

Mark Scheme (Results) January 2007

GCE

GCE Chemistry (Nuffield) (6252/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

1	(a)	(i)	$H_2SO_4 + NaCI \rightarrow NaHSO_4 + HCI/$	Either version State symbols (Ignore these)	$H_2SO_4 + NaCI \rightarrow NaSO_4 + H_2CI (0)$	
			$H_2SO_4 + 2NaCI \rightarrow Na_2SO_4 + 2HCI$	Multiples		
			Correct formulae (1) Balanced (1)	4 correct formulae with an		
			Second mark depends on first being correct	additional existing molecule eg H ₂ , SO ₂ Max 1		(2 marks)
		(ii)	White fumes/ white smoke / white solid /white powder	Added description eg dense, thick, reference to ammonium chloride with white fumes/ white smoke white smoke screen	Steamy / misty /colourless/ grey fumes/ bubbles / vapour / gas precipitate /white cloud	(1 mark)
		(iii)	Other hydrogen halides give same result/ hydrogen bromide/hydrogen iodide give same result	Ammonium bromide/ iodide are same colour (as ammonium chloride)	Halogens give same result. Other gases give same result. Could be another acid gas	(1 mark)
	(b)	(i)	Sulphur: from +6 to +4 (1) Bromine: from -1 to 0 (1)	Accept sign after value, Roman numerals	Incorrect signs	(2 marks)
		(ii)	Increase in ox number of bromine = 2x1 / 2 (1) One S decreases in ox number by 2 (1) Must be clear that one S atom is unchanged/only one S	Increase in oxidation number of Br = decrease in oxidation number of S, without	Explanations in terms of electrons	
			changes for second mark. [Look for oxidation no. written under elements in equation]	specifying values (1)		(2 marks)
	(c)	(i)	Going down group Number of electrons increases (1)	Reverse argument going up group	Arguments based on quantum shells.	(2 marks)
			So Van der Waals force (between molecules) increases (1) Ignore comments on radius of atom		vdw for Van der Waals	(
		(ii)	Boiling point between 200 and 300 (K) (1) -73 to +27 if value quoted in \mathcal{C}	B pt 155 - 175(K) with explanation that there are		
			Hydrogen bonding is present (1) Stronger forces between molecules /stronger intermolecular forces (than in other hydrogen halides.) (1)	fewer electrons in HF for maximum 1 mark. Boiling point in correct range,		(3 marks)

	with comment on much stronger dipole in HF and stronger intermolecular forces (2)
	(Total 13 marks)

(a)	(i)	(18x1.35) = 24.3/24.30 (kJ) (1)			(1 mark)
	(ii)	kJ from 1 mole = $\frac{24.3 \times 44}{0.5}$ / $\frac{24.3}{0.0114}$ / 24.3 x 88(1)	$\Delta H = -2138.4/ -2138/+2138$ (kJ mol ⁻¹)for 1 mark		
		$\Delta H = -2140$ (3SF) (kJ mol ⁻¹) (1) Second mark must have negative sign and 3SF Allow TE from incorrect value in (i)			(2 marks)
	(iii)	Incomplete combustion / combustion to C or CO. Not complete combustion (1)		Not all of the propane burns. Comments on accuracy of equipment.	(1 mark)
(b)	(i)	C ₃ H ₈ (g) + 5 O ₂ (g) → 3CO ₂ (g) + 4H ₂ O (g) +6490 kJ mol ⁻¹ 3C(g) + 8H(g)/+ 10 O(g) +6490 = ΔH _c + (6x805 + 8x464) ΔH _c =+6490 - 4830 - 3712 = -2052 kJ mol ⁻¹ Balancing cycle with 5 O ₂ and 10 O(g)(1) ΔH ₁ = (6 x 805 + 8 x 464) = (+) 8542 (kJ mol ⁻¹) (1) Final value -2052 (kJ mol ⁻¹) (1) <i>IGNORE SF</i> Allow TE from an incorrectly calculated ΔH ₁ if method clear.	-2050 (kJ mol ⁻¹)		(3 marks)

