

Mark Scheme (Results) Summer 2007

GCE

GCE Chemistry Nuffield (6254) Paper 01

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

General Guidance on Marking

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge.

Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

The mark scheme gives you:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

- 1 / means that the responses are alternatives and either answer should receive full credit.
- 2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
- 3 [] words inside square brackets are instructions or guidance for examiners.
- 4 Phrases/words in bold indicate that the <u>meaning</u> of the phrase or the actual word is essential to the answer.
- 5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

6254/01

			EXPECTED ANSWER	ACCEPT	REJECT	MARK
1.	(a)	(i)	methylbenzene/phenylmethane			(1)
		(ii)	SO ₃ H	Alternative substitution products with -SO ₃ H group on other ring positions SO ₃ ⁻ H ⁺ Multiple substitutions Displayed Formulae	Bonding to ring through H or O atom	(1)
	(b)	(i)	(conc.) nitric acid (1) (conc.) sulphuric acid (1) Mark independently	HNO ₃ H ₂ SO ₄	Incorrect formula in conjunction with name Dilute, HNO ₃ (aq) H ₂ SO ₄ (aq)	(2)
		(ii)	NO ₂ ⁺		NO ₂ ^{δ+}	(1)
	(c)	(i)	Substitution (1) Electrophilic / electrophile (1)	Either way round	Incorrect type or mechanism in conjunction with correct response	(2)
		(ii)	the ring is more susceptible to attack by electrophiles/ more nucleophilic/ ring has greater electron density (1) as methyl group pushes electrons into ring/ toluene has a dipole moment (1)			(2)
	(d)	Oxida	ation	Partial oxidation	Redox Full oxidation	(1)

EXPECTED AN	SWER	ACCEPT	REJECT	MARK
 (e) sodium/ potassium dichromate((VI)) sulphuric acid or Potassium manganate ((VII)) (1 Sulphuric acid (1) 	(1) (1))	Na ₂ Cr ₂ O ₇ / K ₂ Cr ₂ O ₇ H ₂ SO ₄ dil. or conc. 'acidified dichromate' = 1 or KMnO ₄ H ₂ SO ₄ 'acidified manganate' = 1 OR Potassium manganate ((VII)) (1) Sodium hydroxide (1)	Incorrect oxidation numbers Incorrect Formula in conjunction with correct name	(2)

(f) Test: (Heat with) Benedicts solution (1) Fehlings Solution (3) Result with benzaldehyde: red (ppt) (1) Dependant on 1 st green/ yellow/ brown/ orange Result with benzaldehyde: red (ppt) (1) Dependant on 1 st green/ yellow/ brown/ orange OR Test: Add Brady's Reagents/2,4 dinitrophenylhydrazine (1) Result with benzaldehyde : orange/yellow ppt (1) Dependent on 1 st red OR Result with benzoic acid: remains orange (solution) (1) Dependent on 1 st red 2,4 DNP OR OR Test: Add sodium carbonate solution /sodium hydrogencarbonate solution (1) Dependent on 1 st red 2,4 DNP OR Test: Add sodium carbonate solution /sodium hydrogencarbonate solution (1) Dependent on 1 st red 0range-red Na ₂ CO ₃ (aq) If a test is carried out with an insoluble carbonate then 1 max if its clearly added to benzoic acid solution no reaction no change Result with benzaldehyde: no gas evolved (1) Result with benzoic acid: bubbles of (colourless) gas evolved (1) Test with litmus/UI or other acid-base indicators		EXPECTED ANSWER	ACCEPT	REJECT	MARK
Result with benzaldehyde: red (ppt) (1) makDependant on 1st makgreen/ yellow/ brown/ orange Tollens Regent: Result with benzaldehyde : silver ppt Result with benzaldehyde : orange/yellow ppt (1)Dependant on 1st makgreen/ yellow/ brown/ orange Tollens Regent: Result with benzaldehyde : silver ppt Results with benzoic acid : stays colourlessredOR Test: Add Brady's Reagents/2,4 dinitrophenylhydrazine (1)Result with benzaldehyde : orange/yellow ppt (1)Dependent on 1st markz,4 DNPResult with benzaldehyde : orange/yellow ppt (1)Dependent on 1st markredz,4 DNPOR Test: Add sodium carbonate solution /sodium hydrogencarbonate solution (1)If a test is carried out with an insoluble carbonate then 1 max if its clearly added to benzoic acid solutionno reaction no changeOR Test: Add sodium carbonate solution /sodium hydrogencarbonate solution (1)Result with benzaldehyde: no gas evolved (1)Test is carried out with an insoluble carbonate then 1 max if its clearly added to benzoic acid solutionno reaction no change	(f)	Test: (Heat with) Benedicts solution (1) Fehlings Solution			(3)
Result with benzaldehyde : orange/yellow ppt (1) Dependent on orange-red NazCO3 (aq) NazCO3 (aq) If a test is carried out with an no reaction (1) Result with benzaldehyde: no gas evolved (1) Result with benzaldehyde: no gas evolved (1) If a test is carried out with an Result with benzaldehyde: no gas evolved (1) Test: holde to benzoic acid: bubbles of (colourless) gas evolved (1)		Result with benzaldehyde: red (ppt) (1) Result with benzoic acid: remains blue (1) OR Test: Add Brady's Reagents/2,4 dinitrophenylhydrazine (1)	green/ yellow/ brown/ orange Tollens Regent: Result with benzaldehyde : silver ppt Results with benzoic acid : stays colourless	red 2,4 DNP	
Result with benzoic acid: remains orange (solution) (1) orange-red Na ₂ CO ₃ (aq) OR Test: Add sodium carbonate solution /sodium hydrogencarbonate solution If a test is carried out with an insoluble carbonate then 1 max if its clearly added to benzoic acid no reaction no change Result with benzaldehyde: no gas evolved (1) Result with benzoic acid: bubbles of (colourless) gas evolved (1) Test with litmus/UI or other acid-base indicators		Result with benzaldehyde : orange/yellow ppt (1) Dependent on 1 st mark			
OR Test: Add sodium carbonate solution /sodium hydrogencarbonate solution Na2CO3 (aq) If a test is carried out with an insoluble carbonate then 1 max if its clearly added to benzoic acid no reaction no change Result with benzoic acid: bubbles of (colourless) gas evolved (1) Test with litmus/UI or other acid-base indicators		Result with benzoic acid: remains orange (solution) (1)	orange-red		
indicators		OR Test: Add sodium carbonate solution /sodium hydrogencarbonate solution (1) Result with benzaldehyde: no gas evolved (1) Result with benzoic acid: bubbles of (colourless) gas evolved (1)	Na ₂ CO ₃ (aq) If a test is carried out with an insoluble carbonate then 1 max if its clearly added to benzoic acid solution	no reaction no change Test with litmus/UI or other acid-base	
Total 15 ma				indicators	Total 15 marks

