

Edexcel GCE Chemistry (Nuffield) 6254/01

June 2006

advancing learning, changing lives

Results Mark Scheme

Edexcel GCE Chemistry (Nuffield) 6254/01

(a)	Any 2 Measure the loss in mass as a gas/carbon dioxide is given off (1)						
	Measu <i>OR</i> Ca NOT "						
	Measure conductivity because 4 ions go to 3 ions/decrease in ions/change in number of ions (1)						
	Measure pH because acid is used up /changes/concentration changes/one reactant is acidic (1)						
	<i>NOT</i> dilatometry/nmr/x-ray crystallography/temperature change/colorimetry/indicator/change in mass of CaCO ₃ (2 mark						
(b)	Initial is satu <i>OR</i>						
	Some	(1 mark)					
(c)	(i)	88 (cm ³)				(1 mark)	
	(ii)	95 125 155 185	72 79 84 87	16 9 4 1		(1 mark)	
	(iii) The concentration of the hydrochloric acid/HCl <i>OR</i> [HCl] <i>NOT</i> concentration of reactants					(1 mark)	

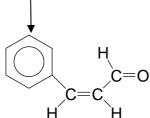
(iv)	points correctly plotted (1) <i>ALLOW</i> TE for points and reasonably smooth curve do <i>NOT</i> dot-to-dot	•	d 100
<i>.</i>			(2 marks)
(v)	three successive half-lives show MUST start at defined volume	wn on the graph (1) <i>NOT</i> 0s/85cm ³	
	all three values similar about 3 <i>ALLOW</i> 32-42 or show on graph <i>NOT</i> 40, 80, 120	7s (1)	
	constant half-life / half-life not	t increasing means first order	
	reaction (1) If only two half lives shown ma If in (v) zero/2 nd order deduced allowed to parts (vi) and (vii)		(3 marks)
(vi)	rate = k[HCl] <i>OR</i> rate =k[HCl] ¹ <i>OR</i> rate =K[HCl] ¹ [CaCO ₃] ⁰ <i>NOT</i> rate = k[V _{final} -V _t] ¹	If zero order rate = k <i>OR</i> rate = k[HCl] ⁰ If second order rate = k [HCl] ² <i>NOT</i> rate = k[CaCO ₃] ¹ [HCl] ¹	(1 mark)
(vii)	s ⁻¹	T.E zero order - mol dm ⁻³ s ⁻¹ second order - dm ³ mol ⁻¹ s ⁻¹	(1 mark)

(d) ΔS_{system}

positive + some sensible reason eg gas given off (1) as a mole of a gas given off and three moles including one solid becomes three moles with no solid / gas more random than solid *OR* Gas more disordered than a solid

OR Despite same number of moles/particles (1)

 ΔS_{total}


positive + some reason (1) e.g. positive because reaction exothermic/favourable (1)

positive + good reason (2) e.g positive because reaction is spontaneous/goes to completion /feasible $OR \ \Delta S_{surroundings}$ is positive because ΔH is negative/reaction exothermic $\therefore \ \Delta S_{total}$ positive (2) (4 marks) [provided ΔS_{system} shown positive earlier]

TOTAL 17 MARKS

2	(a)	sodium ethanoate (1) <i>NOT</i> sodium methanoate <i>NOT</i> sodium ethoxide	
		neutralisation / acid-base (1) If more than one answer given and one is incorrect (0) e.g. substitution neutralisation (0)	(2 marks)
	(b)	4-iodomethoxybenzene / 4-methoxyiodobenzene (1) <i>ALLOW</i> 4-iodo-1-methoxybenzene <i>ALLOW</i> 4-methoxy-1-iodobenzene <i>NOT</i> 4-iodine <i>NOT</i> 4-iodide	
		Electrophilic/electrophile (1) ALLOW reasonable spelling e.g. electrophyllic ALLOW correct diagram showing mechanism e.g. $\delta^+ \delta^-$ I - Cl	
		Attacking benzene ring	(2 marks)
	(c)	ethanamide (1) <i>ALLOW</i> ethan <u>e</u> amide nucleophilic/nucleophile (1) <i>IGNORE if</i> S _N 1/S _N 2 <i>included but NOT</i> "S _N 1" <i>on its own nor</i> "S _N 2" <i>on its</i> <i>own</i>	(2 marks)
	(d)	Propan(e)(-)1,2,3(-)triol / glycerol (1) ALLOW glycerine ALLOW 1,2,3-propan(e)triol NOT prop - 1,2,3-triol NOT propan-1,2,3-ol	
		Decanoic acid (1) Hydrolysis/hydrolysation (1) <i>NOT</i> condensation/hydration	(3 marks)
			Total 9 marks

