

Edexcel GCE

Chemistry (Nuffield) 6251/01

June 2006

Results Mark Scheme

advancing learning, changing lives

Edexcel GCE Chemistry (Nuffield) 6251/01 (a) $Ca + \frac{1}{2} O_2 \rightarrow CaO$ IGNORE state symbols ALLOW multiples

1

(b)

(1 mark)

(2 marks)

ALLOW all dots or all crosses for oxide ion Max 1 if no/wrong charges 1 mark for two correct charges Covalent bonding (0)

(1)

- Calcium hydroxide
- NOT limewater (1 mark)

2 (a)
$$L = \frac{79.0}{1.31 \times 10^{-22}}$$

(c)

(i)

= 6.03×10^{23} (1) -1 mark for SF error Final answer must be 6.03×10^{23} for 2nd mark Correct answer with no working (2) 6×10^{23} / 6.02×10^{23} quoted with no working (0) Error in method, max (1) (2 marks)

 (b) 80 is the average mass of Br atoms / isotopes OR There must be another/at least one Br isotope of mass greater than 80/with more than 45 neutrons NOT naturally occurring isotope has mass 80
 (1 mark)

3

3	(a)	A set of properties/pattern/trend which is repeated/ recurs (1) For the 1 st mark there must be an idea of repetition		
		each period/after an interval (1) ALLOW "after every eight/eighteen elements"		
		"Repeating trends each period" (2)	2 marks)	
	(b)	High values on left/ for metals and low values on right/ for non- metals <i>ALLOW</i> decrease across period/increase from Group 1 to 3, then decrease <i>ALLOW " high values on the left of the staircase, low on right"</i> <i>NOT</i> just <i>" increases then deceases</i> "	(1 mark)	
	(c)	Melting point/ boiling point/(first) ionisation energy/ atomic volume/ $\Delta H_{\rm fusion}/\Delta H_{\rm vaporisation}$ ALLOW density/ electronegativity/ ionic radius/ atomic radius/ thermal conductivity NOT state/ type of bonding/ number of electrons/ mass	(1 mark)	

Total for Section A: 12 Marks

4	(a)	Propan-2-ol <i>NOT</i> prop-2-ol/ 2-propanol	(1 mark)
	(b)	CHOH or fully displayed	
		<i>OR</i> carbon carrying OH/ hydroxyl/ "hydroxide" group attached to two other carbons/ two other methyl groups/ one other hydrogen <i>ALLOW</i> contains CHOH/CH (OH) <i>NOT</i> references to hydroxide ion/ OH ⁻ in explanation	(1 mark)
	(C)	$C_3H_8O + \frac{9}{2}O_2 \rightarrow 3CO_2 + 4H_2O$	
		$\frac{OR}{2C_3H_8O} + 9O_2 \rightarrow 6CO_2 + 8H_2O$	
		products (1) balancing of equation based on correct products (1) ALLOW 4.5, 4½ for %	
		IGNORE state symbols No penalty if structural formulae used	(2 marks)
	(d)	Bubbles/ effervescence/ fizzing (1) Gets hotter/ heat produced/ temperature rises (1) <i>NOT</i> exothermic Sodium dissolves/ disappears/ gets smaller (1) White solid produced (1) Hissing sound (1)	
		<i>NOT</i> white precipitate <i>NOT</i> floats/moves around and goes on fire	(2 marks)
	(e)	(i) Orange to green/blue	(1 mark)
		(ii) H H H $-C$ -C $-C$ -H (1) H O H MUST be fully displayed	
		Propanone/ propan(e)-2-one (1) ALLOW acetone No TE from incorrect formula	(2 marks)
		 (iii) Blue / light blue <i>NOT</i> mention of any other modified colour of blue i.e. <i>NOT</i> blue-green 	(1 mark)

 (f) (i) Aluminium oxide/ phosphorus(V) oxide/ (porous) pot/ pumice/ porcelain/ alumina/ phosphoric acid/ phosphorus pentoxide ACCEPT formulae Al₂O₃/ P₂O₅/ P₄O₁₀/ H₃PO₄ If formula is included, must be correct

(1 mark)

Tube + contents (1) *ALLOW* glass wool/ mineral wool/ Rocksil wool *NOT* wire wool/ cotton wool

Heat under some solid (1)

(ii)

Gas collected by displacement of water *- water does not need to be labelled OR* collect in syringe (1) *IGNORE* open tube following Bunsen valve, providing gas can be collected

-1 for each error e.g. single line tube; gap between bung and tube; delivery tube through side of trough, delivery tube not under collecting tube

(3 marks)

Total for question: 14 Marks

5	(a)	(250 cm ³) volumetric/graduated/standard flask NOT any mention of "conical" flask	(1 mark)
	(b)	Methyl orange (1) yellow to orange (1) <i>ALLOW</i> yellow to red <i>OR</i> yellow to orange-red	
		<i>OR</i> Screened methyl orange (1) green to grey <i>ALLOW</i> green to purple (1)	
		<i>OR</i> other suitable indicator in Data Book p 123, alkaline colou	ır first
		ALLOW Phenolphthalein (1) pink to colourless (1) ALLOW bromophenol blue (1) blue to grey/yellow (1) ALLOW recognisable spellings	
		NOT litmus/U.I.	(2 marks)
	(c)	$\frac{7.15 \text{ x } 10}{250} = 0.286 \text{ / } 2.86 \text{ x } 10^{-1} \text{ (g)}$	
		<i>ALLOW</i> 0.29(g) <i>NOT</i> 0.28, 0.3, error in 3 rd decimal place	(1 mark)
	(d)	$\frac{(20.0 \times 0.100)}{(1000)} = 2 \times 10^{-3} OR 0.002 OR 0.0020 \text{ (mol)}$	(1 mark)
	(e)	286 (g) ALLOW TE from (c) and (d)	(1 mark)
	(f)	286 Same answer as in (e) for TE NOT 286 if inconsistent with (e) unless calculation shown	(1 mark)
	(g)	106 + 18 <i>x</i> = 286 (1) <i>x</i> = 10 (1)	
		OR 106 + 18x = 196 (1) x = 5 (1)	
		ALLOW TE from (e)/(f) ACCEPT decimals	(2 marks)
			Total for question:9 marks

