Mark Scheme (Results) J anuary 2007

CCE

GCE Chemistry (Nuffield) (6254/ 01)

1.	(a)	(i)	NO_{2} is a gas (whereas BaO is a solid) (1) $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ has a more complicated structure than BaO (1) Allow $2^{\text {nd }}$ mark if a correct statement is combined with a "neutral" wrong statement	$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ "molecule" has more electrons / is larger than BaO "molecule" (1) More atoms/ions/particles More complicated/complex compound	$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ has a larger molar mass than BaO More molecules/elements	(2 marks)
		(ii)	$\begin{align*} \Delta S_{\text {system }}^{\ominus}= & 70.4+(2 \times 240.0)+(1 / 2 \times 205.0)-213.8 \tag{1}\\ = & +439.1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}(\mathbf{1}) \\ & -1 \text { per error } \end{align*}$	$+439 \mathrm{~J} \mathrm{~mol}_{\mathrm{J} / \mathrm{mol}^{-1} \mathrm{~K}} \mathrm{~K}^{-1}$		(2 marks)
	(b)	$\begin{gathered} \Delta S_{\text {surroundings }}^{\ominus}=-\frac{\Delta H}{T}(\mathbf{1})=-\frac{505 \times 1000}{298} \\ =-1700 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}(3 \text { s.f. }) \end{gathered}$Penalise wrong units in (a)(ii) and (b) once only		$\begin{aligned} & -1690 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-} \\ & -1695 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & \text { Answers in } \mathrm{kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$	$\left\lvert\, \begin{aligned} & -1694 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & -1694.6 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & -1694.63 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}\right.$	(2 marks)
	(c)	$\Delta \mathrm{S}_{\text {total }}=+439.1-1695=-1260\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(1)$ Allow TE [follow through working from (a)(ii) and (b)] Mark consistently with (a)(ii) and (b) The reaction isn't spontaneous / doesn't "go" (at 298K) (1) Must be consistent with sign in calculation		$\begin{aligned} & -1256 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & -1261 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & -1255.5 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$		(2 marks)
	(d)	When just spontaneous, $\Delta \mathrm{S}_{\text {total }}^{\ominus}=0$ or implied by calculation i.e $\frac{505 \text { OR } 505000}{\mathrm{a}(\mathrm{ii})}$ $\begin{aligned} & \Rightarrow \Delta \mathrm{S}_{\text {surroundings }}^{\ominus}=-439.1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & \Rightarrow \mathrm{~T}=\frac{505 \times 1000}{439.1}=1150(\mathrm{~K})(\mathbf{1}) \end{aligned}$ ignore ${ }^{0} \mathrm{~K}$ Allow full marks for an answer without working		$\begin{aligned} & 1150.1 \mathrm{~K} \\ & 877^{\circ} \mathrm{C} \\ & 1151 \mathrm{~K} \text { with no working (1 max) } \end{aligned}$	1151 K for $2^{\text {nd }}$ mark any negative value for T (in K): no $2^{\text {nd }}$ mark $1150^{\circ} \mathrm{C}$	(2 marks)
		(Total 10 marks)				

2.	(a)	Yellow/orange solid/precipitate/crystals formed			Red	(1 mark)
	(b)	$\begin{aligned} & \text { F: } \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHO}(\mathbf{1}) \\ & \mathbf{G}: \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}(\mathbf{1}) \\ & \mathbf{H}: \text { e.g. } \mathrm{CH}_{2}(=) \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}(\mathbf{1}) \end{aligned}$		H: other alkenols and cyclic alcohols, e.g. cyclobutanol / correct enols / cyclic ethers (1) Allow displayed formulae		(3 marks)
	(c)	(i)	Prevents reagents/products from boiling/volatilising /evaporating away/being lost to the surroundings Reactants have greater chance of reacting since they condense and rejoin the mixture	Reduces the risk of fire; (1) Prevents potentially harmful vapours from entering the lab (1)		(1 mark)
		(ii)	Ethyl butanoate			(1 mark)
		(iii)	Ethanol (1) Sodium butanoate (1)	T.E. from (ii)	Butanoic acid	(2 marks)
		(iv)	Hydrolysis / saponification		Hydration	(1 mark)
		(v)	 (1) The carbon atom is (electrophilic, since it is) attached to (two) oxygen atom(s) which draw away its electron density (1) OWTTE	(the $\mathrm{C}=\mathrm{O} / \mathrm{C}-\mathrm{O}$ bond is polarized) with $\delta+$ charge on carbon (1) (providing the "carbon" is obviously referring to the carbonyl carbon)	Carbon 'molecule' oxygen 'molecule'	(2 marks)
						11 marks)

