Mark Scheme (Results) J anuary 2007

GCE

GCE Chemistry (Nuffield) (6251/ 01)

General Guidance on Marking

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge, and for critical and imaginative thinking. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

Using the mark scheme

The mark scheme gives you:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

1 / means that the responses are alternatives and either answer should receive full credit.
2 () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
[] words inside square brackets are instructions or guidance for examiners.
4 Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.

5 TE (transferred error) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

There is space at the bottom of each page of this mark scheme for examiners to write their notes.

Note:

If a candidate has crossed out an answer and written new text, the crossed out work should be ignored. If the candidate has crossed out work, but written no new text, the crossed out work for that question or part question should be marked, as far as it is possible to do so.

1	(a)	H^{+}	$\mathrm{H}_{3} \mathrm{O}^{+}$		(1 mark)
	(b)	$\begin{aligned} & \mathrm{HCOOH} / \mathrm{HCO}_{2} \mathrm{H}(1) \\ & \mathrm{HNO}_{3}(1) \\ & -1 \text { for each extra incorrect answer } \end{aligned}$	C and E		(2 marks)
		Total 3 marks			
2	(a)	SrF_{2}		SRF_{2}	
	(b)	fluoride ion showing all 10 electrons and a single negative charge $\left.\left(\square \begin{array}{lll} & & x \times \\ x & x & F \\ 0 & x & x \\ & & x \end{array}\right]\right)^{-}$	All electrons can be the same Can show rings ALLOW FI for F	$\begin{aligned} & \quad x \times \\ & \cdot \\ & =F^{x \times} \times x \\ & x \times \end{aligned}$	(1 mark)
					Total 2 marks

NOTES:

3	(a)	(i)	$23+3 \times 14=65(\mathrm{~g})$ Ignore units e.g. $\mathrm{g} \mathrm{mol}^{-1}, \mathrm{~g} / \mathrm{mol}$			(1 mark)
		(i)	$48 \mathrm{dm}^{3}=2$ moles (1) number of moles of $\mathrm{NaN}_{3}=2 / 3 \times 2=4 / 3$ $\begin{equation*} \text { mass }=4 / 3 \times 65=86.7 \mathrm{~g} \tag{1} \end{equation*}$ ALLOW 2,3 or 4 SF If 2 moles of N_{2} seen anywhere award $1^{\text {st }}$ mark	allow TE from (a)(i) allow $87 \mathrm{~g} / 86.67 \mathrm{~g}$ Correct answer with no working (2)	$\begin{aligned} & 86 \mathrm{~g} \\ & 86.6 \mathrm{~g} \\ & 86.6666666 \mathrm{~g} \end{aligned}$	(2 marks)
	(b)		mation of sodium which is reactive water/ air / oxygen (1) oduce hydrogen which is flammable / NaOH which is sive (1) 1 if only discuss sodium and air		-1 if discuss poisonous flammability of N_{2} as well as correct problems with sodium Sodium is poisonous	(2 marks)
		Total 5 marks				

NOTES:

4	(a)	$\mathrm{KCl}+\mathrm{MgCl}_{2}$ has a mass of $39+35.5+24+71=169.5$ $\mathrm{xH}_{2} \mathrm{O}$ has a mass of 277.5-169.5 $=108$ $\mathrm{H}_{2} \mathrm{O} \text { has a mass of } 18$ $\begin{equation*} x=\frac{108}{18}=6 \tag{1} \end{equation*}$		TE for $2^{\text {nd }}$ mark if final answer rounded to nearest whole number	$\frac{277.5}{18}=15.41 \simeq 15(0 \text { marks })$	(2 marks)
	(b)		$\begin{align*} & \mathrm{K}^{+} \mathrm{Mg}^{2+} \text { (1) - check that } \mathrm{Mg}^{2+} \\ & \mathrm{Cl}^{-} \tag{1}\\ & \text {(1) } \end{align*}$ IGNORE H^{+}and OH^{-}	$3 \mathrm{Cl}^{-} / 2 \mathrm{Cl}^{-}$	O^{2-} (-1 mark)	(2 marks)
	(c)	(i)	(concentrated) hydrochloric acid			(1 mark)
		(ii)	Iilac (1) Potassium is lilac and magnesium gives no flame colour(1)	allow shades of mauve and purple and pink through blue glass	If flame test implies burning e.g. Mg gives a white flame $\max 1$	(2 marks)
		Total 7 marks				

