Mark Scheme (Results)

Summer 2007

GCE

GCE Chemistry Nuffield (6252) Paper 01

General Guidance on Marking

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge.

Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme
The mark scheme gives you:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
$5 \mathrm{ecf} / \mathrm{TE} / \mathrm{cq}$ (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

	EXPECTED ANSWER			ACCEPT	REJ ECT	MARK
1	(a)	(i)	$\begin{aligned} & \mathrm{Br}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons 2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})+\mathrm{BrO}^{-}(\mathrm{aq}) \\ & \text { formulae (1) } \\ & \text { balancing (ignore state symbols) } \end{aligned}$	$\begin{aligned} & \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})+\mathrm{HBrO}(\mathrm{aq}) / \\ & \mathrm{BrOH}^{+} \\ & \mathrm{H}^{+}(\mathrm{aq})+\mathrm{BrO}^{-}(\mathrm{aq})+\mathrm{HBr}(\mathrm{aq}) \\ & \text { If } \mathrm{HBr}+\mathrm{HBrO}, \mathrm{H}^{+} \text {must be } \\ & \text { crossed out } \end{aligned}$		(2)
		(ii)	reaction is reversible/equilibrium (reaction) can go backward and forward/can go both ways/occurs in both directions	Reversable		(1)
		(iii)	bromine has been both oxidised and reduced (1) \dagger must mention bromine ($\mathrm{Br} / \mathrm{Br}_{2}$ for first mark) from 0 to +1 and -1	Br oxidation number both increased and decreased /goes up and down	Bromine goes to +1 and -1 must show from 0 Arguments based on OILRIG Incorrect identification of $\mathrm{ox} /$ red i.e. ox is $0 \rightarrow$ -1	(2)
		(iv)	$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{Br}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq})$ formulae (1) balancing and state symbols (1) second mark dependent on first unless correct but non ionic equation given $\begin{equation*} \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{KBr}(\mathrm{aq}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq}) \tag{1} \end{equation*}$	$\begin{array}{\|l\|} \hline \mathrm{Br}_{2}(\mathrm{l}) \\ \text { multiples } \end{array}$	$\begin{aligned} & \mathrm{Cl}_{2}(\mathrm{aq}) \\ & \mathrm{Br}_{2}(\mathrm{~g}) \mathrm{Br}^{2}(\mathrm{aq}) \end{aligned}$	(2)
	(b)	(i)	Sulphur from +4 to $+6 \quad / 4+$ to $6+/ 4$ to 6 Bromine from 0 to -1 Accept name or symbol (S or Br or Br_{2})	Oxidation and reduction transposed but correct numbers 1 (out of 2) Elements correctly identified but incorrect numbers 1 (out of 2) sulfur, sulpher, sulfer		(2)

	EXPECTED ANSWER		ACCEPT	REJ ECT	MARK
	(ii)	Any three from: lower temperature increases yield / because reaction exothermic lower temperature costs less, (less energy used) (1) lower pressure costs less, (pipes thinner/less energy needed to pressurise plant) (1) catalyst speeds up reaction /allows a lower temperature to be used	Can gain 2 marks if both ideas of temperature and pressure put together in same advantage catalyst allows a lower pressure to be used	Lower temp/pressure easier to achieve	(3)
(e)	(i)	ethane $\quad \mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{CH}_{3} . \mathrm{CH}_{3} \mathrm{CH}_{3}-\mathrm{CH}_{3}$	Ethene, methane	(1)
	(ii)	van de(r) Waals/Walls Van Der Waals London forces/temporary dipole-dipole/induced dipole-dipole		VDW vdw Dipoles permanent dipoles Fluctuating/flickering dipoles	(1)
	(iii)	methanol because there are hydrogen bonds between the methanol molecules	Allow ethanol Dipole-dipole interaction	Stronger intermolecular forces	(1)
	(iv)	 correct atoms involved in hydrogen bonds bond angle 180° and correctly indicated	Allow ethanol Drawing does NOT have to be at 180°	 NO TE from (e) (iii) if alkane selected	(2)

Quality of written communication

This should be impression marked on a scale
2-1-0, and the mark out of 2 should be recorded in the body of the script at the end of the answer. This mark can not be lost as a result of a word penalty.

Candidates are expected to:

- show clarity of expression;
- construct and present coherent argument;
-demonstrate effective use of grammar, punctuation and spelling.
The aspects to be considered are:
- use of technical terms; the answer should convey a correct understanding by the writer of the technical terms used in the passage which are involved in the key points.
- articulate expression; the answer should be wellorganised in clear, concise English, without ambiguity. It should read fluently, with the links between key points in the original maintained.
- legible handwriting; the reader should be able to read
the answer without difficulty at normal reading pace, with only the occasional difficulty with a word.
- points must be in a logical order.

Good style and use of English, with only infrequent minor faults, no use of formulae (2)
Frequent minor or a few major faults in style and use of English (1)
Very poor style and use of English (0)
NB: The quality of written communication mark cannot be lost through word penalties.