	(ii)	H ₂ O is gas in equation/ not standard state OR mean bond energies differ from bond energies in these compounds / Environment in these compounds changes bond energies from the mean.	H_2O is liquid in ΔH combustion calculation but ges in bond energy calculation.	"Mean bond energies are used" without qualification All the substances are in the gasous state	(1 mark)
(c)	(i)	Free radical (1) substitution (1)	Reverse order		(2 marks)
	(ii)	$2C_{3}H_{7}\bullet \rightarrow C_{6}H_{14}$ (1) Two (propyl) radicals may combine /a radical and a molecule may produce $C_{6}H_{14}$ (in a propagation step) (1)	$\begin{array}{l} C_{3}H_{7}\bullet+C_{3}H_{7}\bullet_{\rightarrow}C_{6}H_{14}\ (1\)\\ Accept\ multiples\\ C_{3}H_{7}\bullet+C_{3}H_{8}\rightarrow C_{6}H_{14}+H\bullet\ (1)\\ Full\ mechanisms\ may\ be\\ shown \end{array}$		(2 marks)
(d)	(i)	2-chloropropane: white precipitate/ solid /cloudiness (1) 2-iodopropane: yellow precipitate / solid (1)	Ppt appears slowly with chloropropane and quickly with iodopropane (1) Pale yellow precipitate White colour and yellow colour - 1 out of 2	White colour Creamy	(2 marks)
	(ii)	Ag ⁺ (aq) + I ⁻ (aq) → AgI (s) Formulae (1) State symbols (1) Minor error in formula with correct state symbols max 1	Max 1 out of 2 for wrong halide		(2 marks)
	(iii)	Propan-2-ol/ CH ₃ CH(OH)CH ₃ (1)	Displayed formula CH ₃₋ CH-CH ₃	Molecular formula C ₃ H ₇ OH	
			ОН		(1 mark)
				T	otal 17 marks

3	(a)	(i)	2,2,4-trimethylpentane Ignore punctuation (Commas and hyphens may be interchanged)	2,4,4 - trimethylpentane	Pentan for pentane 2-dimethyl-4 methylpentane 2,2-dimethyl-4-methyl pentane 2-methyl-4,4-dimethyl pentane 2,4-trimethylpentane	(1 mark)
		(ii)	C ₄ H ₉	$C_8H_{18} \rightarrow C_4H_9$		(1 mark)
		(iii)	C ₂ H ₄		CH ₂ CH ₂	(1 mark)
		(iv)	Positive because energy is required to break (C-C) bonds (and not completely replaced (from new bonds made)) OR Positive because cracking requires (continuous) supply of heat so must be endothermic	two C-C bonds are broken and one C=C made	Positive because it only occurs at high temperature	(1 mark)
		(v)	C_8H_{18} +17/2 O_2 → 8CO + 9H ₂ O OR 2C ₈ H ₁₈ +17 O_2 → 16CO + 18H ₂ O OR C ₈ H ₁₈ + 9/2 O_2 → 8C + 9H ₂ O (or doubled) Oxygen on left and correct formulae of products (1) balancing (1) Second mark depends on first and a sensible hydrocarbon formula must be used.	Balanced equations including CO and/or C with CO ₂ 17/2 can be written 8.5 or $8\frac{1}{2}$ Allow balanced equations based on C ₈ H ₁₈ with a smaller alkane in the products for 1 mark eg C ₈ H ₁₈ +O ₂ \rightarrow C ₀ +C ₇ H ₁₆ +H ₂ O (1)		(2 marks)

(b)	(i)	Increase in pressure: No effect as number of moles/molecules (of gas) doesn't change during reaction (1) Increase in temperature: more NO as forward reaction endothermic OWTTE (1)		Increase in temperature moves equilibrium to the right	
		One mark for two correct predictions with incorrect explanations			(2 marks)
	(ii)	Rate increases as converter gets hotter (as reaction is exothermic)			(1 mark)
	(iii)	N ₂ / nitrogen is (major) part of air/ N ₂ unreactive/ not poisonous/ not a greenhouse gas / not acidic	Correct harmful properties of other 3 gases		(1 mark)
	(iv)	Line from level of reactants to maximum labelled E_A (1) Curve of similar shape above existing curve, starting and finishing at same levels, with maximum above original maximum(1)			(2 marks)

(c)	Dot and cross for CO (1) Dot and cross for CO ₂ (1)	All dots or all crosses	
		All electrons or just outer shells	
	(CO shorter) as triple bond, not double/ higher electron density / more electrons between nuclei/ between C and O OR CO ₂ has double bonds, CO has double plus a dative (covalent) Allow TE from diagrams		(3 marks)
	(1) If bond lengths are compared, CO must be shorter		
			Total 15 marks