NOTES:

5	(a)	Isotope(s)				(1 mark)
	(b)	40				(1 mark)
	(c)	(i)	mass spectrometer	Mass spectrometry		(1 mark)
		(ii)	$\begin{aligned} & (60.2 \times 69+39.8 \times 71) \div 100 \\ & =69.796=69.8 \end{aligned}$ must be 3sf	Correct answer with no working (2) Allow g or $\mathrm{g} \mathrm{mol}^{-1}$ or $\mathrm{g} / \mathrm{mol}$	1, 2, 4 or 5sf Units of \%(-1 mark)	(2 marks)
	(d)	(i)	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}(1) 3 d^{10} 4 s^{2} 4 p^{1}$ (1)	capitals/ subscripts/ any order		(2 marks)
		(ii)	$\mathrm{Ga}(\mathrm{g}) \rightarrow \mathrm{Ga}^{+}(\mathrm{g})+\mathrm{e}^{(-)}((\mathrm{g}))$ or $\mathrm{Ga}(\mathrm{g})-\mathrm{e}^{(-)}((\mathrm{g})) \rightarrow \mathrm{Ga}^{+}(\mathrm{g})$ Mark independently formulae \quad (1) state symbols (1)	$\mathrm{Ga}^{1+}(\mathrm{g})+\mathrm{e}^{(-)}$	(s) is wrong - take care to distinguish from (g)	(2 marks)
		(iii)	B	$\begin{aligned} & \text { 579, 1979, 2963, } \\ & 6200 \end{aligned}$		(1 mark)
						10 marks

NOTES:

6	(a)	A round-bottom(ed)/ distillation flask (1) B (Liebig) condenser (1) C anti-bumping beads/ granules (1)	Pear-shaped flask Flask long neck flask Condenser Porcelain/ silica Correct names in any order	Liebig flask Conical flask Bottle ended flask Volumetric flask Cooling water jacket condensing tube	(3 marks)

NOTES:

(b)	No stopper in top of flask (1) No jacket on condenser (1) Water direction wrong way round (1) Ignore:/ neutral "flask sealed off from rest of apparatus" "water bath not needed" "cork in conical flask not needed" "gap between top of condenser \& still head" "air condenser sufficient" "fume cupboard not needed" If they give 4 or more errors : loses 1 mark for each "reject" but neutral ones are ignored e.g. 3 correct +sealed apparatus $=3-1=2$ 3 correct+water bath not needed $=3-0=3$ [if this part is completely blank send to review under out of clip category]		"side arm on conical flask not needed" i.e. implying sealed apparatus thermometer should be in liquid no need for anti bumping beads	(3 marks)

NOTES:

NOTES:

7	(a)	(i)	An ion which is unchanged during the reaction owtte An ion which does not take part in the reaction		An ion which does not change its state use of word "element" instead of "ion"	(1 mark)
		(ii)	$\mathrm{SO}_{4}{ }^{\text {- }}$			(1 mark)
		(ii)	$\mathrm{Zn}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Cu}$ IGNORE state symbols	$\begin{aligned} & \mathrm{Zn}+\mathrm{Cu}^{++} \rightarrow \mathrm{Zn}^{++}+\mathrm{Cu} \\ & \mathrm{Zn}+\mathrm{Cu}^{2+}=\mathrm{Zn}^{2+}+\mathrm{Cu} \end{aligned}$		(1 mark)
	(b)	measuring cylinder		burette pipette volumetric pipette graduated pipette $50 \mathrm{~cm}^{3}$ pipette pipette $=$ pipette filter reasonable phonetic spelling e.g. pipet, biurette	Beaker Biuret Graduated flask Volumetric flask Beaker or a pipette pepite conical flask	(1 mark)

NOTES:

NOTES:

	(ii)	Blue to colourless (1) grey to brown/ pink/ red-brown/ orange-brown	Greeny blue to colourless silver/ silvery grey Black grey and copper (coloured) Red/ orange	green to colourless Blue to white Blue to grey Blue to clear Copper Copper coloured	(2 marks)
(e)	(i)	 correctly plotted points (1) - All 7 (including 0, 22) must be correctly plotted points joined by suitable lines [If you cannot see a line, check twice, if still not visible send to review as out of clip]	curve/ straight lines		(2 marks)

NOTES:

NOTES:

NOTES:

