edexcel 흧

Edexcel GCE
Chemistry (Nuffield)
6254/01

June 2006

Results Mark Scheme

(a) Any 2

Measure the loss in mass as a gas/carbon dioxide is given off (1)
Measure the concentration of the acid by titration
OR Carry out a titration with sodium hydroxide (1) NOT "titration" on its own

Measure conductivity because 4 ions go to 3 ions/decrease in ions/change in number of ions (1)

Measure pH because acid is used up /changes/concentration changes/one reactant is acidic (1)

NOT dilatometry/nmr/x-ray crystallography/temperature change/colorimetry/indicator/change in mass of CaCO_{3}
(b) Initially some carbon dioxide dissolves in the solution (until the solution is saturated).
OR
Some CO_{2} might escape whilst adding acid/before putting on bung
(c) (i) $88\left(\mathrm{~cm}^{3}\right)$
(ii)

95	72	16
125	79	9
155	84	4
185	87	$\mathbf{1}$

(iii) The concentration of the hydrochloric acid $/ \mathrm{HCl}$ OR [HCl] NOT concentration of reactants
(iv)

ALLOW extrapolated back to between 88 and 100
points correctly plotted (1)
ALLOW TE for points
and reasonably smooth curve drawn (1)
NOT dot-to-dot
(2 marks)
(v) three successive half-lives shown on the graph (1)

MUST start at defined volume NOT $0 \mathrm{~s} / 85 \mathrm{~cm}^{3}$
all three values similar about 37s (1)
ALLOW 32-42 or show on graph
NOT 40, 80, 120
constant half-life / half-life not increasing means first order reaction (1)
If only two half lives shown max 2
If in (v) zero/ $2^{\text {nd }}$ order deduced max 1 for first part but TE allowed to parts (vi) and (vii)
(vi) rate $=\mathrm{k}[\mathrm{HCl}]$

OR rate $=\mathrm{k}[\mathrm{HCl}]^{1}$
OR rate $=\mathrm{K}[\mathrm{HCl}]^{1}\left[\mathrm{CaCO}_{3}\right]^{0}$
NOT rate $=k\left[\mathrm{~V}_{\text {final }}-\mathrm{V}_{\mathrm{t}}\right]^{1}$

If zero order
rate $=k$
OR rate $=\mathrm{k}[\mathrm{HCl}]^{0}$
If second order
rate $=k[\mathrm{HCl}]^{2}$
NOT rate $=\mathrm{k}\left[\mathrm{CaCO}_{3}\right]^{1}[\mathrm{HCl}]^{1}$
(1 mark)

T.E

zero order - $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{~s}^{-1}$
second order $-\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
(d) $\Delta \mathrm{S}_{\text {system }}$
positive + some sensible reason eg gas given off (1)
as a mole of a gas given off and three moles including one solid becomes three moles with no solid / gas more random than solid
OR
Gas more disordered than a solid

OR

Despite same number of moles/particles (1)
$\Delta \mathrm{S}_{\text {total }}$
positive + some reason (1)
e.g.
positive because reaction exothermic/favourable (1)
positive + good reason (2)
e.g
positive because reaction is spontaneous/goes to completion /feasible OR $\Delta \mathrm{S}_{\text {surroundings }}$ is positive because $\Delta \mathrm{H}$ is negative/reaction exothermic $\therefore \Delta \mathrm{S}_{\text {total }}$ positive (2)
[provided $\Delta \mathrm{S}_{\text {system }}$ shown positive earlier]
(a) sodium ethanoate (1) NOT sodium methanoate NOT sodium ethoxide
neutralisation / acid-base (1)
If more than one answer given and one is incorrect (0)
e.g. substitution neutralisation (0)
(2 marks)
(b) 4-iodomethoxybenzene / 4-methoxyiodobenzene (1)

ALLOW 4-iodo-1-methoxybenzene
ALLOW 4-methoxy-1-iodobenzene
NOT 4-iodine.....
NOT 4-iodide \qquad
Electrophilic/electrophile (1)
ALLOW reasonable spelling e.g. electrophyllic
ALLOW correct diagram showing mechanism
e.g. $\delta^{+} \delta^{-}$

Attacking benzene ring
(c) ethanamide (1)

ALLOW ethaneamide nucleophilic/nucleophile (1)
IGNORE if $\mathrm{S}_{\mathrm{N}} 1 / \mathrm{S}_{\mathrm{N}} 2$ included but NOT " $\mathrm{S}_{\mathrm{N}} 1$ " on its own nor " $\mathrm{S}_{\mathrm{N}} 2$ " on its own
(d) Propan(e)(-)1,2,3(-)triol / glycerol (1)

ALLOW glycerine
ALLOW 1,2,3-propan(e)triol
NOT prop - 1,2,3-triol
NOT propan-1,2,3-ol
Decanoic acid (1)
Hydrolysis/hydrolysation
(1)

NOT condensation/hydration

3 (a) (i) arene /high C:H ratio/high C-H ratio/contain a benzene ring /low H:C ratio
NOT alkene
NOT unsaturated
(ii) "aldehyde or ketone" / carbonyl group ALLOW C=0
NOT double bonded oxygen
(iii) aldehyde

