Mark Scheme (Results)

Summer 2007

GCE

GCE Chemistry Nuffield (6254) Paper 01

General Guidance on Marking

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge.

Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme
The mark scheme gives you:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
$5 \mathrm{ecf} / \mathrm{TE} / \mathrm{cq}$ (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

	EXPECTED ANSWER			ACCEPT	REJ ECT	MARK
1.	(a)	(i)	methylbenzene/phenylmethane			(1)
		(ii)		Alternative substitution products with $-\mathrm{SO}_{3} \mathrm{H}$ group on other ring positions $\mathrm{SO}_{3} \mathrm{H}^{+}$ Multiple substitutions Displayed Formulae	Bonding to ring through H or O atom	(1)
	(b)	(i)	(conc.) nitric acid (1) (conc.) sulphuric acid (1) Mark independently	$\begin{aligned} & \hline \mathrm{HNO}_{3} \\ & \mathrm{H}_{2} \mathrm{SO}_{4} \end{aligned}$	Incorrect formula in conjunction with name Dilute, HNO_{3} (aq) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$	(2)
		(ii)	$\mathrm{NO}_{2}{ }^{+}$		$\mathrm{NO}_{2}{ }^{\text {d+ }}$	(1)
	(c)	(i)	Substitution (1) Electrophilic / electrophile (1)	Either way round	Incorrect type or mechanism in conjunction with correct response	(2)
		(ii)	the ring is more susceptible to attack by electrophiles/ more nucleophilic/ ring has greater electron density (1) as methyl group pushes electrons into ring/ toluene has a dipole moment (1)			(2)
	(d)		ation	Partial oxidation	Redox Full oxidation	(1)

EXPECTED ANSWER		ACCEPT	REJ ECT	MARK
(e)	sodium/ potassium dichromate((VI)) sulphuric acid or Potassium manganate ((VII)) Sulphuric acid \quad (1)	```\(\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\) \(\mathrm{H}_{2} \mathrm{SO}_{4}\) dil. or conc. 'acidified dichromate' = 1 or \(\mathrm{KMnO}_{4}\) \(\mathrm{H}_{2} \mathrm{SO}_{4}\) 'acidified manganate' = 1 OR Potassium manganate ((VII)) (1) Sodium hydroxide (1)```	Incorrect oxidation numbers Incorrect Formula in conjunction with correct name	(2)

	EXPECTED ANSWER	ACCEPT	REJ ECT	MARK
(f)	Test: (Heat with) Benedicts solution (1) Fehlings Solution Result with benzaldehyde: red (ppt) (1) Result with benzoic acid: remains blue (1) \quad Dependant on $1^{\text {st }}$ OR Test: Add Brady's Reagents/2,4 dinitrophenylhydrazine (1) Result with benzaldehyde : orange/yellow ppt (1) Dependent on $\}_{(\mathbf{1})}^{1^{\text {st }} \text { mark }}$ OR Test: Add sodium carbonate solution /sodium hydrogencarbonate solution (1) Result with benzaldehyde: no gas evolved (1) Result with benzoic acid: bubbles of (colourless) gas evolved (1)	green/ yellow/ brown/ orange Tollens Regent: Result with benzaldehyde : silver ppt Results with benzoic acid : stays colourless orange-red $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (aq) If a test is carried out with an insoluble carbonate then 1 max if its clearly added to benzoic acid solution	red 2,4 DNP no reaction no change Test with litmus/UI or other acid-base indicators	(3)
Total 15 marks				

