edexcel ㅃ̈출

GCE

Edexcel GCE
Chemistry (Nuffield) (6251/01)

J anuary 2006

Mark Scheme (Results)

1	(a)	$\rightarrow \mathrm{CuCO}_{3}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})$ (1) (1) 2 correct formulae without state symbols and balancing (1) NOT ppt as an alternative to (s)		(2 marks)
	(b)	(persistent) yellow ALLOW orange OR orange-yellow OR yellow-orange		(1 mark)
	(c)	Copper d (block) sodium S (block)ALLOW upper case D and S		(1 mark)
2	(a)	Number of moles / $\frac{3.5}{7}=0.50 / 1 / 2$ (1) If candidate does first part only, working must be shown Number of atoms $=3.01 \times 10^{23}$ (1) ACCEPT 3.0 OR 3 OR 3.010 $\times 10^{23}$) NOT 3.01^{23} If all working shown, allow TE for $2^{\text {nd }}$ mark Ignore units Correct answer with no working (2)		(2 marks)
	(b)	(i)	$2 \mathrm{Li}((\mathrm{~s}))+2 \mathrm{H}^{+}((\mathrm{aq})) \rightarrow 2 \mathrm{Li}^{+}((\mathrm{aq}))+\mathrm{H}_{2}((\mathrm{~g}))$ ALLOW multiples Ignore state symbols	(1 mark)
		(ii)	(1) (1) Allow all dots or all crosses on Cl^{-} Max 1 if no/ wrong charges If covalent (0) Do NOT penalise if electrons not shown in pairs Maximum 1 if Li and Cl not labelled Li and Cl symbols can go below diagram Square brackets not essential Allow number of protons/ positive charges in nucleus as alternative to symbols for Li and Cl	(2 marks)

		(iii)	Any two from: Temp $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ OR "at a specified temperature" Unit of temperature needed NOT "room temperature" (Acid/ solution) concentration $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1$ molar Pressure 1 atm / $10^{5} \mathrm{~Pa} / 1.01 \times 10^{5} \mathrm{~Pa} / 10^{2} \mathrm{k} \mathrm{Pa} /$ $101 \mathrm{k} \mathrm{Pa} / 10^{5} \mathrm{~N} \mathrm{~m}^{-2} / 76 \mathrm{~cm} \mathrm{Hg}$ NOT "pressure of hydrogen" OR "pressure of reactants" NOT atmospheric pressure Must be the most stable/ usual/ normal physical states NOT "standard states" If more than 2 conditions given, deduct 1 mark for each incorrect answer	(2 marks)
3	(a)	Alke		(1 mark)
	(b)		$\mathrm{CHCH}_{2} \mathrm{CH}_{3} / \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3} / \mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} / \mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$ e bond need not be shown T displayed formula independently of a for incorrect numbers of H in the middle of the chain	(1 mark)
			Total for Section A: 13 marks	

Section B

4	(a)	Metallic (1) Labelled diagram of lattice of +charged ions in sea of electrons with approx equal numbers of + and - charges (1) Positive ions must not be touching; should be regular arrangement Minimum of 6 positive ions Charges need not be shown on electrons ACCEPT e-without label Circles shown as $2^{+} / 3^{+}$must be labelled as ions Circles labelled Fe^{2+} and Fe^{3+} can be assumed to be ions		(2 marks)
	(b)	(i)	```\(\mathrm{Fe}^{2+}\) and \(\mathrm{Fe}^{3+}\) both needed OR \(\mathrm{Fe}^{++}\)and \(\mathrm{Fe}^{++}\) OR \(\mathrm{Fe}^{+2}\) and \(\mathrm{Fe}^{+3}\) ALLOW \(2 \mathrm{Fe}^{3+}\) NOT Roman numerals NOT \(\mathrm{Fe}_{2}{ }^{3+}\), \(\left(\mathrm{Fe}^{3+}\right)_{2}\) NOT just +2 , +3 or \(2+\), \(3+\) IGNORE formula of sulphate ion if iron correct.```	(1 mark)
		(ii)	Iron loses electrons/ iron forms positive ions / oxidation number of iron increases / becomes more positive / becomes less negative NOT iron becomes charged NOT iron loses charge If $b(i)$ is answered in terms of sulphate, iron must be mentioned in $b(i i)$ Ignore 'gaining oxygen'	(1 mark)
		(iii)	$\begin{aligned} & \text { Iron } \frac{0.500}{56}=8.93 \times 10^{-3} / 0.00893 / 0.0089 / 0.008929 / 0.009 \mathrm{~mol}(\mathbf{1}) \\ & \text { Ignore SF } \\ & \text { Sulphuric acid } \frac{10.0 \times 2.00}{1000}=0.0200 / 0.02 \\ & / 2 \times 10^{-2} / 2.0 \times 10^{-2} / 2.00 \times 10^{-2}(\mathrm{~mol})(1) \end{aligned}$	(2 marks)

