GCE
 Edexcel GCE
 Chemistry (Nuffield) (6252/01)

J anuary 2006

Mark Scheme (Results)

Section A

1.	(a)	(i)		(1 mark)
		(ii)	ALLOW all dots or crosses ALLOW TE for a butene/ pentene in (a)(i) IGNORE circles	(1 mark)

(b)	ceramic fibre / glass or mineral/ cotton wool soaked in (liquid) paraffin (1) NOT wire wool aluminium oxide / $\mathrm{Al}_{2} \mathrm{O}_{3}$ / pumice/ porcelain/ broken pot etc. in correct position in tube (1) heat directed at solid - must be under some of solid (1) collection over water/ gas syringe (1) If Bunsen valve shown it must be under the test tube Tubing following valve must be closed unless under test tube ACCEPT no tubing after valve Penalties -1 for each (to a maximum of two penalties) apparatus will not "work", eg no bung, open tube not under test-tube, even following Bunsen valve error in gas collection eg delivery tubing through trough or test-tube delivery tubing shown as single line ALLOW	(4 marks)
(c)	(i)orange/brown/ yellow to colourless NOT 'clear' Any mention of red (0)	(1 mark)
	(ii)$\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{Br}$ $\mathrm{ALLOW} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{Br}$ OR $\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{OH}$ ALLOW displayed/ semi-displayed formulae	(1 mark)

(d)	(i)	(yield/ amount/ it) decreases / more propane formed (1) Fewer (gas) molecules/ moles on left than on the right OR reaction goes to side with fewer molecules/ moles (1) NOT "equilibrium moves to the left" Mark independently	(2 marks)
	(ii)	endothermic process / K_{p} increases/ heat taken in/ $\Delta \mathrm{S}_{\text {surroundings }}$ becomes less negative/ increases	(1 mark)
	(iii)	none / same yield	(1 mark)
(e)	$\left(\mathrm{CH}_{3}\right)$ ALLO ALLO $\mathrm{CH}_{3} \mathrm{C}$ $\mathrm{CH}_{3} \mathrm{C}$ CCH^{2} $\mathrm{CH}_{3} \mathrm{C}$ doub (2-) 2-m 2-m Mark No t	$)_{2} \mathrm{C}=\mathrm{CH}_{2}$ W displayed formula (1) $\begin{aligned} & \mathrm{OW} \mathrm{C(CH} 3)_{2}=\mathrm{CH}_{2} \\ & \left.\mathrm{COH}_{3}\right)=\mathrm{CH}_{2} \\ & \mathrm{CHH}_{3}=\mathrm{CH}_{2} \\ & { }_{3} \mathrm{CH}_{3}=\mathrm{CH}_{2} \\ & \mathrm{H}_{3} \mathrm{C}=\mathrm{CH}_{2} \end{aligned}$ le bond need not be shown, but if single bond displayed (0) methylpropene thylprop-1-ene thylprop-2-ene independently ransferred error allowed	(2 marks)
	Total for question:14 marks		

2.	(a)	$\Delta \mathrm{H}_{\mathrm{at}}=(2 \times 347)+612+(8 \times 413)=+4610\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Method (2) Answer (arithmetic and sign) (1) +4610 with no working (3) one multiple wrong/ omitted (eg $+4263 /+1719$) 2 max two multiples wrong/ omitted (eg +1372) $\mathbf{1}$ max		(3 marks)
	(b)	(i)	axes suitably labelled with units : "(Number of) carbon atoms" on \mathbf{x} axis and " $\Delta H_{\mathrm{at}}(/) \mathrm{kJ} \mathrm{mol}^{-1 "}$ on \mathbf{y}-axis (1) Linear and sensible scales (1) ALLOW one big square per 1000 kJ . Must be one big square per carbon atom All points correctly plotted and joined with straight line or dot-to-dot (1) only penalise if points clearly off line Graph of $\Delta \mathrm{H}_{\text {at }}$ vs. Boiling point (0) Graph of Boiling point vs. number of carbon atoms (0)	(3 marks)
		(ii)	$1^{\text {st }}$ mark: bond breaking increasing $2^{\text {nd }}$ mark: quantitative treatment e.g. (From one alkene to the next) involves the atomisation/ breaking of an extra C-C bond and two extra C-H bonds (2) OR a need to break more bonds as chain length increases (1) molecules increase by $-\mathrm{CH}_{2}$ - as chain length increases (1)	(2 marks)
		(iii)	(+) $4620 \pm 30\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	(1 mark)

	(c)	(i)	Van der Waals OR fluctuating/ induced dipoles OR London/ dispersion forces NOT vdw	(1 mark)
(ii)	Number of electrons increases (1) so the strength of the van der Waals / intermolecular forces also increases OR so there are more van der Waals forces (1) Mark independently	(2 marks)		
(iii)	Two geometric isomers [can be shown in diagram instead]/ a cis and trans form exist OR Valid argument based on no free rotation about C=C bond \rightarrow two isomers	(1 mark)		
(iv)Pent-1-ene because unbranched/ straight chain (1) Greater area (of contact)/ more contact between molecules/ molecules can align more easily (1) IGNORE argument based on stacking/ packing IGNORE molecules can get closer together	(2 marks)			
(d)There is hydrogen bonding in water (1) Alkenes cannot form hydrogen bonds (with water molecules)/ alkene- water interactions too weak (1) Mark independently	$\mathbf{(\mathbf { 2 } \text { marks) }}$			