			EXPECTED ANSWER	ACCEPT	REJECT	MARK
2.	(a)	meas for th OR meas for a	suring the time taken (1) he potassium manganate(VII) to become colourless/go brown (1) suring the time taken (1) measured volume of CO ₂ to be collected (1)	measuring the time taken for the potassium manganate(VII) to change colour = 1		(2)
		OR Take (Que	sample at a given time (1) nch and) titrate with Fe ²⁺ (aq) (1)	Other suitable reducing agents		
	(b)	(i)	Glucose = 0 (1) potassium manganate (VII) = 1 - because when the concentration of (potassium manganate (VII)) doubles so does the rate/because the rate in experiment 1 is double the rate in experiment 2 (and [KMnO ₄ ⁻]] is double but [C ₆ H ₁₂ O ₆] and [H ⁺] are constant) (1) hydrogen ions = 1 because order wrt [MnO ₄ ⁻] = 1 so when [MnO ₄ ⁻] & [H ⁺] double, rate is quadrupled / when [MnO ₄ ⁻] is quadrupled and [H ⁺] is doubled rate goes up by a factor of 8 OWTTE (1)			(3)
		(ii)	rate = $k[MnO_4^-][H^+]$ OR rate = $k[KMnO_4][H^+]$	correct names expressions including [C ₆ H ₁₂ O ₆] ⁰ TE from (b)(i)		(1)

EXPECTED ANSWER		EXPECTED ANSWER	ACCEPT	REJECT	MARK
	(iii)	4 x 10 ⁻³ (1)			(2)
		dm ³ mol ⁻¹ s ⁻¹ (1) unit mark independent of 1 st mark but must be consistent with rate equation	units in any order allow TE from (b)(i) & (b) (ii)		
(C)	(i)	3.22×10^{-3} -4.00 both needed for the mark	0.00322 -4		(1)
	(ii)	labelled axes including units and sensible scale(1)correct plotting of points and line of best fit (1)		/10 ⁻³	(2)
	(iii)	gradient = - 10823(K) (1) Ea = 10823 x 8.31 = + 89939 J mol ⁻¹ = (+) 90 kJ mol ⁻¹ / (+) 90 000 J mol ⁻¹ (1)	gradient range = -11200 to -10400 TE from gradient to Ea (+) 93 to (+) 86 kJ mol ⁻¹ but must be consistent with		(2)
			gradient		Total 14 marks

