edexcel

GCE

Edexcel GCE

Chemistry (Nuffield) (6251/01)

January 2006

Mark Scheme (Results)

advancing learning, changing lives

Edexcel GCE Chemistry (Nuffield) (6251/01)

	(2)	$\sim CuCO_{\rm s}(c) + 2 NaNO_{\rm s}(ca)$	
1	(a)	$ \rightarrow CuCO_3(s) + 2 \text{ NaNO}_3(aq) $ (1) (1)	
		<i>2 correct formulae without state symbols and balancing</i> (1)	
		<i>NOT</i> ppt as an alternative to (s)	(2 marks)
	(b)	(persistent) yellow	
		ALLOW orange OR orange-yellow OR yellow-orange	(1 mark)
	(c)	Copper d (block) sodium s (block)	
		ALLOW upper case D and S	(1 mark)
2	(a)	Number of moles $\frac{3.5}{7} = 0.50 / \frac{1}{2}$ (1)	
		If candidate does first part only, working must be shown	
		n candidate does thist part only, working must be shown	
		Number of atoms = 3.01×10^{23} (1)	
		ACCEPT 3.0 OR 3 OR $3.010(\times 10^{23})$	
		<i>NOT</i> 3.01 ²³	
		If all working chown allow TE for \mathcal{M}^d mark grants white	
		If all working shown, allow TE for 2 nd mark Ignore units Correct answer with no working (2)	(2 marks)
	(b)	(i) $2Li((s)) + 2H^{+}((aq)) \rightarrow 2Li^{+}((aq)) + H_{2}((g))$	
		ALLOW multiples Ignore state symbols	(1 mark)
		(ii)	
		(1) (1) Allow all dots or all crosses on Cf	
		Max 1 if no/wrong charges If covalent (0)	
		Do NOT penalise if electrons not shown in pairs	
		Maximum 1 if Li and CI not labelled	
		Li and CI symbols can go below diagram	
		Square brackets not essential	
		Allow number of protons/positive charges in nucleus as alternative	
1		to symbols for Li and Cl	(2 marks)

		(iii)	Any two from:	
			Temp 298 K/ 25 °C <i>OR</i> "at a specified temperature" <i>Unit of temperature needed</i> <i>NOT</i> "room temperature"	
			(Acid/solution) concentration 1 mol dm ⁻³ / 1 molar	
			Pressure 1 atm / 10 ⁵ Pa / 1.01×10 ⁵ Pa/10 ² k Pa / 101 k Pa/10 ⁵ N m ⁻² / 76 cm Hg <i>NOT</i> "pressure of hydrogen" OR "pressure of reactants" <i>NOT</i> atmospheric pressure	
			Must be the most stable/usual/normal physical states NOT "standard states" If more than 2 conditions given, deduct 1 mark for each incorrect answer	(2 marks)
3	(a)	Alken	ne	(1 mark)
	(b)	doub ACCE Mark	CHCH ₂ CH ₃ / CH ₃ CH=CHCH ₃ / CH ₂ =C(CH ₃) ₂ / CH ₂ =C(CH ₃)CH ₃ le bond need not be shown PT displayed formula independently of a	
		Watc	h for incorrect numbers of H in the middle of the chain	(1 mark)
			Total for Section	n A: 13 marks

Sect	ion B		
4	(a)	Metallic (1) Labelled diagram of lattice of + charged ions in sea of electrons with approx equal numbers of + and - charges (1) Positive ions must not be touching; should be regular arrangement Minimum of 6 positive ions	
		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	
		Charges need not be shown on electrons ACCEPT e- without label Circles shown as 2 ⁺ /3 ⁺ must be labelled as ions Circles labelled Fe ²⁺ and Fe ³⁺ can be assumed to be ions	(2 marks)
	(b)	(i) Fe^{2+} and Fe^{3+} both needed OR Fe^{++} and Fe^{+++} OR Fe^{+2} and Fe^{+3} ALLOW 2F e^{3+} NOT Roman numerals NOT Fe $_2^{3+}$, $(Fe^{3+})_2$ NOT just +2, +3 or 2+, 3+ IGNORE formula of sulphate ion if iron correct.	(1 mark)
		 (ii) Iron loses electrons/ iron forms positive ions / oxidation number of iron increases /becomes more positive / becomes less negative NOT iron becomes charged NOT iron loses charge If b(i) is answered in terms of sulphate, iron must be mentioned in b(ii) Ignore 'gaining oxygen' 	(1 mark)
		(iii) Iron $\frac{0.500}{56}$ = 8.93 x 10 ⁻³ / 0.00893 /0.0089 / 0.008929 / 0.009 mol (1) <i>Ignore SF</i> Sulphuric acid <u>10.0 x 2.00</u> = 0.0200 / 0.02	
		1000 /2 x 10 ⁻² / 2.0 x 10 ⁻² / 2.00 x 10 ⁻² (mol) (1)	(2 marks)

