1) }$ IGNORE SF Ratio ethanedioate : MnO_{4}^{-} $\begin{aligned} (& =5.583: 3.36) \\ & =1.66: 1 \\ \mathrm{OR} & =1.7: 1 \\ \mathrm{OR} & =5: 3: 3 \end{aligned}$ ALLOW TE to here only Each $\mathrm{FeC}_{2} \mathrm{O}_{4}$ produces $3 \mathrm{e}^{(-)}$so $5 \mathrm{FeC}_{2} \mathrm{O}_{4}$ produce $15 e^{(-)}$required by $3 \mathrm{MnO}_{4}^{-}$ OR answers based on increase and decrease of oxidation number (1)	Answers working backwards from reacting ratios from half-equations can be shown to be consistent with numerical data can gain full marks Full balanced equation		4

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{4}$ (d)(iii)	Rate of decolorisation (of $\mathrm{MnO}_{4}{ }^{-}$) increases as titration proceeds OR It changes colour fasterRate of production of gas increases as titration proceeds	Answers which are not observations	1	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
$\mathbf{5}$ (a)	Stronger van der Waals' forces because more electrons (in repeat unit)	Cl prevents strands/ chains sliding past one another	References to Chloride ions Stronger forces due to dipoles/ polar chlorine / electronegativity of chlorine	Explanations about intramolecular forces
OR bigger Cl make chain less flexible (1)	Chains are more tangled			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (b)	Section of polymer chain $-\mathrm{O}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{COO}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CO}-$ [must have 4×0 and $6 \times \mathrm{C}$ atoms, but only continuation bonds need be shown] OR OR IGNORE " n " after bracket Type Condensation polymerisation (1) Type of link Ester (1)	Different starting points in chain More than two monomer units	Dimer, rather than part of polymer ie no continuation bonds at each end	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(i) QWC	Bonds in rings are 60° (but not 109(.5) ${ }^{\circ}$) so repel	Answers based on Ione pair on oxygen causing attack by electrophiles Bonds in ring are close together and (electrons) repel	1	
	OR bond angles are very small/ tight/ very acute so repel/ strain occurs OR Bonding round carbon is distorted as not tetrahedral OWTTE			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
5 (c)(ii)	$-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-$ OR $-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-$ OR O can be LHS or RHS but not both Only continuation bonds need be shown Can be shown with brackets and " n "	More than two monomer units	-0-0-bond in chain	1

