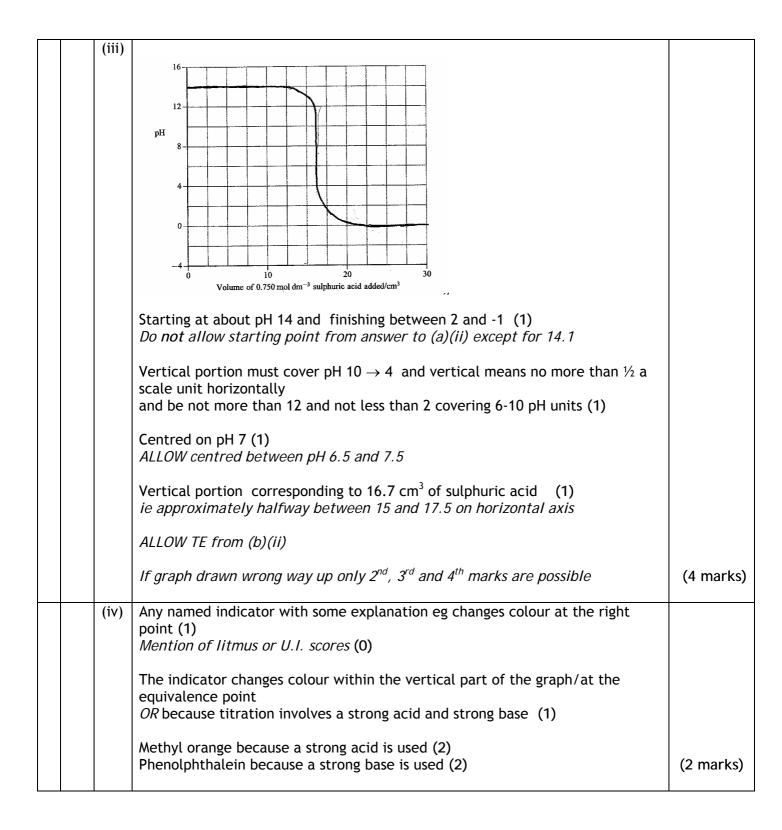


**GCE** 


Edexcel GCE Chemistry (Nuffield) (6254/01)

January 2006

Mark Scheme (Results)

advancing learning, changing lives

| 1 | (a) | (i)  | 1 mol of KOH = 39 + 16 + 1 = 56 (1)                                                                                |           |
|---|-----|------|--------------------------------------------------------------------------------------------------------------------|-----------|
|   |     |      | ALLOW this mark if 56 seen in calculation                                                                          |           |
|   |     |      | Concentration = $70/56 = 1.25 \text{ (mol dm}^{-3}\text{)}$ (1)                                                    |           |
|   |     |      | ALLOW TE for incorrect mass of KOH                                                                                 |           |
|   |     |      | IGNORE minor slip in units if given                                                                                |           |
|   |     |      | Answer 1.25 (mol dm <sup>-3</sup> ) with no working (2)                                                            | (2 marks) |
|   |     | (ii) | pH = - log [H <sup>+</sup> ]                                                                                       |           |
|   |     |      | $[H^{+}][OH^{-}] = 1.0 \times 10^{-14} \text{ mol } ^{2}\text{dm}^{-6}$<br>$[OH^{-}] = 1.25$                       |           |
|   |     |      | $[OH^{-}] = 1.25$<br>$[H^{+}] = \frac{1.0 \times 10^{-14}}{1.25}$ (1) = 8 x 10 <sup>-15</sup> ALLOW TE from (a)(i) |           |
|   |     |      | pH = 14.1 (1)                                                                                                      |           |
|   |     |      | ALLOW 14.10, 14.097 or 14 if a correction to 2SF from more SF                                                      |           |
|   |     |      | Answer 14.1 with no working (2)                                                                                    | (0        |
|   |     |      | No TE within (ii) from wrong [H <sup>+</sup> ]                                                                     | (2 marks) |
|   | (b) | (i)  | $H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O$                                                                       |           |
|   |     |      | Formulae and balancing                                                                                             |           |
|   |     |      | Check carefully the balancing of 2H <sub>2</sub> O                                                                 | (1 mark)  |
|   |     |      | IGNORE state symbols                                                                                               | (Tillark) |
|   |     | (ii) | moles of KOH = $\frac{25}{1000}$ = 0.025                                                                           |           |
|   |     |      | moles of $H_2SO_4 = 0.025 = 0.0125$ (1)                                                                            |           |
|   |     |      | titration value = $\frac{1250}{75}$ = 16.7 cm <sup>3</sup> (1)                                                     |           |
|   |     |      | ALLOW TE from (b)(i) if 1:1 titration value 33.3 cm <sup>3</sup>                                                   |           |
|   |     |      | ALLOW 16¾ cm³                                                                                                      |           |
|   |     |      | NOT 16.6 / 17 / 16.67 cm <sup>3</sup>                                                                              |           |
|   |     |      | Must be 3SF and include correct units                                                                              |           |
|   |     |      | Answer 16.7 cm <sup>3</sup> with no working (2)                                                                    | (2 marks) |
|   |     |      |                                                                                                                    |           |