	(iv)	$214 \mathrm{~cm}^{3}=\frac{214}{24000}=8.92 \times 10^{-3} / 8.917 \times 10^{-3} / 8.9 \times 10^{-3} / 0.009 \mathrm{~mol}(\mathbf{1})$ Ignore SF In equation 1 number of moles $\mathrm{Fe}=$ number of moles H_{2} OWTTE (1) MUST link equation to calculation	(2 marks)
	(v)	To make sure iron reacts completely OR to make sure all iron reacts OR if excess iron is used expt would not work as moles $\mathrm{H}_{2} \mathrm{SO}_{4}=$ moles H_{2} in both equations OR to provide enough acid for the $2^{\text {nd }}$ equation to occur. NOT to ensure reaction reaches completion NOT all reactants must be used up NOT arguments based on purity	(1 mark)
(c)	(i)	Indicator (1) Colours (1) Methyl orange red to yellow Litmus red to blue ALLOW Phenolphthalein colourless to pink/ purple/ mauve/ red OR other indicators from p. 123 of Book of Data ALLOW phonetic spellings of phenolphthalein Allow litmus paper	(2 marks)
	(ii)	Concentrate the mixture by heating / heat until saturated (1) Leave to cool/ evaporate slowly (1) (filter/ pick out/decant and) pat dry/ leave to dry/ put in warm oven/ oven less than $40^{\circ} \mathrm{C}$ (1) NOT hot oven IGNORE filtering at the start Boiling to dryness at start (0) 3 correct points (2) 2 correct points (1)	(2 marks)
		Total for questio	13 marks

5	(a)	(i)	Redox ALLOW oxidation / partial oxidation NOT reduction / complete oxidation	(1 mark)
		(ii)	Sodium or potassium dichromate ((VI)) / $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (1) Sulphuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$ dilute or concentrated (1) IGNORE any Roman numerals ALLOW H ${ }^{+}$and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ / acidified dichromate 1 (out of 2) $\mathrm{H}_{2} \mathrm{SO}_{4}$ mark not allowed if mixed with an alkali/ carbonate	(2 marks)
		(iii)	Orange to green / blue / blue green ALLOW TE of purple to colourless / brown if MnO_{4}^{-}used in ii	(1 mark)
		(iv)	Arrow is enough to show heat Pear-shaped/round bottomed flask/ tube with side arm + reagents/ reaction mixture + heat (1) Side-arm from adaptor/ delivery tube from side-arm tube/ condenser + collecting vessel (1) -1 for poor drawing eg line not tube, sealed apparatus, open at top, collecting under water, I arge gaps in equipment, one-piece equipment (ie flask must be separate from rest) IF condenser used ignore water direction No marks if refluxed/ apparatus would not work	(2 marks)