3	(a)	(i)	arene /high C:H ratio/high C-H ratio/contain a benzene ring /low H:C ratio <i>NOT</i> alkene <i>NOT</i> unsaturated	(1 mark)
		(ii)	"aldehyde or ketone" / carbonyl group <i>ALLOW</i> C=O <i>NOT</i> double bonded oxygen	(1 mark)
		(iii)	aldehyde <i>If in (ii) "aldehyde or ketone" given, then ALLOW "not ketone"</i> <i>in (iii)</i> <i>NOT</i> can be oxidised	(1 mark)
		(iv)	alkene / activated arene <i>ALLOW</i> contains a carbon-carbon double bond/unsaturated <i>NOT</i> enhanced arene/delocalised electrons/has a double bond/benzene	(1 mark)
		(v)	contains the same two groups/atoms on the same side (of a double bond) / <i>OWTTE</i> <i>NOT</i> trans isomer as well [<i>The mark for (iv) might be seen here!</i>]	(1 mark)
		(vi)	Need not be displayed	

Benzene ring and cis alkene (1) *if whole molecule is* C_9H_8O aldehyde (1) *aldehyde anywhere if whole molecule is* C_9H_8O (2 marks) (b) (i) Any 5

Dissolve in the minimum volume (1)

of boiling/hot water (1)

Filter to remove insoluble impurities (1)

Cool to precipitate benzoic acid (1)

Filter off precipitate to leave impurities in solution (1)

Wash with (cold) solvent/water (to remove any remaining soluble impurities) (1)

dry between pieces of filter paper (to remove water/solvent)
(1)

If "dissolve in boiling water, cool and filter" **2 max** *If method will not work* **3 max**

(1 mark)

(ii) a sharp melting point
 OR mpt same as data book
 MUST compare with data book value
 NOT "measure melting point" on its own

(c) (i) $2C_6H_5CO_2H(s) + Na_2CO_3(aq) \rightarrow 2C_6H_5CO_2Na (aq) + H_2O(l) + CO_2(g)$

 $H_2CO_3(aq)$

Formula and balancing (1) State symbols (1)

All five state symbols must be correct and products must have correct formulae but not necessarily balanced or just a slip in formula

If NaCO₃ then if ALL state symbols are correct and formulae of products correct **1** max

If NaHCO₃ as the product max 2

(2 marks)

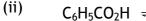
(1 mark)

sodium / potassium benzoate OR formula *NOT* sodium hydroxide NOT sodium carbonate NOT sodium benzonate, sodium benzenoate, sodium ethanoate $NOT C_6 H_5 CO_2^-$ If correct name given ignore partly drawn structures e.g.

Correct answer with no working (3)

 $K_a = 6.30 \times 10^{-5} = [H^+(aq)]^2$ (1) 0.001 [H⁺]² $= 6.30 \times 10^{-8}$ $= 2.51 \times 10^{-4} (1) \qquad ALLOW TE if incorrect [H^t]$ = 3.6/3.60/3.600 (1) but correctly applied[H⁺] pН

 $pH = -log[H^{\dagger}]$


(1)

 $C_6H_5CO_2H \approx / \rightarrow C_6H_5CO_2^- + H^+$ (1)

State symbols not required

 $\frac{[C_6H_5CO_2^-] \times [H^+]}{[C_6H_5CO_2H]}$

ALLOW H_3O^{\dagger} in equation and K_a expression

(iii)

 $OR C_6 H_5 CO_2^-$

(d)

K_a =

(2 marks)

(3 marks)

9

2 marks)
4 marks)
(1 mark)
3 marks)

(iv) $K_c = 0.6 / 0.3 \times 1.7 / 0.3$ (1) $= \frac{2}{1.33 \times 5.67}$ 1.33 = 0.265 (1) dm³ mol⁻¹ / mol⁻¹ dm³ (1) NOT dm⁻³ ALLOW 0.27 / 0.26 / 0.264 Penalise 1 SF or 4SF or more SF but only take off 1 mark maximum in (iii) and (iv) for significant figure errors

ALLOW TE from expression in (ii) TE using numbers for (iii) full marks possible

(3 marks)

TOTAL 13 MARKS

Total for paper: 60 Marks