| (c) | (i) | Check rinse water/peaches are no longer alkaline  OR it is no longer alkaline   |             |
|-----|-----|---------------------------------------------------------------------------------|-------------|
|     |     | OR check that it is neutral/free from KOH (1)                                   |             |
|     |     | as alkalis are corrosive/harmful/irritant (1)                                   |             |
|     |     | NOT poisonous/toxic/dangerous/fatal/neutralise stomach acid                     |             |
|     |     | Mark independently                                                              |             |
|     |     | Corrosive/harmful plus poisonous etc loses 2 <sup>nd</sup> mark                 |             |
|     |     | If sulphuric acid is mentioned as only problem (0), but if it is mentioned with |             |
|     |     | KOH (1 max)                                                                     | (2 marks)   |
|     |     |                                                                                 |             |
|     |     | Total for Question                                                              | n: 15 Marks |

| 2 | (a) | C <sub>10</sub> H <sub>8</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
|---|-----|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|   |     |                                | $PW(C_5H_4)_2$<br>$(C_6H_4)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1 mark)    |
|   | (b) | (i)                            | - 600<br>NOT + 600<br>NOT 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1 mark)    |
|   |     | (ii)                           | Naphthalene is more/very stable than double bonds suggest (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , ,         |
|   |     |                                | Must be a comparison for the 1 <sup>st</sup> mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|   |     |                                | Therefore the electrons/bonds may be/are delocalised (over the ring system)  OR it is a delocalised system (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|   |     |                                | No TE from (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|   |     |                                | Delocalised mark can be given if delocalisation mentioned in (iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (2 marks)   |
|   |     | (iii)                          | No because it is likely to react like benzene / delocalised structure / no double bonds OR bromine not a strong enough electrophile without a catalyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|   |     |                                | OR "yes but only if bromine [NOT bromine solution] and a catalyst"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1 mark)    |
|   | (c) | (i)                            | Reagent 2-chloropropane (1)  ALLOW 1-chloropropane OR other halogenopropanes  NOT chloropropane  NOT bromo-2-propane  ALLOW formula with or without non-systematic name  ALLOW CICH(CH <sub>3</sub> ) <sub>2</sub> OR (CH <sub>3</sub> ) <sub>2</sub> CHCl OR C(CH <sub>3</sub> ) <sub>2</sub> HCl OR CIC(CH <sub>3</sub> ) <sub>2</sub> H  Catalyst  aluminium chloride / AlCl <sub>3</sub> /Al <sub>2</sub> Cl <sub>6</sub> OR aluminium bromide / AlBr <sub>3</sub> OR iron(III) chloride/FeCl <sub>3</sub> (1)  NOT AlCl <sub>4</sub> <sup>(-)</sup> NOT "iron" on its own  If both correct but wrong way round 1 (out of 2) | (2 marks)   |
|   |     | (ii)                           | electrophilic (1) substitution (1) Can be given in any order Mark independently                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2 marks)   |
|   |     | 1                              | Total for Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on: 9 marks |