	(v)	 Watch for	(1 mark)
	(vi)	Benedict's solution (+heat +NaOH) (1) Red/ brick-red (precipitate) (1) ALLOW green/ yellow/ brown/ red-brown/ orange Stays blue (solution) (1) ALLOW nothing happens / no change if Benedicts colour given earlier OR potassium/ sodium dichromate + acid (1) goes green (1) ALLOW goes blue stays orange solution (1) ALLOW correct results with Fehlings solution or Tollens reagent	(3 marks)
(b)		 ethylpropan -1-ol (1) penalise if OH and CH_{3} 's not fully displayed. ONLY ALLOW T.E. me if (2-)methylpropan-2-ol is drawn.	(2 marks)
	Total for Question: 12 marks		

6	(a)		$\begin{aligned} & \text { ons } \\ & \text { trons } \\ & \text { trons } \end{aligned}$	(1) (1)	(2 marks)
	(b)	Position depends on proton number/ atomic number (not mass) / Ar atom has 1 less proton than K atom. IGNORE references to number of protons = number of electrons			(1 mark)
	(c)	$\begin{aligned} & \text { Average }=\frac{36 \times 1.34+38 \times 0.16+40 \times 98.5}{100} \begin{array}{l} \text { (1) } \\ =39.9 \end{array} \\ & \begin{array}{l} \text { (1) for more or less than } 3 \text { SF } \\ \text { IGNORE units } \end{array} \end{aligned}$			(2 marks)
	(d)	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ Numbers following letters can be subscript or superscript s and p can be upper or lower case			(1 mark)
	(e)	(i) $\operatorname{Ar}(\mathrm{g}) \rightarrow \operatorname{Ar}^{+}(\mathrm{g})+\mathrm{e}^{(-)}((\mathrm{g}))$ $\operatorname{ORAr}(\mathrm{g})-\mathrm{e}^{(-)}((\mathrm{g})) \rightarrow \operatorname{Ar}^{+}(\mathrm{g})$ Symbol of Ar must be correct			(1 mark)
		(ii)	Pota Low shiel NOT	um value well b nisation energy d / further from ust 'because electron	(2 marks)
		(iii)	Sulp Plus Elec half phos	has 4 electron y one from: ns in shared p or led sub-shells ar orus has half-fil	(2 marks)
		(iv)	Chlor Shiel dista Could	e has more prot ing unchanged / e from nucleus be answered in	(2 marks)
	(f)	Argon inert / unreactive so filament can't react/ vaporises less easily/lasts longer (1) lasts longer (1)			(1 mark)
		Total for Question: 14 marks			

7	(a)	Thermal decomposition/ redox		(1 mark)
	(b)	(i)	$2 \mathrm{Mg}(\mathrm{~s})+2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{O}_{2}(\mathrm{~g})$ formulae of elements (1) balancing and state symbols (1)	(2 marks)
		(ii)	$\begin{align*} & \Delta H_{r}=\Delta H_{2}-\Delta H_{1} \text { Stated or used (1) } \\ & \Delta H_{r}=2(-601.7)+4(33.2)-2(-790.7) \tag{1} \end{align*}$ Error in multiple or copying data $=0$ $\begin{equation*} \Delta \mathrm{H}=+510.8 /+511 /+510 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1} \end{equation*}$ -1 for wrong sign or units. Do NOT penalise lack of + sign if working clear If no multiples used : (+) $222.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ($\max \mathbf{2}$ out of 3) If one multiple missing (max 2 out of 3) e.g. one $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}:-279.9 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ one MgO: $\quad(+) 1112.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ one NO_{2} : $\quad(+) 411.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Maximum 1 out of 3 if answer based on wrong Hess'law	(3 marks)
	(c)	$\mathrm{O}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}^{-}$ IGNORE state symbols ALLOW if Mg^{2+} shown on both sides		(1 mark)
	(d)	$\begin{aligned} & \hline \text { Conc } \\ & \text { / ott } \end{aligned}$	cts as ions are present in solutions of acids / H+ions are present ions are present, correct name or formula given	(1 mark)
		Total for Question: 8 marks		
	TOTAL FOR PAPER: 60 MARKS			