	EXPECTED ANSWER			ACCEPT	REJ ECT	MARK
2.	(a)	measuring the time taken (1) for the potassium manganate(VII) to become colourless/go brown (1) OR measuring the time taken (1) for a measured volume of CO_{2} to be collected (1) OR Take sample at a given time (1) (Quench and) titrate with $\mathrm{Fe}^{2+}(\mathrm{aq})$ (1)		measuring the time taken for the potassium manganate(VII) to change colour = 1 Other suitable reducing agents		(2)
	(b)	(i)	$\begin{equation*} \text { Glucose }=0 \tag{1} \end{equation*}$ potassium manganate $(\mathrm{VII})=1$ - because when the concentration of (potassium manganate (VII)) doubles so does the rate/because the rate in experiment 1 is double the rate in experiment 2 (and $\left[\mathrm{KMnO}_{4}^{-}\right.$] is double but $\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right.$] and $\left[\mathrm{H}^{+}\right]$are constant) (1) hydrogen ions $=1$ because order wrt $\left[\mathrm{MnO}_{4}^{-}\right]=1$ so when [$\left.\mathrm{MnO}_{4}{ }^{-}\right]$\& $\left[\mathrm{H}^{+}\right]$double, rate is quadrupled / when $\left[\mathrm{MnO}_{4}{ }^{-}\right]$is quadrupled and $\left[\mathrm{H}^{+}\right]$is doubled rate goes up by a factor of 8 OWTTE			(3)
		(ii)	$\begin{aligned} & \text { rate }=\mathrm{k}\left[\mathrm{MnO}_{4}^{-}\right]\left[\mathrm{H}^{+}\right] \\ & \text {OR } \\ & \text { rate }=\mathrm{k}\left[\mathrm{KMnO}_{4}\right]\left[\mathrm{H}^{+}\right] \end{aligned}$	correct names expressions including $\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]^{0}$ TE from (b)(i)		(1)

	EXPECTED ANSWER			ACCEPT	REJ ECT	MARK
3.	(a)	(i)	```\([6 \times 188.7+4 \times 210.7]-[4 \times 192.3+5 \times 205]\) (1) \(+180.8 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\) -1 for missing + sign/missing or incorrect units but penalise only once in part (a) [IGNORE sig fig]```	$+181 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$	Internal TE	(2)
		(ii)	yes, as $\mathbf{9}$ molecules of gas are being changed to $\mathbf{1 0}$ molecules of gas (therefore increase in disorder)	TE from (i)	Not just 9 molecules going to 10 molecules	(1)
		(iii)	$\begin{aligned} & --905.6 \times 1000 / 1123 \text { (1) } \\ & +806.4 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} / 0.8064 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & \text { [IGNORE SF] } \end{aligned}$	$+806 \mathrm{~J} \mathrm{~mol} \mathrm{~K}^{-1}$		(2)
		(iv)	$+987.2 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$	$\begin{aligned} & +987 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & \text { allow } \mathrm{TE}^{\text {from (i) } \&} \text { (iii) } \end{aligned}$	No TE if $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ added to $\mathrm{kJ} \mathrm{mol}{ }^{-1} \mathrm{~K}^{-1}$	(1)
		(v)	All products/reaction goes to completion because $\Delta \mathrm{S}_{\mathrm{tot}}>200 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-}$ ${ }^{1} / \Delta$ Stot is very large [Needs to be consistent with (iv)]			(1)
		(vi)	catalysed pathway should have lower E_{a} than uncatalysed pathway and the peak of the curve should be above the energy level of the reactants (1) Energy of products should be lower than energy of reactants (1)			(2)

Total 16 marks

	EXPECTED ANSWER			ACCEPT	REJ ECT	MARK
4.	(a)	(i)	$K_{a}=\frac{\left.\mathrm{CH}_{2} \mathrm{ClCO}_{2}^{-}-\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{2} \mathrm{ClCO}_{2} \mathrm{H}\right]}$	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in place of $\left[\mathrm{H}^{+}\right]$ allow one set of sq brackets to be missing		(1)
		(ii)	$\begin{align*} & {\left[\mathrm{H}^{+}\right]^{2}=1.3 \times 10^{-3} \times 0.001} \tag{1}\\ & =1.3 \times 10^{-6} \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{ } 1.3 \times 10^{-6}} \\ & 1.14 \times 10^{-3} \tag{1}\\ & \mathrm{pH}=-\log 1.14 \times 10^{-3}=2.9(4) \tag{1} \end{align*}$ [IGNORE SF]			(3)
		(iii)	Trichloroethanoic, as it has the largest K_{a} value (1) and has (3 electron withdrawing) chlorine atoms to stabilise the anion formed (on dissociation).			(2)
	(b)	(i)	 ester group (1) rest of molecule (1) dependent on first mark (must be fully displayed) methyl chloroethanoate		No transferred error for name	(3)