	(iv)	214 cm ³ = $\frac{214}{24000}$ = 8.92 x 10 ⁻³ /8.917 x 10 ⁻³ /8.9 x 10 ⁻³ / 0.009mol (1) 24000 Ignore SF	
		In equation 1 number of moles Fe = number of moles H ₂ OWTTE (1) MUST link equation to calculation	(2 marks)
	(v)	To make sure iron reacts completely <i>OR</i> to make sure all iron reacts <i>OR</i> if excess iron is used expt would not work as moles H_2SO_4 = moles H_2 in both equations <i>OR</i> to provide enough acid for the 2 nd equation to occur. <i>NOT</i> to ensure reaction reaches completion	
		<i>NOT</i> all reactants must be used up <i>NOT</i> arguments based on purity	(1 mark)
(c)	(i)	Indicator (1) Colours (1) Methyl orange red to yellow Litmus red to blue <i>ALLOW</i> Phenolphthalein colourless to pink/purple/mauve/red <i>OR</i> other indicators from p.123 of Book of Data <i>ALLOW</i> phonetic spellings of phenolphthalein Allow litmus paper	(2 marks)
	(ii)	Concentrate the mixture by heating / heat until saturated (1) Leave to cool/ evaporate slowly (1) (filter/pick out/decant and) pat dry/leave to dry/put in warm oven/oven less than 40 °C (1) NOT hot oven <i>IGNORE filtering at the start</i> <i>Boiling to dryness at start</i> (0) <i>3 correct points</i> (2)	
		2 correct points (1)	(2 marks)
		Total for question	n: 13 marks

5	(a)	(i)	Redox <i>ALLOW</i> oxidation / partial oxidation <i>NOT</i> reduction / complete oxidation	(1 mark)
		(ii)	Sodium or potassium dichromate ((VI)) / Na ₂ Cr ₂ O ₇ / K ₂ Cr ₂ O ₇ (1) Sulphuric acid / H ₂ SO ₄ dilute or concentrated (1) <i>IGNORE any Roman numerals</i> <i>ALLOW</i> H ⁺ and Cr ₂ O ₇ ²⁻ / acidified dichromate 1 (out of 2) H ₂ SO ₄ mark not allowed if mixed with an alkali/carbonate	(2 marks)
		(iii)	Orange to green / blue / blue green ALLOW TE of purple to colourless / brown if MnO ₄ ⁻ used in ii	(1 mark)
		(iv)	Image: Reaction reinform Raction reinform Read-state Pear-shaped/round bottomed flask/tube with side arm + reagents/reaction mixture + heat (1) Side-arm from adaptor/delivery tube from side-arm tube/condenser + collecting vessel (1) -1 for poor drawing eg line not tube, sealed apparatus, open at top, collecting under water, large gaps in equipment, one-piece equipment (ie flask must be separate from rest) IF condenser used ignore water direction No marks if refluxed/apparatus would not work	(2 marks)

