edexcel ㅃ̈ㅊ

Edexcel GCE
Chemistry (Nuffield) 6251/ 01

J une 2006

Results Mark Scheme
Edexcel GCE
Chemistry (Nuffield)
6251/ 01

1 (a) $\mathrm{Ca}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CaO}$
IGNORE state symbols
ALLOW multiples
(b)

ALLOW all dots or all crosses for oxide ion
Max 1 if no/ wrong charges
1 mark for two correct charges
Covalent bonding (0)
(c) (i) Calcium hydroxide

NOT limewater
(ii) $10-14$

2 (a)

$$
\begin{equation*}
\mathrm{L}=\frac{79.0}{1.31 \times 10^{-22}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=6.03 \times 10^{23} \tag{1}
\end{equation*}
$$

-1 mark for SF error
Final answer must be 6.03×10^{23} for $2^{\text {nd }}$ mark
Correct answer with no working (2)
$6 \times 10^{23} / 6.02 \times 10^{23}$ quoted with no working (0)
Error in method, max (1)
(b) 80 is the average mass of Br atoms / isotopes

OR
There must be another/ at least one Br isotope of mass greater
than $80 /$ with more than 45 neutrons
NOT naturally occurring isotope has mass 80

3 (a) A set of properties/ pattern/ trend which is repeated/ recurs (1) For the $1^{\text {st }}$ mark there must be an idea of repetition
each period/ after an interval (1)
ALLOW "after every eight/ eighteen elements"
"Repeating trends each period" (2)
2 marks)
(b) High values on left/ for metals and low values on right/ for nonmetals
ALLOW decrease across period/ increase from Group 1 to 3, then decrease
ALLOW "high values on the left of the staircase, low on right" NOT just "increases then deceases"
(c) Melting point/ boiling point/ (first) ionisation energy/ atomic volume/ $\Delta \mathrm{H}_{\text {fusion }} / \Delta \mathrm{H}_{\text {vaporisation }}$
ALLOW density/ electronegativity/ ionic radius/ atomic radius/ thermal conductivity
NOT state/ type of bonding/ number of electrons/ mass
Total for Section A: 12 Marks

4 (a) Propan-2-ol
NOT prop-2-ol/ 2-propanol
(b) Contains

OR carbon carrying OH/ hydroxyl/ "hydroxide" group attached to two other carbons/ two other methyl groups/ one other hydrogen ALLOW contains $\mathrm{CHOH} / \mathrm{CH}(\mathrm{OH})$
NOT references to hydroxide ion/ OH^{-}in explanation
(c) $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}+9 / 2 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

OR
$2 \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
products (1)
balancing of equation based on correct products (1)
ALLOW 4.5, $41 / 2$ for $9 / 2$
IGNORE state symbols
No penalty if structural formulae used
(d) Bubbles/ effervescence/ fizzing (1)

Gets hotter/ heat produced/ temperature rises (1)
NOT exothermic
Sodium dissolves/ disappears/ gets smaller (1)
White solid produced (1)
Hissing sound (1)
NOT white precipitate
(2 marks)
NOT floats/ moves around and goes on fire
(e) (i) Orange to green/ blue
(ii)

MUST be fully displayed
Propanone/ propan(e)-2-one (1)
ALLOW acetone
No TE from incorrect formula
(iii) Blue / light blue

NOT mention of any other modified colour of blue
i.e. NOT blue-green
(f) (i) Aluminium oxide/ phosphorus(V) oxide/ (porous) pot/ pumice/ porcelain/ alumina/ phosphoric acid/ phosphorus pentoxide
ACCEPT formulae $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{P}_{4} \mathrm{O}_{10} / \mathrm{H}_{3} \mathrm{PO}_{4}$
(ii)

Tube + contents (1)
ALLOW glass wool/ mineral wool/ Rocksil wool
NOT wire wool/ cotton wool
Heat under some solid (1)
Gas collected by displacement of water - water does not need to be labelled
OR collect in syringe (1)
IGNORE open tube following Bunsen valve, providing gas can be collected
-1 for each error
e.g. single line tube; gap between bung and tube; delivery tube through side of trough, delivery tube not under collecting tube

5 (a) ($250 \mathrm{~cm}^{3}$) volumetric/ graduated/ standard flask
NOT any mention of "conical" flask
(b) Methyl orange (1)
yellow to orange (1)
ALLOW yellow to red OR yellow to orange-red
OR
Screened methyl orange (1)
green to grey ALLOW green to purple (1)
OR
other suitable indicator in Data Book p 123, alkaline colour first
ALLOW Phenolphthalein (1) pink to colourless (1)
ALLOW bromophenol blue (1) blue to grey/ yellow (1)
ALLOW recognisable spellings
NOT Iitmus/ U.I.
(c) $\left.\quad \frac{7.15 \times 10}{250}\right)=0.286 / 2.86 \times 10^{-1}(\mathrm{~g})$

ALLOW 0.29(g)
NOT $0.28,0.3$, error in $3^{\text {rd }}$ decimal place
(d) $\frac{(20.0 \times 0.100)}{(1000)}=2 \times 10^{-3}$ OR 0.002 OR $0.0020(\mathrm{~mol})$
(e) $286(\mathrm{~g})$