If in (ii) "aldehyde or ketone" given, then ALLOW "not ketone" in (iii)
NOT can be oxidised
(iv) alkene / activated arene

ALLOW contains a carbon-carbon double bond/unsaturated NOT enhanced arene/delocalised electrons/has a double bond/benzene
(v) contains the same two groups/atoms on the same side (of a double bond) /OWTTE NOT trans isomer as well [The mark for (iv) might be seen here!]
(vi) Need not be displayed

Benzene ring and cis alkene (1) if whole molecule is $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}$ aldehyde (1) aldehyde anywhere if whole molecule is $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}$

(b) (i) Any 5

Dissolve in the minimum volume (1)
of boiling/hot water (1)
Filter to remove insoluble impurities (1)
Cool to precipitate benzoic acid (1)
Filter off precipitate to leave impurities in solution (1)
Wash with (cold) solvent/water (to remove any remaining soluble impurities) (1)
dry between pieces of filter paper (to remove water/solvent) (1)

If "dissolve in boiling water, cool and filter" 2 max If method will not work 3 max
(5 marks)
(ii) a sharp melting point

OR mpt same as data book
MUST compare with data book value
NOT "measure melting point" on its own
(c)
(i) $\quad 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}(\mathrm{s})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$

All five state symbols must be correct and products must have correct formulae but not necessarily balanced or just a slip in formula

If NaCO_{3} then if ALL state symbols are correct and formulae of products correct 1 max

If NaHCO_{3} as the product max 2
(ii)

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H} \rightleftharpoons / \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}+\mathrm{H}^{+}(1)
$$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{C}_{6} \underline{\mathrm{H}}_{5} \mathrm{CO}_{2}^{-}\right] \times\left[\mathrm{H}^{+}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right]}
$$

State symbols not required ALLOW $\mathrm{H}_{3} \mathrm{O}^{+}$in equation and K_{a} expression
(iii)

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=6.30 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2}}{0.001} \\
& {\left[\mathrm{H}^{+}\right]^{2}=6.30 \times 10^{-8}} \\
& {\left[\mathrm{H}^{+}\right]=2.51 \times 10^{-4}\left(\mathbf{1)} \quad \text { ALLOW TE if incorrect }\left[\mathrm{H}^{+}\right]\right.} \\
& \mathrm{pH}=3.6 / 3.60 / 3.600(1) \longleftarrow \text { but correctly applied } \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
\end{aligned}
$$

Correct answer with no working (3)
(d) sodium / potassium benzoate

OR formula
NOT sodium hydroxide
NOT sodium carbonate
NOT sodium benzonate, sodium benzenoate, sodium ethanoate NOT $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}{ }^{-}$
If correct name given ignore partly drawn structures
e.g.

OR C6 $\mathrm{H}_{5} \mathrm{CO}_{2}^{-}$
(a) pentyl dichloroethanoate (1)

ALLOW 1,1 OR 2,2-
ALLOW pent-1-yl /all one word
NOT penten
NOT pentan
NOT pentanyl
ester (1)
ALLOW esther
(b) (i) using a pipette remove a known volume (say $20 \mathrm{~cm}^{3}$) (1)
remove some solution - either with a pipette OR a known volume/ $20 \mathrm{~cm}^{3}$
titrate with an alkali (such as sodium hydroxide) (1)
of known concentration (1)-dependent on previous mark ie must have mentioned alkali

IGNORE quenching
using a named indicator eg. phenolphthalein/methyl orange (1)
NOT litmus/universal indicator
Measure pH on its own 1 (out of 4)
But if calculation fully explained from pH can get full marks
(ii) $\quad\left[\mathrm{CHCl}_{2} \mathrm{COOC}_{5} \underline{H}_{11}(\mathrm{l})\right]$
$\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CHCl}_{2} \mathrm{C} \overline{\mathrm{OOH}(\mathrm{l})}\right] \times\left[\mathrm{C}_{5} \mathrm{H}_{10}(\mathrm{l})\right]$
State symbols not required
(iii) $\mathrm{C}_{5} \mathrm{H}_{10}$
1.7 (1) $\frac{1.7}{0.3}=5.67(5.7)$ NOT 5.66
$\mathrm{CHCl}_{2} \mathrm{COOC}_{5} \mathrm{H}_{11} 0.6$ (1) $\quad \underline{0.6}=2$
(1) for \div moles at eq by 0.3 in both cases
(iv)

$$
\begin{align*}
\mathrm{K}_{\mathrm{c}} & =\frac{0.6 / 0.3}{1.33} \times 1.7 / 0.3(1)=\frac{2}{1.33 \times 5.67} \\
& =0.265(1) \mathrm{dm}^{3} \mathrm{~mol}^{-1} / \mathrm{mol}^{-1} \mathrm{dm}^{3}
\end{align*}
$$

ALLOW 0.27/0.26/0.264
Penalise 1 SF or 4SF or more SF but only take off 1 mark maximum in (iii) and (iv) for significant figure errors

ALLOW TE from expression in (ii)
TE using numbers for (iii) full marks possible

