

Mark Scheme (Results) January 2007

GCE

GCE Chemistry (Nuffield) (6254/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

1.	(a)	(i)	NO ₂ is a gas (whereas BaO is a solid) (1) Ba(NO ₃) ₂ has a more complicated structure than BaO (1) Allow 2 nd mark if a correct statement is combined with a "neutral" wrong statement	Ba(NO ₃) ₂ "molecule" has more electrons / is larger than BaO "molecule" (1) More atoms/ions/particles More complicated/complex compound	Ba(NO ₃) ₂ has a larger molar mass than BaO More molecules/elements	(2 marks)
		(ii)	$\Delta S^{\Theta}_{\text{system}} = 70.4 + (2 \times 240.0) + (\frac{1}{2} \times 205.0) - 213.8 \textbf{(1)}$ = +439.1 J mol ⁻¹ K ⁻¹ (1) -1 per error	+439 J mol ⁻¹ K ⁻¹ J/ mol /K		(2 marks)
	(b)	∆S [⊖] ₅ Pena	surroundings = $-\frac{\Delta H}{T}$ (1) = $-\frac{505 \times 1000}{298}$ = $-1700 \text{ J mol}^{-1} \text{ K}^{-1} (3 \text{ s.f.})$ (1) alise wrong units in (a)(ii) and (b) once only	—1690 J mol ⁻¹ K ⁻ —1695 J mol ⁻¹ K ⁻¹ Answers in kJ mol ⁻¹ K ⁻¹	—1694 J mol ⁻¹ K ⁻¹ —1694.6 J mol ⁻¹ K ⁻¹ —1694.63 J mol ⁻¹ K ⁻¹	(2 marks)
	(C)	∆S [⊖] t <i>Allow</i> Mark The Must	$_{otal}$ = +439.1 — 1695 = — 1260 (J mol ⁻¹ K ⁻¹) (1) w TE [follow through working from (a)(ii) and (b)] c consistently with (a)(ii) and (b) reaction isn't spontaneous / doesn't "go" (at 298K) (1) t be consistent with sign in calculation	—1256 J mol ⁻¹ K ⁻¹ —1261 J mol ⁻¹ K ⁻¹ —1255.5 J mol ⁻¹ K ⁻¹		(2 marks)
	(d)	Whe or im ⇒ ∆ ⇒ T Allov	In just spontaneous, $\Delta S^{\Theta}_{total} = 0$ applied by calculation i.e <u>505 OR 505000</u> a(ii) (1) $\Delta S^{\Theta}_{surroundings} = -439.1 \text{ J mol}^{-1} \text{ K}^{-1}$ $= \frac{505 \times 1000}{439.1} = 1150 \text{ (K)} (1)$ ignore ⁰ K v full marks for an answer without working	1150.1 K 877 °C 1151K with no working (1 max)	1151K for 2 nd mark any negative value for T (in K): no 2 nd mark 1150 ⁰ C	(2 marks)
						Total 10 marks)

(b) F: CH ₃ CH(CH ₃)CHO (1) H: other alkenols and cyclic alcohols, e.g. cyclobutanol / correct enols / cyclic ethers (1) (3 mathef{math	2. (a) Y	Yellow/orange solid/precipitate/crystals formed		Red	(1 mark)
(c)(i)Prevents reagents/products from boiling/volatilising /evaporating away/being lost to the surroundings Reactants have greater chance of reacting since they condense and rejoin the mixtureReduces the risk of fire; (1)Reduces the risk of fire; (1)(1)(1)Prevents potentially harmful vapours from entering the lab (1)(1 m	(b) F G H	 F: CH₃CH(CH₃)CHO (1) G: CH₃CH₂COCH₃ (1) H: e.g. CH₂(=)CHCH₂CH₂OH (1) 	H : other alkenols and cyclic alcohols, e.g. cyclobutanol / correct enols / cyclic ethers (1) Allow displayed formulae		(3 marks)
(ii) Ethyl butanoate (1 n	(C) (i	(i) Prevents reagents/products from boiling/volati away/being lost to the surroundings Reactants have greater chance of reacting since rejoin the mixture	sing /evaporatingReduces the risk of fire; (1)ney condense andPrevents potentially harmful vapours from entering the lab (1)		(1 mark)
	(i	(ii) Ethyl butanoate			(1 mark)
(iii) Ethanol (1) T.E. from (ii) Butanoic acid (2 mathematical states)	(i	(iii) Ethanol (1) Sodium butanoate (1)	T.E. from (ii)	Butanoic acid	(2 marks)
(iv) Hydrolysis / saponification (1 m	(i	(iv) Hydrolysis / saponification		Hydration	(1 mark)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	()	(v) H H H H H H H H I I I I I - C - C - C - C - C - C - C -	ed to (two) oxygen (the C=O/C—O bond is polarized) with δ+ charge on carbon (1) (providing the "carbon" is obviously referring to the carbonyl carbon)	Carbon 'molecule' oxygen 'molecule'	(2 marks)
(Total 11 m					

3.	(a)	(i)	$(5.0/1000) \times 0.010 = 5.0 \times 10^{-5} \text{ (mol)}$		(1 mark)
		(ii)	$\frac{1}{2} \times 5.0 \times 10^{-5} = 2.5 \times 10^{-5} \text{ (mol)}$ (1) TE from (i)		(1 mark)
		(iii)	$2.5 \times 10^{-5} \times (1000/40.0) = 6.25 \times 10^{-4} \text{ mol dm}^{-3}$ (1)	(ii) X5: 2 marks (ii) ÷5: 1 st mark	
			$6.25 \times 10^{-4} / 5 = 1.25 \times 10^{-4} \pmod{\text{dm}^{-3} \text{s}^{-1}}$ (1) Allow T.E.		(2 marks)
	(b)	(i)	First		(1 mark)
		(ii)	First (0) Comparing experiments 2& 3 [I] doubles, so from (b)(i) rate should also double yet rate is 6 times greater, so extra trebling of rate must be caused by trebling of $[S_2O_8^{2^-}]$ \Rightarrow Rate $\propto [S_2O_8^{2^-}]^1$ (1) Or other valid argument		(1 mark)
		(iii)	Rate = $k [S_2 O_8^2] [I]$ (1)	T.E. from (i) + (ii)	(1 mark)
		(iv)	k = rate / ([S ₂ O ₈ ²⁻] [I ⁻]) = 2.74 × 10 ⁻⁵ / (0.01 × 0.02) = $0.137 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ numerical answer (1) units (1) Mark independently	T.E. from (iii)	(2 marks)
			•	· /	(Total 9 marks)

4.	(a)	(i)	pH = 3.5 (1) $log_{10}[H^{+}] = -3.5$ $\Rightarrow [H^{+}] = 3.16 \times 10^{-4} \text{ (mol dm}^{-3}\text{)}$ (1) 2.5(1)x10 ⁻⁴ (mol dm ⁻³) based on pH=3.6 (2 marks)	T.E. from wrong pH providing < 7 3.2X10 ⁻⁴ (mol dm ⁻³) 3X10 ⁻⁴ (mol dm ⁻³) allowed if evidence of rounding being applied		(2 marks)
		(ii)	$K_{a} = \frac{[H^{+}][CH_{3}CH_{2}CH_{2}CO_{2}^{-}]}{[CH_{3}CH_{2}CH_{2}CO_{2}H]} $ (1)	Accept version with $[H_3O^{\dagger}]$ Molecular formulae $[H^{\dagger}] [C_4H_7O_2^{-}]$ $[C_4H_8O_2]$		(1 mark)
		(iii)	$K_{a} = \frac{[H^{+}]^{2}}{[CH_{3}CH_{2}CH_{2}COOH]} (1)$ $= \frac{(3.16 \times 10^{-4})^{2}}{0.00660} (1^{st} \text{ mark can be scored here})$ $= 1.5 \times 10^{-5} \text{ (mol dm}^{-3}) (1)$ Ignore units Only 2 sig. fig. allowed	TE from (i) Allow any number of s.f. provided consistent with calculation	TE from (ii)	(2 marks)
	(b)	(i)	$CH_3CH_2CH_2CO_2H ((aq)) + NH_3((aq)) →$ $CH_3CH_2CH_2CO_2(^)NH_4(^+) ((aq))$ Molecular formulae acceptable	eqn via NH ₄ OH \rightarrow CH ₃ CH ₂ CH ₂ CO ₂ ⁻ +NH ₄ ⁺	Any amide product	(1 mark)
		(ii)	Ammonium butanoate (1) (Excess) butanoic acid (1) no TE from (b)(i)	Ammonium ions and butanoate ions (1)	Butanoate ions alone Formulae	(2 marks)
		(iii)	A buffer (mixture) (1) There is a relatively small rise /change in pH (as aqueous ammonia is added) OWTTE (1) Mark independently		Sharp neutralisation point/ no change in pH	(2 marks)
		(iv)	There is no large increase in pH / vertical shape to the graph (at the end-point) OWTTE	No sudden change in pH	No indicator has the required pH range	(1 mark)