4	(a)	It is insoluble/ unreactive/ inert		Non-carcinogenic It behaves like bone	(1 mark)
	(b)	Many electrons because it is a polymer/ very large molecule OR has large surface area for contact (1) strong more Van der Waals forces holding molecules together (1)			(2 marks)
	(c)	ScCO ₂ gets between polymer molecules/ stops them lining up/ stops intermolecular forces acting/ New vdw forces can form between scCO ₂ and poly (ethene)/weakens bonds between molecules			(1 mark)
	(d)	109° / 109.5 ° /109° 28' as (4) electron clouds/ (4) bonds repel equally / as bonds are as far away from each other as possible in 3 dimensions/ minimise repulsion in 3 dimensions / as it is tetrahedral with no lone pairs.		Comments referring to only atoms repelling	(1 mark)
	(e)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	COOH/ CO ₂ H can be adjacent or on alternate C atoms (but not on C1 and 2 or C3 and 4) Side groups can be above or below C chain. COOH may be displayed. The two repeat units may be in a bracket with bonds at end going through bracket and there may be an n outside the bracket. The product may be shown as part of an equation.		(1 mark)
	(f)	Hydration/ C			(1 mark)

	nsider each answer for (i) key points and (ii) style and use of English. Candidates should have
	at the end of their answer and this should be checked.
Up to 115 words no pena	iltv
116 - 125 words -1	
126 - 135 words -2	
136 - 145 words -3	
	y for every 5 words thereafter up to a maximum of penalty equal to the number of key points
included in the answer.	
Note that words appearing	g in the title to the summary do not count in the word total. Normally hyphenated words, numbers
and chemical formulae co	unt as one word.
One mark should be award	ded for every key point clearly identified in an answer.
Kan national manale	
Key points - word penalt	y – maximum o marks
	-
	y point the wording used by the candidate must make clear the essential chemistry of the point.
	-
To gain the mark for a key	y point the wording used by the candidate must make clear the essential chemistry of the point.
To gain the mark for a key sc CO_2	y point the wording used by the candidate must make clear the essential chemistry of the point. = 1 = 2
To gain the mark for a key sc CO ₂ poly(lactic acid) poly(propenoic acid)	y point the wording used by the candidate must make clear the essential chemistry of the point. = 1 = 2 = 2
To gain the mark for a key sc CO ₂ poly(lactic acid)	y point the wording used by the candidate must make clear the essential chemistry of the point. = 1 = 2 = 2
To gain the mark for a key sc CO ₂ poly(lactic acid) poly(propenoic acid) poly(methyl methacrylate	y point the wording used by the candidate must make clear the essential chemistry of the point. = 1 = 2 = 2 = 2 = 2 = 2
To gain the mark for a key sc CO ₂ poly(lactic acid) poly(propenoic acid) poly(methyl methacrylate poly(ethene) 31°C = 2	y point the wording used by the candidate must make clear the essential chemistry of the point. = 1 = 2 = 2 = 2 = 2 = 2

1	Metals/ titanium were used to pin/ repair bones but bone loss occurs (at (metal - bone) junction)	(1 mark)
2	Artificial bones were made from poly(ethene) and hydroxyapatite/ Ca ₅ (PO ₄) ₃ (OH)	(1 mark)
3	This (composite) is well tolerated and bone grows up to the surface / junction (of the composite) / and does not cause bone loss/ encourages bone to grow.	(1 mark)
4	Acrylic monomers / poly (methyl methacrylate)/ perspex mixed with hydroxyapatite to make (precision-shaped) implants.	(1 mark)
5	Acrylic polymers can be shaped accurately / are precision shaped, but are toxic / cause inflammation	(1 mark)
6	Biodegradable implants can be made of poly(lactic acid) plus growth hormone	(1 mark)
7	New bone can grow round biodegradable implants / biodegradable implants can be used on patients who are still growing / only biodegradable implants grow with child /stimulates growth of bone cells/ other implants don't grow with child	(1 mark)
8	poly (lactic acid) / biodegradable polymers have to have carbon added in order to absorb laser light	(1 mark)

Quality of Written Communication	
These should <i>be impression</i> marked on a scale 2-1-0, and the mark out of 2 should be recorded in the body of at the end of the answer. This mark can not be lost as a result of a word penalty.	[•] the script
Candidates are expected to: • show clarity of expression; • construct and present coherent argument; • demonstrate effective use of grammar punctuation and	
 spelling. The aspects to be considered are: use of technical terms; the answer should convey a correct understanding by the writer of the technical terms used in the passage which are involved in t points. articulate expression; the answer should be well-organised in clear, concise English, without ambiguity. It should read fluently, with the links betweer in the original maintained. legible handwriting; the reader should be able to read the answer without difficulty at normal reading pace, with only the occasional difficulty with a word. points must be in a logical order. 	
Good style and use of English, with only infrequent minor faults, no use of formulae (2) Frequent minor or a few major faults in style and use of English (1) Very poor style and use of English (0)	
NB: The quality of written communication mark cannot be lost through word penalties.	(2 marks)
	Total 15 marks