			EXPECTED ANSWER	ACCEPT	REJECT	MARK
3.	(a)	(i)	[6 x 188.7 + 4 x 210.7] - [4 x 192.3 + 5 x 205] (1) +180.8 J mol ⁻¹ K ⁻¹ (1) -1 for missing + sign/missing or incorrect units but penalise only once in part (a) [IGNORE sig fig]	+181 J mol ⁻¹ K ⁻¹	Internal TE	(2)
		(ii)	yes, as 9 molecules of gas are being changed to 10 molecules of gas (therefore increase in disorder)	TE from (i)	Not just 9 molecules going to 10 molecules	(1)
		(iii)	905.6 x 1000 /1123 (1) + 806.4 J mol ⁻¹ K ⁻¹ / 0.8064 kJ mol ⁻¹ K ⁻¹ (1) [IGNORE SF]	+ 806 J mol K ⁻¹		(2)
		(iv)	+987.2 J mol ⁻¹ K ⁻¹	+987 J mol ⁻¹ K ⁻¹ allow TE from (i) & (iii)	No TE if J mol ⁻¹ K ⁻¹ added to kJ mol ⁻¹ K ⁻¹	(1)
		(V)	All products/reaction goes to completion because $\Delta S_{tot} > 200 \text{ J mol}^{-1}\text{K}^{-1}/\Delta \text{Stot}$ is very large [Needs to be consistent with (iv)]			(1)
		(vi)	catalysed pathway should have lower E_a than uncatalysed pathway and the peak of the curve should be above the energy level of the reactants (1)			(2)
			Energy of products should be lower than energy of reactants (1)			

	EXPECTED ANSWER		ACCEPT	REJECT	MARK
(b)	(i)	$K_p = \frac{pNO_2^2}{pNO^2 \times pO_2}$	$\frac{p^2 NO_2}{p^2 NO \times pO_2}$	[]	(1)
	(ii)	mole fraction NO ₂ = $\frac{4.95}{5}$ or 0.99 (1) mole fraction NO = $\frac{0.025}{5}$ or 0.005 OR mole fraction O ₂ = $\frac{0.025}{5}$ or 0.005 (1) $K_p = \frac{(0.99)^2 (1.5)^2}{(0.005)^3 (1.5)^3} = 5227200 / 5.2 \times 10^6$ (1) atm ⁻¹ (1) unit mark independent but consistent with expression used in calculation. IGNORE SF	Correct answer for K _p alone = 3 max		(4)
	(iii)	Equilibrium lies to RHS/products side as K_p is large OR reaction won't go to completion as $K_p < 10^{10}$ Must be consistent with (ii)	Allow TE from b(ii)		(1)
	(iv)	K_p remains unchanged as pressure does not affect it / only temperature affects K_p (1) partial pressure of NO ₂ increases as eqm moves to side of fewest (gas) molecules/RHS (1) or Partial pressure of NO ₂ increases as pp = mole fraction × total pressure	justification in terms of entropy		(2)
					Total 16 marks

		EXPECTED ANSWER	ACCEPT	REJECT	MARK
4.	(a) ($K_a = \frac{\left[CH_2ClCO_2^{-}\right]H^+}{\left[CH_2ClCO_2H\right]}$	[H ₃ O ⁺] in place of [H ⁺] allow one set of sq brackets to be missing		(1)
		i) $[H^*]^2 = 1.3 \times 10^{-3} \times 0.001$ (1) = 1.3×10^{-6} $[H^*] = \sqrt{1.3 \times 10^{-6}}$ 1.14×10^{-3} (1) pH = $-\log 1.14 \times 10^{-3} = 2.9(4)$ (1) [IGNORE SF]			(3)
		 Trichloroethanoic, as it has the largest K_a value (1) and has (3 electron withdrawing) chlorine atoms to stabilise the anion formed (on dissociation). (1) 			(2)
	(b) (HOH H-C-C-O-C-H CIH ester group (1) rest of molecule (1) dependent on first mark (must be fully displayed) methyl chloroethanoate (1)		No transferred error for name	(3)

EXPECTED ANSWER		ACCEPT	REJECT	MARK
(ii)	ester(s)		ether	(1)
(iii)	nucleophile, (1) as it has a lone pair (of electrons) on the (hydroxyl) oxygen (1) which can attack the positive carbonyl carbon on the acid (1)	2 nd and 3 rd marks could be obtained by use of a diagram	Attack by CH ₃ O ⁻	(3)
(iv)	(reflux) heat with NaOH(aq) (1) (cool) and add HCl(aq) (1) OR reflux (1) [must be in context] with HCl (1)			(2)
				Total 15 marks