	$ \begin{array}{c} \text{(v)} \\ H \\ H \\ -C \\ -C \\ -C \\ -C \\ -C \\ -C \\$	
	Watch for $-c_{0}^{OH}$ (0)	(1 mark)
	 (vi) Benedict's solution (+ heat + NaOH) (1) Red/brick-red (precipitate) (1) ALLOW green/yellow/brown/red-brown/orange Stays blue (solution) (1) ALLOW nothing happens / no change if Benedicts colour given earlier OR potassium/sodium dichromate + acid (1) goes green (1) ALLOW goes blue stays orange solution (1) ALLOW correct results with Fehlings solution or Tollens reagent 	(0
(b)	$\begin{array}{c} H & H & H \\ H - C - C - C - O - H \\ H \\ H \\ \end{array} (2-) methyl propan -1-ol (1) \\ Do not penalise if OH and CH_3's not fully displayed. ONLY ALLOW T.E. for name if (2-) methyl propan-2-ol is drawn. \end{array}$	(3 marks) (2 marks)
	Total for Question	on: 12 marks

6	(a)	Prot	$\frac{\text{ons}}{\text{trons}} = \frac{18}{18} $ (1)	
			trons 22 (1)	(2 marks)
	(b)	has 1	on depends on proton number/ atomic number (not mass) / Ar atom less proton than K atom.	
		IGNOI	<i>RE</i> references to number of protons = number of electrons	(1 mark)
	(c)	Avera	$ge = \frac{36 \times 1.34 + 38 \times 0.16 + 40 \times 98.5}{100}$ = 39.9 (1)	
			r more or less than 3 SF RE units	(2 marks)
	(d)	Numb	^{,2} 2p ⁶ 3s ² 3p ⁶ pers following letters can be subscript or superscript p can be upper or lower case	(1 mark)
	(e)	(i)	$\begin{array}{l} \operatorname{Ar}(g) \to \operatorname{Ar}^{+}(g) + e^{(-)}((g)) \\ OR \operatorname{Ar}(g) - e^{(-)}((g)) \to \operatorname{Ar}^{+}(g) \\ Symbol \ of \ Ar \ must \ be \ correct \end{array}$	(1 mark)
		(ii)	Potassium value well below sulphur in range 250-750 (1) Low ionisation energy as electron which is removed is more shielded / further from the nucleus / in a higher energy level (1) NOT just 'because electron is in fourth shell'	(2 marks)
		(iii)	Sulphur has 4 electrons in (3)p / phosphorus has 3 (1) <i>Plus any one from:</i> Electrons in shared p orbitals repel (so are lost more easily) (1) half-filled sub-shells are (more) stable (1) phosphorus has half-filled sub-shell (1)	(2 marks)
		(iv)	Chlorine has more protons/greater nuclear charge (1) Shielding unchanged /electrons in same shell/ electrons same distance from nucleus(1) <i>Could be answered in terms of S having fewer protons</i>	(2 marks)
	(f)		n inert / unreactive so filament can't react/ vaporises less easily/ longer (1)	(1 mark)
			Total for Question	n:14 marks

7	(a)	Thermal decomposition/redox	(1 mark)
	(b)	 (i) 2Mg(s) + 2N₂(g) + 6O₂(g) formulae of elements (1) balancing and state symbols (1) 	(2 marks)
		(ii) $\Delta H_r = \Delta H_2 - \Delta H_1$ Stated or used (1) $\Delta H_r = 2 (-601.7) + 4(33.2) - 2 (-790.7)$ (1) <i>Error in multiple or copying data = 0</i> $\Delta H = +510.8 / +511 / + 510 \text{ kJ mol}^{-1}$ (1) -1 for wrong sign or units. <i>Do NOT penalise lack of + sign if working clear</i> If no multiples used : (+) 222.2 kJ mol ⁻¹ (max 2 out of 3) If one multiple missing (max 2 out of 3) e.g. one Mg(NO_3)_2: - 279.9 kJ mol ⁻¹ one MgO: (+) 1112.5 kJ mol ⁻¹ one NO_2: (+) 411.2 kJ mol ⁻¹	
		Maximum 1 out of 3 if answer based on wrong Hess' law	(3 marks)
	(c)	$O^{2^{-}} + H_2O \rightarrow 2OH^{-}$ IGNORE state symbols ALLOW if Mg ²⁺ shown on both sides	(1 mark)
	(d)	Conducts as ions are present in solutions of acids / H+ ions are present / other ions are present, correct name or formula given	(1 mark)
		Total for Quest	ion: 8 marks
		TOTAL FOR PAPE	R: 60 MARKS