ALLOW TE from (c) and (d)
(f) 286

Same answer as in (e) for TE
NOT 286 if inconsistent with (e) unless calculation shown
(g) $106+18 x=286(1)$
$x=10$ (1)
OR
$106+18 x=196$ (1)
$x=5$ (1)
ALLOW TE from (e)/ (f)
ACCEPT decimals

6 (a) Difficult to decide when reaction complete/ reaction may be incomplete (1)

OR All CaCO_{3} may not decompose (1)
OR Difficult to measure temperature changes in solids (1)
OR ΔT or $\Delta H_{\text {reaction }}$ cannot be determined because heat is supplied (1)
OR Necessary temperature cannot be reached (1)
OR No suitable thermometers (for measuring temperature change at high temperatures) (1)

ALLOW "heat is required so temperature change will not be accurate" NOT "Heat is supplied so temperature cannot be measured/ will not be accurate"
(b) (i) Reaction occurs quickly / incomplete reaction (in reasonable time) with lumps (1)

Heat losses occur if reaction is slow (1)
(2 marks)
(ii) $4.2 \times 20 \times 2.5=210(\mathrm{~J}) \quad$ OR 0.210 kJ

IGNORE $+/$ - signs
(1 mark) Incorrect units (0)
(iii) Number of moles of $\mathrm{CaCO}_{3}=0.02$ (1)
$\frac{210}{0.02}=10500$ (1)
0.02

$$
\Delta \mathrm{H}_{1}=-10500 \mathrm{~J} \mathrm{~mol}^{-1} \quad O R-10.5 \mathrm{~kJ} \mathrm{~mol}^{-1}(\mathbf{1})
$$

ALLOW TE from (ii)
-1 for incorrect/missing sign/ units
Third mark depends on correct method for $2^{\text {nd }}$ mark
(iv) $\Delta H_{r}=\Delta H_{1}-\Delta H_{2}(1)=-10.5-(-181) \quad$ ie use of Hess
$=(+) 170.5 /(+) 171\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1)$
ALLOW T.E. from (iii)
Watch for adding J to kJ
(c) (Standard) enthalpy (change) of formation (of calcium carbonate)

ACCEPT $\Delta H_{\text {formation }} / \Delta H_{\text {formation }}^{\theta} /$ formation
NOT $\Delta \mathrm{H}_{\mathrm{f}} / \Delta \mathrm{H}_{f}^{e}$

7 (a) Oxidised as electrons lost/ forms positive ion/ oxidation number has increased.
If oxidation numbers are quoted, must be correct ie 0 to +1
(1 mark)
(b) (i) Na yellow

ALLOW orange/ yellow-orange/ orange-yellow (1) NOT shades of red

Mg no colour / does not change flame colour (1) NOT references to white light in combination with a flame colour NOT ultraviolet
(ii) Electrons are excited/ raised to a higher energy level/ shell with different energy (1)

Then return/ fall back emitting light/ a colour / a certain wavelength/ frequency (1)
(2 marks)
(iii) Streetlights

OR (colour for) fireworks
OR measuring Na^{+}concentration/ testing for sodium
OR Iamp with standard wavelength
NOT distress flares
NOT light bulbs
(c) $\quad 1 s^{2} 2 s^{2} 2 p^{6}$
(d) (i) $\quad \mathrm{Mg}(\mathrm{g}) \rightarrow \mathrm{Mg}^{+}(\mathrm{g})+\mathrm{e}^{(-)}((\mathrm{g}))$

OR
$M g(g)-e^{(-)}((g)) \rightarrow \mathrm{Mg}^{+}(\mathrm{g})$
Equation (1)
state symbols (1)
$2^{\text {nd }}$ mark can be given if:

- electron is on wrong side e.g. $\mathrm{Mg}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Mg}^{+}(\mathrm{g})$
- $2^{\text {nd }}$ ionisation energy given e.g. $\mathrm{Mg}^{+}(\mathrm{g}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{e}^{-}$
- If cumulative first and second ionisation energy given
e.g. $\mathrm{Mg}(\mathrm{g}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{e}^{-}$

Multiples of the equation are not allowed
If equation is given correctly for wrong element eg sodium, Na , $\max 1$
If equation is given using a letter like M or $\mathrm{X}, \max 1$
(ii) Mg has more protons/ greater atomic number/ greater nuclear charge (1)

Shielding unchanged/ electrons removed from same sub-shell/ orbital (1)

IGNORE comments on Na " wanting" to lose electron
(iii) Value between 900 to 3000 inclusive (actual is 1451) $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)(\mathbf{1})$
(>738 because) e^{-}removed from a +ve ion / is higher than $1^{\text {st }}$ ionisation energy (1)
ALLOW ratio of protons: electrons is higher than in atom/ electron in Mg^{+}closer to nucleus/ radius of Mg^{+}smaller
(<4563 because) e^{-}in Mg is from same shell / lower the Na as second e^{-}in Na is taken from shell closer to the nucleus / removing second e^{-}from Mg is not breaking into a new energy level (1)
(e) Na larger as fewer protons/ smaller nuclear force on electrons.