3.	(a)	(i)	```Cl}(\textrm{aq})+2\mp@subsup{\textrm{I}}{}{-}(\textrm{aq})\longrightarrow2\mp@subsup{\textrm{Cl}}{}{-}(\textrm{aq})+\mp@subsup{\textrm{I}}{2}{}(\textrm{aq}/\textrm{s}) OR halved versio Entities (1) Balancing and state symbols (1) 2 nd mark dependent on 1 1tunless spectator ions included on both sides of equation```	(2 marks)
		(ii)	Purple/ pink/ violet/ mauve/ lilac OR any combination of these colours Can be prefixed by deep or dark Any mention of red (0)	(1 mark)
		(iii)	Orange OR yellow ALLOW red OR brown ALLOW any combination of these colours	(1 mark)
	(b)	(i)	iodine in $\mathrm{I}_{2}: 0$ iodine in $\mathrm{I}^{-}:-1$ (1) sulphur in $\mathrm{SO}_{2}:+4$ sulphur in $\mathrm{SO}_{4}^{2-}:+6$ (1)	(2 marks)
		(ii)	sulphur dioxide / SO_{2}, because of sulphur's increased oxidation number/ losing electrons ALLOW because sulphur dioxide gains oxygen [both parts needed for the mark] ALLOW reverse argument ie iodine gains electrons/ oxidation number decreases	(1 mark)
		(iii)	$\mathrm{I}_{2}(\mathrm{aq})+\mathrm{SO}_{2}(\mathrm{aq})+\mathbf{2} \mathrm{H}_{2} \mathrm{O} \rightarrow \mathbf{2} \mathrm{I}^{-}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})+\mathbf{4} \mathrm{H}^{+}(\mathrm{aq})$ ALLOW multiples	(1 mark)

(c)	(i)	the red colour would interfere with the colour change at the endpoint OR so that the colour of the indicator/ the end-point can be seen/ determined	(1 mark)
	(ii)	colourless to (deep/ dark) blue / blue-black / black Any mention of purple (0)	(1 mark)
	(iii)	- moles of iodine $=\left(\frac{12.2}{1000}\right) \times 0.001=1.22 \times 10^{-5} / 0.0000122$ (1) - moles of sulphur dioxide $=1.22 \times 10^{-5}(1)$ ALLOW answer equal to or a single digit multiple of answer above - concentration of SO_{2} $\begin{align*} =1.22 \times 10^{-5} \times \frac{(1000}{25}= & 4.88 \times 10^{-4} / 0.000488\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1}\\ & \text { OR } 4.9 \times 10^{-4} / 0.00049\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{align*}$ ALLOW TE from answer above IGNORE units	(3 marks)
	(iv)	activated charcoal might react with / adsorb SO_{2} / (traces of) charcoal might react with I_{2} (thus giving an underestimate of $\left[\mathrm{SO}_{2}\right]$ in the wine)	(1 mark)
		Total for Question: 14 marks	
		Total for Section A: 45 marks	

SECTION B

4.	(a)	$\mathrm{N}_{2} \mathrm{O}$	(1 mark)
	(b)	Refrigerants/ heat transfer agents and anaesthetics/ they share similar properties OR properties exemplified eg non flammable/ non toxic/ volatile - any two of these OR Refrigeration technology resulted in the production of CFCs which were then found to have properties of anaesthetics OR Refrigerants/ heat transfer agents were found to be anaesthetics	(1 mark)
	(c)	Inertness of fluorine in the C-F bond Inertness of fluorine in the $\mathrm{CF}_{2} / \mathrm{CF}_{3}$ groups $\mathrm{CF} / \mathrm{CF}_{2} / \mathrm{CF}_{3}$ group conferred stability on adjacent/ neighbouring $\mathrm{C}-\mathrm{Hal}$ bonds NOT inertness of C-F bond/fluorine alone	(1 mark)
	(d)	(i) There is a greater difference between the electronegativities of fluorine and hydrogen than between fluorine and chlorine / chlorine is more electronegative than hydrogen Answer in terms of relevant relative shifts in electron densities are acceptable. ACCEPT answers based on relative symmetries, e.g. electron cloud in $\mathrm{CF}_{3} \mathrm{CCl}_{3}$ is more symmetric than with $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ ACCEPT argument in terms of electropositivities	(1 mark)
		(ii)$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ because it possesses C-H bonds OR enables (electrostatic) interactions with "brain molecules" OR because a lower dose can be used	(1 mark)
	(e)	$\left.\begin{array}{l}\text { (2)-bromo-(2)-chloro-1,1,1-trifluoroethane } \\ \text { OR } \\ \text { (1)-bromo-(1)-chloro-2,2,2-trifluoroethane }\end{array}\right\}$ IGNORE punctuation ACCEPT non alphabetic versions NOT bromochlorotrifluoroethane	(1 mark)
	(f)	100-106.5 ${ }^{\circ}$ Any value or range of values within this range	(1 mark)

		Key points			
Advantages of using halothane: Any 5 (max) of these key points				\quad	(1)
:---					

		Quality of Written Communication These should be impression marked on a scale 2-1-0, and the mark out of 2 should be recorded in the body of the script at the end of the answer. This mark can not be lost as a result of a word penalty. Candidates are expected to: - show clarity of expression; - construct and present coherent argument; - demonstrate effective use of grammar punctuation and spelling. The aspects to be considered are: - use of technical terms; the answer should convey a correct understanding by the writer of the technical terms used in the passage which are involved in the key points. articulate expression; the answer should be wellorganised in clear, concise English, without ambiguity. It should read fluently, with the links between key points in the original maintained. legible handwriting; the reader should be able to read the answer without difficulty at normal reading pace, with only the occasional difficulty with a word. points must be in a logical order. Good style and use of English, with only infrequent minor faults, no use of formulae (2) Frequent minor or a few major faults in style and use of English (1) Very poor style and use of English (0) NB: The quality of written communication mark cannot be lost through word penalties.	(2 marks)
		Total for Section B:15 marks	
		Total for paper: 60 marks	