(v)	EITHER	Allow T.E. from (b)(i)	
	End-point = 30 cm^3 (1)		
	\Rightarrow [NH ₃] = (10/30) × 0.00660 = 0.00220 (mol dm ⁻³) (1)		
	OR		
	10 cm ³ of butanoic acid contain 6.60 \times 10 ⁻⁵ mol		
	From equation this requires 6.60 × 10^{-5} mol NH ₃		
	From graph, end-point = 30 cm ³ (1)		
	\Rightarrow [NH ₃] = 6.60 × 10 ⁻⁵ × (1000/30)		
	= 2.20 × 10 ⁻³ / 0.00220 (mol dm ⁻³) (1)		(2 marks)
	Allow internal TE for 2 nd mark based on an incorrect		
	equivalence point i.e. <u>0.0660</u> (mol dm ⁻³)		
	V		
			Total 13 marks)

5.	(a)	(i)	Conc(entrated) / fuming sulphuric acid / sulphur trioxide / SO ₃ (1)	Oleum (1)	Sulphuric acid / H ₂ SO ₄	(1 mark)
		(ii)	Substitution (1)			
			Electrophilic (1)			(2 marks)
	(b)	(Wa Effer meth OR Add 2-me disso OR Add Purp In al	 Image: Arrow of Sodium (1) Image: Arrow of Sodium (1) Image: Arrow of Sodium (1) Image: Arrow of Soluble (1) 	Dissolve in water & measure pH; pH<7 for the phenol (1 max) 2-methoxyphenol forms a salt/ is neutralised by Na0H (1 max) Only 2-methoxyphenol decolourises $Br_2(aq)$ (1 max) Only 2-methoxyphenol reacts with HN0 ₃ (aq) to give a coloured mixture (1 max)	Na ₂ CO ₃ (0) IR spectroscopy	(2 marks)

(0	c) (i)	C ₈ H ₈ O ₃			(1 mark)
	(Opportunities for hydrogen bonding exist (1); diagram shown with intermolecular bonding between H of water molecule and O of phenol/methoxy/carbonyl group or O of water and H of phenol group H^{O-H} , H^{O-H} G^{O-H} , H^{O-H} , H^{O-H} G^{O-H} , H^{O-H} , H^{O-H} G^{O-H} , H^{O-H} , H^{O-H} , H^{O-H} G^{O-H} , H^{O-H} , H	H-bonding	Any illegitimate hydrogen bonding (e.g. to methyl group) even if in combination with correct hydrogen bonding	(2 marks)
	(<u>i</u> ii)	The hydroxyl / hydroxy/phenol group/ OH /–OH (group) (1) $ \begin{array}{c} $	Bronsted-Lowry version involving H ₂ O and H ₃ O ⁺ ; Allow → instead of ← Allow equation where vanillin is neutralised by an alkali / OH ⁻ ions	Hydrox <u>ide</u> group Alcohol group OH⁻/ ⁻OH	(2 marks)

(d)	(i)	To avoid losing too much vanillin (in the filtrate when crystallisation occurs) OWTTE	To maximise the yield	Answer only referring to saturation	(1 mark)
	(ii)	Insoluble impurities removed by hot/ first filtration (1)			
		Soluble impurities remain in solution (1)			(2 marks)
	(iii)	Measure mpt (1)	bpt. method can only score 2 nd		
		Compare with data OR sharp melting point (1)			(2 marks)
(e)	Vani IR sj stret	Ilin <u>is</u> likely to be a product since bectrum of product shows an absorption for aldehyde C=O ching /vibration (1)			
	at at (This	bout 1740-1720 cm ⁻¹ /any value within this range (1) is is absent in the 2-methoxyphenol IR spectrum)			(2 marks)
			•	•	(Total 17 marks)