3.	(a)	(i)	$(5.0 / 1000) \times 0.010=5.0 \times 10^{-5}(\mathrm{~mol})$		(1 mark)
		(ii)	$1 / 2 \times 5.0 \times 10^{-5}=2.5 \times 10^{-5}(\mathrm{~mol})(\mathbf{1})$ TE from (i)		(1 mark)
		(iii)	$\begin{align*} & 2.5 \times 10^{-5} \times(1000 / 40.0)=6.25 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \\ & 6.25 \times 10^{-4} / 5=1.25 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)(\mathbf{1}) \tag{1} \end{align*}$ Allow T.E.	(ii) X5: 2 marks (ii) $\div 5: 1^{\text {st }}$ mark	(2 marks)
	(b)	(i)	First		(1 mark)
		(ii)	First (0) Comparing experiments $2 \& 3$ [1] doubles, so from (b)(i) rate should also double yet rate is 6 times greater, so extra trebling of rate must be caused by trebling of $\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right.$] $\Rightarrow \text { Rate } \propto\left[\mathrm{S}_{2} \mathrm{O}_{8}^{2-}\right]^{1}$ (1) Or other valid argument		(1 mark)
		(iii)	Rate $=\mathrm{k}\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]\left[\mathrm{l}^{-}\right](1)$	T.E. from (i) + (ii)	(1 mark)
		(iv)	$\begin{gathered} \mathrm{k}=\text { rate } /\left(\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-]}[\mathrm{l}]\right)=2.74 \times 10^{-5} /(0.01 \times 0.02)\right. \\ =0.137 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \\ \text { numerical answer (1) units }(1) \\ \text { Mark independently } \end{gathered}$	T.E. from (iii)	(2 marks)
					(Total 9 marks)

4.	(a)	(i)		T.E. from wrong pH providing < 7 $3.2 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $3 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ allowed if evidence of rounding being applied		(2 marks)
		(ii)	$\begin{equation*} \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right]} \tag{1} \end{equation*}$	Accept version with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ Molecular formulae $\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{2}^{-}{ }^{-}\right]}{\left[\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right]}$		(1 mark)
		(iii)	$\begin{aligned} \mathrm{K}_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{CH} 3 \mathrm{CH} 2 \mathrm{CH} 2 \mathrm{COOH}]}(\mathbf{1}) \\ & =\frac{\left(3.16 \times 10^{-4}\right)^{2}}{0.00660} \quad\left(1^{\text {st }} \text { mark can be scored here }\right) \\ & =1.5 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$ Ignore units Only 2 sig. fig. allowed	TE from (i) Allow any number of s.f. provided consistent with calculation	TE from (ii)	(2 marks)
	(b)	(i)	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}((\mathrm{aq}))+\mathrm{NH}_{3}((\mathrm{aq})) \rightarrow \\ & \left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\left(^{-}\right) \mathrm{NH}_{4}{ }^{+}\right)((\mathrm{aq})) \\ & \text { Molecular formulae acceptable } \end{aligned}$	$\begin{aligned} & \text { eqn via } \mathrm{NH}_{4} \mathrm{OH} \\ & \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}+\mathrm{NH}_{4}^{+} \end{aligned}$	Any amide product	(1 mark)
		(ii)	Ammonium butanoate (1) (Excess) butanoic acid (1) no TE from (b)(i)	Ammonium ions and butanoate ions (1)	Butanoate ions alone Formulae	(2 marks)
		(iii)	A buffer (mixture) (1) There is a relatively small rise /change in $\mathbf{p H}$ (as aqueous ammonia is added) OWTTE (1) Mark independently		Sharp neutralisation point/no change in pH	(2 marks)
		(iv)	There is no large increase in $\mathrm{pH} /$ vertical shape to the graph (at the end-point) OWTTE	No sudden change in pH	No indicator has the required pH range	(1 mark)

5.	(a)	(i)	Conc(entrated) / fuming sulphuric acid / sulphur trioxide / SO_{3} (1)	Oleum (1)	Sulphuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$	(1 mark)
		(ii)	$\begin{aligned} & \hline \text { Substitution (1) } \\ & \text { Electrophilic (1) } \end{aligned}$			(2 marks)
	(b)	(Warm) with a lump of sodium (1) Effervescence with 2-methoxyphenol (but not with methoxybenzene) (1) OR Add NaOH (1) 2-methoxyphenol more "soluble" in $\mathrm{NaOH}(\mathrm{aq}) /$ Seen to dissolve /legitimate use of indicator to follow neutralisation (1) OR Add $\mathrm{FeCl}_{3}(\mathrm{aq}) / \mathrm{Fe}^{3+}(\mathrm{aq}) \quad$ (1) Purple coloration with 2-methoxyphenol (1) In all cases $2^{\text {nd }}$ mark dependent on $1^{\text {st }}$		Dissolve in water \& measure $\mathrm{pH} ; \mathrm{pH}<7$ for the phenol (1 max) 2-methoxyphenol forms a salt/ is neutralised by NaOH (1 max) Only 2-methoxyphenol decolourises $\mathrm{Br}_{2}(\mathrm{aq})$ (1 max) Only 2-methoxyphenol reacts with $\mathrm{HNO}_{3}(\mathrm{aq})$ to give a coloured mixture (1 max)	$\mathrm{Na}_{2} \mathrm{CO}_{3}(0)$ IR spectroscopy	(2 marks)

(c)	(i)	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$			(1 mark)
	(ii)	Opportunities for hydrogen bonding exist (1); diagram shown with intermolecular bonding between H of water molecule and O of phenol/methoxy/carbonyl group or O of water and H of phenol group any one of these Intermolecular bonding must not be shown as a Solid line (1)	H-bonding	Any illegitimate hydrogen bonding (e.g. to methyl group) even if in combination with correct hydrogen bonding	(2 marks)
	(iii)	The hydroxyl / hydroxy/phenol group/ OH /-OH (group) (1) Organic ionic product can show negative change delocalised over whole structure Allow molecular formulae	Bronsted-Lowry version involving $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$; Allow \rightarrow instead of \rightleftharpoons Allow equation where vanillin is neutralised by an alkali / OH^{-}ions	Hydroxide group Alcohol group $\mathrm{OH}^{-}{ }^{-} \mathrm{OH}$	(2 marks)