		NOT	$\Delta H_f / \Delta H_f^{*}$ Total for question	(1 mark) : 10 marks		
	(c)	(Standard) enthalpy (change) of formation (of calcium carbonate) ACCEPT $\Delta H_{formation} / \Delta H_{formation}^{e}$ /formation				
			<i>ALLOW T.E. from (iii) Watch for adding J to kJ</i>	(2 marks)		
			= (+) 170.5/ (+) 171 (kJ mol ⁻¹) (1)			
		(iv)	$\Delta H_{\rm r} = \Delta H_{\rm 1} - \Delta H_{\rm 2}$ (1) = -10.5 -(-181) ie use of Hess			
			ALLOW TE from (ii) -1 for incorrect/missing sign/units Third mark depends on correct method for 2 nd mark	(3 marks)		
			$\Delta H_1 = -10500 \text{ J mol}^{-1}$ OR -10.5 kJ mol ⁻¹ (1)			
			$\frac{210}{0.02} = 10\ 500\ (1)$			
		(iii)	Incorrect units (0) Number of moles of CaCO ₃ = 0.02 (1)			
		(ii)	4.2 x 20 x 2.5 = 210 (J) OR 0.210 kJ IGNORE +/- signs	(1 mark)		
			Heat losses occur if reaction is slow (1)	(2 marks)		
	(b)	(i)	Reaction occurs quickly / incomplete reaction (in reasonable time) with lumps (1)			
		ALLO NOT accur	<i>W "heat is required so temperature change will not be accurate"</i> <i>"Heat is supplied so temperature cannot be measured/ will not be</i> <i>rate</i> "	(1 mark)		
		<i>OR</i> No suitable thermometers (for measuring temperature change at high temperatures) (1)				
		OR Necessary temperature cannot be reached (1)				
		<i>OR</i> ΔT or $\Delta H_{\text{reaction}}$ cannot be determined because heat is supplied (1)				
		OR Difficult to measure temperature changes in solids (1)				
		OR All CaCO ₃ may not decompose (1)				
6	(a)	Difficult to decide when reaction complete/ reaction may be incomplete (1)				

7	(a)	Oxidised as electrons lost/ forms positive ion/ oxidation number has increased. If oxidation numbers are quoted, must be correct ie 0 to +1		
	(b)	(i)	Na yellow ALLOW orange/yellow-orange/orange-yellow (1) NOT shades of red	
		(ii)	Mg no colour / does not change flame colour (1) NOT references to white light in combination with a flame colour NOT ultraviolet Electrons are excited/ raised to a higher energy level/ shell with	(2 marks)
			different energy (1) Then return/ fall back emitting light/ a colour / a certain wavelength/ frequency (1)	(2 marks)
		(iii)	Streetlights <i>OR</i> (colour for) fireworks <i>OR</i> measuring Na ⁺ concentration/testing for sodium <i>OR</i> lamp with standard wavelength <i>NOT</i> distress flares	
			<i>NOT</i> light bulbs	(1 mark)
	(c)	1s ² 2s ² 2p ⁶		(1 mark)
	(d)	d) (i)	$\begin{array}{l} Mg(g) \rightarrow Mg^{\scriptscriptstyle +}(g) + \mathrm{e}^{(-)}((g)) \\ OR \\ Mg(g) - \mathrm{e}^{(-)}((g)) \rightarrow Mg^{\scriptscriptstyle +}(g) \end{array}$	
			Equation (1) state symbols (1)	
			2 nd mark can be given if: • electron is on wrong side e.g. $Mg(g) + e^- \rightarrow Mg^+(g)$ • 2 nd ionisation energy given e.g. $Mg^+(g) \rightarrow Mg^{2+}(g) + e^-$ • If cumulative first and second ionisation energy given e.g. $Mg(g) \rightarrow Mg^{2+}(g) + 2e^-$	
			Multiples of the equation are not allowed If equation is given correctly for wrong element eg sodium, Na, max 1 If equation is given using a letter like M or X, max 1	(2 marks)

(ii) Mg has more protons/ greater atomic number/ greater nuclear charge (1) Shielding unchanged/ electrons removed from same sub-shell/ orbital (1) (2 marks) IGNORE comments on Na "wanting" to lose electron Value between 900 to 3000 inclusive (actual is 1451) (kJ mol⁻¹) (1) (iii) (>738 because) e^{-} removed from a +ve ion / is higher than 1^{st} ionisation energy (1) ALLOW ratio of protons: electrons is higher than in atom/electron in Mg⁺ closer to nucleus/ radius of Mg⁺ smaller (< 4563 because) e^- in Mg is from same shell / lower the Na as second e⁻ in Na is taken from shell closer to the nucleus / removing second e⁻ from Mg is not breaking into a new energy (3 marks) level (1) Na larger as fewer protons/ smaller nuclear force on electrons.

(e)

(1 mark)

Total for question:15 marks

Total for paper: 60 marks