| 3 | (a) | (i)  | Negative with some sensible explanation eg fewer moles of product (1)                                                                                                                                                                   |           |
|---|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|   |     |      | 3 moles of gases going to 2 moles of gases (1)  MUST mention gases or no changes in state                                                                                                                                               | (2 marks) |
|   |     | (22) |                                                                                                                                                                                                                                         | . ,       |
|   |     | (ii) | Positive with some explanation eg exothermic so surroundings gain entropy (1)                                                                                                                                                           |           |
|   |     |      | $\Delta S_{\text{surroundings}} = -\underline{\Delta H} \qquad [OR \ given \ in \ words]$                                                                                                                                               |           |
|   |     |      | $OR$ $\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$ [OR given in words] as reaction goes, $\Delta S_{\text{total}}$ must be positive therefore $\Delta S_{\text{surroundings}}$ must be positive |           |
|   |     |      | OR Surroundings gain energy so more ways of arranging energy (1)                                                                                                                                                                        | (2 marks) |
|   | (b) | (i)  | $(K_{P}) = P_{NO}^{2} \times P_{O_{2}} $ (1)                                                                                                                                                                                            |           |
|   |     |      | Check that it is not a "+" on denominator.<br>$ALLOW()$ but $NOT[]$ eg $ALLOW(PNO_2)^2$ etc<br>$ALLOW(pNO_2)^2$                                                                                                                         |           |
|   |     |      | atm <sup>-1</sup> / Pa <sup>-1</sup> / kPa <sup>-1</sup> / m <sup>2</sup> N <sup>-1</sup> (1) - 2 <sup>nd</sup> mark dependent on 1st<br>ALLOW atms <sup>-1</sup> / atmospheres <sup>-1</sup><br>NOT atm <sup>-</sup> etc               |           |
|   |     |      | NOT Kpa <sup>-1</sup>                                                                                                                                                                                                                   | (2 marks) |
|   |     | (ii) | Temperature A lower temperature is needed to get a better yield (and would cost less) because the reaction is exothermic (1)                                                                                                            |           |
|   |     |      | but the lower temperature may slow the reaction down too much <i>OR reverse argument</i> (1)                                                                                                                                            |           |
|   |     |      | Pressure A high pressure will increase yield as only two moles on the right compared to three on the left/less moles on the right hand side(1)                                                                                          |           |
|   |     |      | It will also increase the rate of the reaction (1)                                                                                                                                                                                      |           |
|   |     |      | Low pressure because of cost only gets mark if higher yield at higher pressure identified                                                                                                                                               |           |
|   |     |      | To award any of the yield marks must say why                                                                                                                                                                                            | (4 marks) |

| (c) | (i)   | Must be a quantity that can be measured Eg                                                                                                                            |               |
|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|     |       | The pressure could be measured (1) as it will decrease as the reaction proceeds because there are only two/fewer moles on the right compared to three on the left (1) |               |
|     |       | OR colour (1) as the nitrogen(IV) oxide is brown whereas the other gases are colourless (1)                                                                           |               |
|     |       | OR total volume (1) which will decrease by one third/because there are fewer moles (1)                                                                                |               |
|     |       | ALLOW acidity because NO <sub>2</sub> acidic and others not (1 max)                                                                                                   |               |
|     |       | NOT dilatometry NOT temperature                                                                                                                                       | (2 marks)     |
|     | (ii)  | [NO] second order (1)                                                                                                                                                 |               |
|     |       | because when conc of NO is doubled, the rate goes up four times (1)                                                                                                   |               |
|     |       | [O <sub>2</sub> ] first order (1)                                                                                                                                     | (3 marks)     |
|     | Then  | (iii), (iv) and (v) must follow consistently from (ii)                                                                                                                |               |
|     | (iii) | rate = $k[NO]^2[O_2]$ ALLOW TE from (ii) e.g.  rate = $k[NO][O_2]$                                                                                                    | (1 mark)      |
|     | (iv)  | third / 3 second / 2                                                                                                                                                  | (1 mark)      |
|     | (v)   | 8000 (1) dm <sup>6</sup> mol <sup>-2</sup> s <sup>-1</sup> (1) 8 (1) dm <sup>3</sup> mol <sup>-1</sup> s <sup>-1</sup> (1) Units can be given in any order            | (2 marks)     |
| (d) | OR b  | I<br>activation energy must be low<br>ond energies low<br>"more successful collisions"<br>large rate constant                                                         | (1 mark)      |
|     |       | Total for quest                                                                                                                                                       | ion: 20 marks |

