Mark Scheme (Results)

Summer 2007

GCE

GCE Chemistry Nuffield (6251) Paper 01

General Guidance on Marking

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge.

Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme
The mark scheme gives you:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/ phrases which are put together in a meaningless manner. Answers must be in the correct context.

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/ word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
3 [] words inside square brackets are instructions or guidance for examiners.
4 Phrases/ words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
5 ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

	EXPECTED ANSWER		ACCEPT	REJ ECT	MARK
4.	(a)	Red / crimson / carmine	Magenta / cherry red		(1)
	(b)	During the flame test promoted/ excited electrons return to ground state, whereas during ionisation electrons leave "permanently"/ completely Flame test: electrons move to higher shells / are excited then fall back again / return to lower shells/ to ground state (releasing energy), i.e. electrons "up then down" Ionisation: electrons leave (permanently), i.e. electrons "out" Any false statement regarding energy changes loses the mark, eg "electrons are promoted to higher shells releasing energy \qquad			(1)
5.	(a)	$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\frac{1000}{25.0} \times 0.020=0.8(0)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	Correct answer with no working.		(1)
	(b)	Neutralisation			(1)
		(Total for Section A: 13 marks)			

	EXPECTED ANSWER			ACCEPT	REJ ECT	MARK
6.	(a)	(i)	Compounds with the same molecular formula/ number and type of atoms, but different structural/structures/ displayed formulae/ arrangements NOT "same chemical formula", unless qualified Must be a generalised definition, and not refer specifically to e.g. hydrocarbons			(1)
		(ii)	\mathbf{B} and \mathbf{E}			(1)
	(b)	(i)	Butanal	Butan-1-al	Butanol / butan-1-ol Butan-1-one	(1)
		(ii)	D/ Butan-1-ol/ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$			(1)
		(iii)	Sodium potassium dic(h)romate((VI)) (1) If oxidation number given, must be correct Sulphuric acid (1) Ignore concentrated/dilute [Mark independently]	$\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$. Acidified dichromate (1 max) $\mathrm{H}_{2} \mathrm{SO}_{4}$	Correct name together with wrong formula (0)	(2)
		(iv)	(Warm) both with Benedict's solution (1) In the case of B (only), it turns (from blue) to give a red/ orange/ brown/ green/ yellow (precipitate) (1) $2^{\text {nd }}$ mark dependent on 1st	Answer using Fehling's test/ $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{H}^{+}$ Tollens reagent gives a silver mirror		(2)
	(c)	(i)	But-1-ene (allow any separator between " t ", " 1 " and " e " or an absence of a separator)	1-butene	Butane/ butan-1-ene	(1)
		(ii)	Dehydration / elimination			(1)
		(iii)	Aluminium ((III)) oxide / alumina	$\mathrm{Al}_{2} \mathrm{O}_{3} /$ pumice/ phosphoric acid $/ \mathrm{H}_{3} \mathrm{PO}_{4} / \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{P}_{4} \mathrm{O}_{10}$		(1)
		(iv)	A/ methanol has only one / doesn't have enough carbons / carbon atoms, so no ($C=C$) double bond possible / alkene cannot be formed Both of these points needed for the mark.			(1)

	EXPECTED ANSWER		ACCEPT	REJ ECT	MARK
	(iii)	Stop marking when operation no longer "works", e.g. distil/add $\mathrm{CaSO}_{4} /$ boil solution to dryness Boil/ heat (NOT warm) to drive off some of the water/ to concentrate (not to dryness) leave/ set aside for some time/ overnight (to crystallise) / allow to cool (must be evident that some solution remains afterwards) (1) Collect crystals by decantation/ filtration/ use of tweezers Dry crystals between (sheets of) filter paper (must imply an "active process" - leaving on filter paper isn't enough) / use of warm oven, not just "oven" (1)			(3)
	(iv)		14.05 g answer to between 2 and 4 sig. fig		(2)
					14 marks)

	EXPECTED ANSWER			ACCEPT	REJ ECT	MARK
9.	(a)	(i)	$\begin{aligned} & \mathrm{E}\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=25.0 \times 4.2 \times 16.5=1730(\mathrm{~J}) \\ & \mathrm{E}[\mathrm{CaO}]=25.0 \times 4.2 \times 25.5=2680(\mathrm{~J}) \end{aligned}$ Both correct for 1 mark Ignore negative signs in front of values / missing/ wrong units	$\begin{aligned} & \hline 1732.5 / 1733 / 1700 \mathrm{~J} \\ & 2677.5 \text { / } 2678 \text { / } 2700 \mathrm{~J} \\ & \text { Answers in kJ acceptable } \end{aligned}$	$\begin{aligned} & \hline 1732 \mathrm{~J} \\ & 2677 \mathrm{~J} \end{aligned}$	(1)
		(ii)	$\frac{1.00}{74.0}=0.0135 \mathrm{~mol}$ Answer must be decimalised	0.014	$\frac{1}{74} / 0.01$	(1)
		(iii)	$\begin{aligned} & \Delta H_{1}=-\frac{1732.5}{0.0135}=-130\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(2 \text { s.f. }) \\ & \Delta \mathrm{H}_{2}=-\frac{2677.5}{0.0135}=-200\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(2 \text { s.f. }) \end{aligned}$ $1^{\text {st }}$ mark for method (dividing energy by number of moles) $2^{\text {nd }}$ mark for both answers given to 2 sig fig and including negative signs. $2^{\text {nd }}$ mark is dependant on $1^{\text {st }}$	Allow TE from (a)(i) and (a)(ii)		(2)