| 4 | (a) | (i)  | H H H H                                                                                                                                                              |           |
|---|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|   |     |      | H H H  H—C—C—C=O (1) (2-)methylpropanal/(2-)methylpropan-1-al (1)  NOT methylpropan-2-al  H—C—H  H                                                                   |           |
|   |     |      | Aldehyde must be displayed but rest of molecule not displayed (1 out of 2)                                                                                           |           |
|   |     |      | Name must match correct compound. No marks for correctly naming an incorrect compound                                                                                | (4 marks) |
|   |     | (ii) | Any one from                                                                                                                                                         |           |
|   |     |      | Infrared spectra (1) different in 'fingerprint' OR differences in frequencies/wavelengths absorbed OR different peak/trough patterns (1) NOT different peaks/troughs |           |
|   |     |      | Measure Boiling point (1) Different boiling points and suggest why e.g. straight chain higher boiling point (1)                                                      |           |
|   |     |      | nmr spectra (1)<br>A + B would have a different number of peaks (1)                                                                                                  |           |
|   |     |      | Mass spec (1) Different fragmentation pattern (1)                                                                                                                    |           |
|   |     |      | X-ray diffraction (1) Electron density maps identify branching (1)                                                                                                   |           |
|   |     |      | Prepare 2,4-dinitrophenylhydrazone (1) and measure melting point (1)                                                                                                 |           |
|   |     |      | NOT measure melting point                                                                                                                                            | (2 marks) |

| (b) | (i)  | 2,4-dinitrophenylhydrazine / 2,4-DNP(h) / Brady's reagent (1)                                                                              |           |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|     |      | orange/yellow/orange-red/yellow-orange precipitate/crystals [a solid must be mentioned] (1)                                                |           |
|     |      | NOT 'Red' 2 <sup>nd</sup> mark dependent on 1 <sup>st</sup>                                                                                | (2 marks) |
|     | (ii) | (Heat with) Benedict's reagent/Fehling's reagent (1)                                                                                       |           |
|     |      | Result for C remains blue (1) ALLOW no change if blue mentioned somewhere                                                                  |           |
|     |      | Result for A and B orange/red/green/yellow/brown precipitate/crystals [a solid must be mentioned] (1)                                      |           |
|     |      | OR Acidified dichromate (1) Result for C remains orange (1) Result for A + B green/blue (1) Same rules as above but precipitate not needed |           |
|     |      | 2 <sup>nd</sup> and 3 <sup>rd</sup> marks dependent on 1 <sup>st</sup>                                                                     | (3 marks) |
| (c) | (i)  | OH CH <sub>3</sub> OH CH <sub>3</sub>                                                                                                      |           |
|     |      | Any two ALLOW fully displayed  ALLOW CH <sub>2</sub> CH <sub>2</sub> CHOH                                                                  |           |
|     |      | ALLOW OH NOT OH                                                                                                                            |           |
|     |      | NOT CH <sub>2</sub> CH <sub>2</sub> CHOH etc                                                                                               | (2 marks) |
|     | (ii) | Esters NOT esterification                                                                                                                  | (1 mark)  |

|  | (iii) | e.g.  H H H O  H-C-C-C-C-C-O  H H H H  ester group - must be displayed (1) rest of molecule - need not be fully displayed (1) - 2 <sup>nd</sup> mark dependent on 1 <sup>st</sup> ALLOW TE from CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CHOH etc in (c)(i) for 2 marks in (iii)  If enol in (c)(i) max 2 (out of 5) for (c) ie (ii) and ester displayed in (iii) can be awarded | (2 marks)                     |
|--|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|  |       | Total for Questi                                                                                                                                                                                                                                                                                                                                                                        | on: 16 marks<br>per: 60 marks |